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Stress hysteresis as the cause of persistent holes in particulate suspensions
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Concentrated particulate suspensions under vibrations can support stable, localized, vertically oriented free
surfaces. The most robust of these structures are persistent holes: deep and stable depressions of the interface.
Using a reduced model of the hydrodynamics we show that a rheology with hysteresis can lead to motion
opposite to the time-averaged applied force. Moreover, we show experimentally that particulate suspensions of
cornstarch in water exhibits hysteresis in the shear-rate response to an applied sinusoidal stress. The results of
our model and our experiments suggest that hysteresis accounts for the outward force needed to support

persistent holes.
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I. INTRODUCTION

Particulate suspensions are prevalent in industry, science,
and nature. The flow of these fluids is crucial in industries
from oil extraction to mining to food preparation, can dra-
matically affect our environment (e.g., pyroclastic flows) and
our health (e.g., blood flow), and continues to draw the in-
terest of researchers. These materials display a variety of
non-Newtonian effects and respond nonlinearly at even mod-
est stresses or shear rates. The most salient example of the
latter is their propensity at high volume fraction to shear
thicken [1]: their apparent viscosity rises with shear rate or
stress.

Merkt et al. [2] conducted experiments on various con-
centrated particulate suspensions in a Faraday system. In
their experiments, a thin layer, typically 1 cm deep, was ver-
tically vibrated in an open container. They discovered that
above a threshold in the acceleration around ten times the
acceleration due to gravity, a perturbation of the fluid’s free
surface nucleated a stable cylindrical void, which extended
downward from the free surface through almost the entire
layer. These holes persisted indefinitely while the vibration
were maintained, but vanished immediate upon the cessation
of the vibrations. Merkt et al. called these structures persis-
tent holes. Schleier-Smith and Stone [3] and Ebata et al. [4]
found fronts and localized waves similar in nature to persis-
tent holes in vibrated wet granular materials.

Persistent holes display the hallmarks of dissipative soli-
tons in nonequilibrium systems [5]. They are localized struc-
tures, and exist only so long as they are supplied with energy.
Persistent holes are one of a number of dissipative solitons
discovered in the Faraday system. Lioubashevski and co-
workers found localized traveling waves in highly viscous
fluids [6] and in shear thinning clay suspensions [7]. Umban-
hower and co-workers found oscillons in vibrated granular
materials [8].

Persistent holes are notably different from other solitons
in the Faraday system. Whereas other solitons oscillate about
the flat—that is, stable—state, persistent holes oscillate about
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an unstable configuration. Thus, the stability of persistent
holes is puzzling. Despite the hydrostatic pressure gradient
pushing fluid into the hole, there is no flow into the hole.
Merkt et al. [2] tested various other Newtonian and non-
Newtonian fluids but were unable to find other complex flu-
ids that supported persistent holes. Based on the latter fact
and the typical shear rates observed, Merkt et al. concluded
that shear thickening is essential for persistent holes.

Here we present the results of our inquiry into the stability
of persistent holes. Our approach was to find a reduced
model for the coupling of the flow and rheology that repro-
duced the phenomena. Below we show that a one-
dimensional dynamical system with a hysteretic stress-strain
rate relation can account for the stability of persistent holes.
We further show that the postulated rheology is present in
our experimental system. Thus, rather than shear thickening
being the root cause of persistent holes as suggested by
Merkt et al., we find that hysteresis in the stress response is
the key ingredient.

II. METHODS
A. Model

A natural starting point for a model of persistent holes is
the incompressible Navier-Stokes equations with an appro-
priate constitutive relationship. Such an approach is fraught
with difficulties because the observed surface profile of the
fluid does not naturally conform to any of the usual simpli-
fying approximations (e.g., shallow layer or lubrication), and
constitutive relations for dense particulate suspensions are
still under development [9—12]. We circumvent these diffi-
culties, at the expense of rigor, by ignoring the continuum
aspect of the problem, and developing a one-dimensional
model of this phenomenon.

Experiments show that there is no significant exchange of
fluid between the annulus of fluid next to the hole and the
surrounding fluid [13]. Hence, we model the fluid in the wall
of a hole as a block and consider only the horizontal position
of its center of mass R. Since experiments show that a furrow
is as stable as a cylindrical hole, we neglect the circular
symmetry of the hole and treat the block as an isolated mass.
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FIG. 1. (Color online) Schematic cross section of a persistent
hole. The dark (blue) area is assumed to move as a rigid unit in our
model. The driving force comes from the pressure difference be-
tween the inside p and the outside p,. Depending on the instanta-
neous acceleration, p>p, for upward acceleration or p<<p, for
acceleration downward producing a force to the right or left, respec-
tively. Striped area is the supporting substrate.

Observations of the hole profile show that the walls of the
hole oscillate with the period of the drive, growing during
the downward acceleration phase and shrinking during the
upward phase [2] and that fluid in the walls deforms prima-
rily in shear during this motion. Hence, we approximate the
dissipation force on the block by a function of the shear rate
v and possibly time ¢. We further assume that the shear rate

is proportional to speed of the center of mass R, where the
proportionality constant H has units of inverse length and is
of order the boundary layer thickness. As shown in the ap-

pendix, the resulting force can be written as B(R,t)R.

The external forces on the block of fluid arise from the
pressure of the surrounding fluid, and surface tension. We
assume that the pressure is dominated by the hydrostatic con-
tribution. As shown in Fig. 1 and in greater detail in the
appendix, this gives rise to a horizontal force proportional to
the total acceleration. For a sinusoidal drive, the total accel-
eration is —g+a sin ()f, where g is the acceleration due to
gravity, and a and () are the amplitude and frequency of the
applied acceleration. The contribution of surface tension to
the pressure is negligible compared to the hydrostatic pres-
sure, and is henceforth ignored. Given these forces and the
internal dissipation, the dynamics of the block follows from
Newton’s law:

MR =m(- g +a sin Q1) — B(R,1)R, (1)
where M is the mass of the block and m is a constant with
units of mass. Introducing the nondimensionalized variables
s=0t, u=ZZ—QR, I'=al/g, and F=58 Eq. (1) becomes

g mg

—u:—1+I‘sins—F(u,s). (2)
ds

B. Rheological measurements
1. Material

Our samples were prepared by mixing cornstarch (Alrich)
with a 200.0 mM CsCl aqueous solution in proportions of
3:7 by weight. Cornstarch consists of particles with average
radius 5.5 um. There was no observable swelling of the par-
ticles after being immersed in the solution for several days,

PHYSICAL REVIEW E 81, 036319 (2010)

0.35

0.3r

0.25¢

0.2

0.15¢

viscosity (Pa s)

0.1

0.05

0, ; ;
107 10° 10' 10°

shear rate (1/s)

FIG. 2. (Color online) Viscosity of cornstarch solution as mea-
sured during an increasing shear stress ramp. The error bars corre-
spond to the observed variation from run-to-run or
sample-to-sample.

and thus the volume fraction of the particles is 0.3. The rheo-
logical properties of freshly prepared samples drifted as the
sample aged, but stabilized after about 48 h. All measure-
ments described below were performed after this transient
aging period. A salt solution instead of pure water was used
to prevent sedimentation by density matching the granules
and the solvent; no visible separation occurred in our
samples over a time scale of several days.

2. Measurements

Our measurements were done with a stress controlled rhe-
ometer (AR-2000ex, TA Instruments) in a cone-plate geom-
etry with an acrylic cone of radius R,=3.0 cm and angle «
=2° 00" at 25 °C. Samples were loaded such that the
squeezing force during compression of the sample never ex-
ceeded 0.1 N. Evaporation was minimized by an enclosure
around the test geometry that all but sealed the test fluid from
the environment. Steady-state shear viscosity measurements
from stress ramps exhibit the characteristic profile of particu-
late suspensions as shown in Fig. 2: shear thinning for low
shear rates followed by shear thickening at higher shear rates
[1]. Sequential tests on the same and freshly loaded sample
were reproducible to within 10%. Higher shear rates than
shown in Fig. 2 produced nonrheometric flows as evidenced
by the formation of waves on the meniscus and ultimately to

the ejection of the fluid from the geometry. The Peclet num-

. 6wl . . .
ber Pe is 7:; v, where kT is the Boltzmann factor and 7, is

the solvent viscosity; for these measurements Pe
=780 [s7!']y, which indicates that Brownian motion is neg-
ligible even for the lowest shear rates.

Our primary results are from oscillatory stress tests for
various stress amplitudes and frequencies. We applied a sinu-
soidal torque 7(r) to the test fixture and recorded the angular
displacement 6(¢). For frequencies above 0.1 Hz, the com-
bined inertia of the instrument’s spindle and the test geom-
etry is a significant factor in the motion. We subtracted this
contribution from the applied stress to extract the stress on
the material o(¢) as follows:
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O-(t) = 3 3
27R;
where [ is the total inertia of the apparatus. The shear rate
was calculated as y=cot a‘;—f. There is only a narrow fre-
quency and shear-rate window in which quantitatively reli-
able data was produced. Wavelike distortions of the meniscus
appeared above 7~50 s~!, indicating the onset of nonrheo-
metric flows. As the frequency of oscillation increases, the
contribution of inertia to the measured torques grows as the
frequency squared and ultimately dominates the signal. Ex-
tracting the material response from the signal requires differ-
entiating 6(¢) twice with respect to time, an operation that
introduces noise. Above 1.0 Hz the material response contri-
bution to the torque is lost in the background of the inertial
contribution.

III. RESULTS AND DISCUSSION
A. Model

Below we investigate the dependence of u on the func-
tional form of the frictional force F. A frictional force must
be dissipative and its magnitude must be independent of flow
direction. Therefore, a physically realistic functional form
for F must be such that F(u)=—F(-u) and sgn(F)=sgn(u).
Furthermore, to ensure mechanical stability (e.g., that flow
does not occur spontaneously) we demanded that ﬁF >0.

The block, as depicted in Fig. 1, represents the right side
of the hole. There is also a block that represents the left side.
The left block moves as the mirror image of the right block
because it experiences a force opposite to the force on the
right block. If the two blocks move toward the center and
meet, the hole vanishes. Below, where we only specify the
motion of the right block, we call motion in the negative
direction ‘“closing” because the blocks are approaching each
other and the hole is getting smaller. Similarly, motion in the
positive direction represents a growing hole, and we call this
motion “opening.”

For the undriven case, i.e., I'=0, the solution to Eq. (2)
for arbitrary F is possible. The speed will monotonically ap-
proach the limit F~'(-1). As dqu >0, this speed is negative
and therefore the hole closes. This result is as expected for
any fluid (without a yield stress), including shear thickening
fluids: the free surface of a fluid will relax to the flat equi-
librium configuration following a disturbance.

For the driven case, i.e., I'>0, we consider three classes
of rheologies: single-valued time independent, viscoelastic,
and hysteretic.

1. Single-valued time-independent case

For I'>>0 and arbitrary F there is no general analytical
solution to Eq. (2). For the Newtonian case F=bu, where b is
a positive constant, the equation is analytically solvable and
yields that the average steady-state speed #=—b"'. Thus, i
<0 and the solution is closing, in agreement with the experi-
mental observation that Newtonian fluids are unable to sus-
tain holes.

We examined other likely constitutive relations numeri-
cally listed in Table I. None produced opening behavior. In
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TABLE 1. Rheological models. #;, 7, 73, «, B, and i are
constants that were extensively varied in our simulations.

Model Flu

Shear thinning m+nu* 0<a<l
M+ mful a>0
M+ 7o+ 73 ulP

n, for |u|<i;

Shear thickening
Shear thickening and thinning

Discontinuous .
m, for |u|=il.

all cases and for all tried parameters, # was negative. These
result are consistent with what one might expect on physical
grounds given that the external force —1+1I sin ¢ averages to
—1.

2. Linear viscoelastic case

We also examined a linear viscoelastic model. The fric-
tion force was evolved according to a Maxwell model,

dF  Bu-F
dt T

. (4)

where 8 and T are constants representing the viscosity and
the relaxation time. Differentiating Eq. (2) and substituting
Eq. (4) yields
du  1du 1 1
—2+——+Eu=——+1"(coss+—sins>. (5)
ds© Tds T T T
The solutions is of the form
u= “damped term” + “oscillating term” -1  (6)

and therefore it=—1, i.e., a closing solution. Thus, our model
with a linear viscoelastic relation is unable to support persis-
tent holes, in agreement with experimental observations [2].

3. Hysteretic case

Motivated by the phenomenological model for suspen-
sions of Head and co-workers [14] that predicted a bistable
hysteretic rheology, we used a hysteretic constitutive relation
for F. This rheology is able to produce opening solutions.
The hysteresis is incorporated by letting F(u)=b(u)u where
the damping factor b(u) depends on the history of the sample
as follows:

b, for when |u| falls below u,,
b(u) = (7

b, for when |u| rises above u,.

This relationship between the damping force and speed is
illustrated in Fig. 3(a).

With this rheological model, Eq. (2) produces both open-
ing and closing type solutions. For 0 <I'<<1, the forcing is
negative for all times and hence the movement of the block
is also always in the negative direction. For I'> 1, the physi-
cal origin of the solutions is illustrated in Figs. 3(b) and 3(c).
For low values of I'>1 the block only experiences the low
damping branch of F. This situation is identical to the New-
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(a) F

FIG. 3. (Color online) Hysteretic constitutive relation. Solid
(blue) lines show the damping force F as a function of u. Dotted
(black) lines indicate transitions from the low to high or high to low
viscosity branches when |u| exceeds u, or falls below u;, respec-
tively. Dashed (red) line shows velocity history of block during a
single cycle below (b) and above (c) the acceleration threshold for
opening behavior.

tonian case solved above, and produces closing behavior ex-
clusively. This result follows from considering the halves of
a full oscillation cycle when the acceleration is positive or
negative. During the positive half of the cycle, the average
forcing due to acceleration is —1+2I'/ 7 and the block slides
in the positive direction, while during the negative half of the
cycle the average forcing is —1—2I"/r and the block slides
in the negative direction. Since the total acceleration is
greater during the negative half, the total distance moved is
greater than during the positive half. During any given cycle,
the block moves some in the positive direction but more in
the negative direction, and thus the net movement is in the
negative or closing direction.

Higher I" produces higher peak speeds and ultimately the
peak speed reaches the transition value u=u,. The block will
first encounter this transition point during the negative half
of the cycle because the acceleration, and hence the peak
speed, is greatest during this half-cycle. Once it reaches this
threshold, the system jumps to the higher damping branch,
dissipation increases, and the block slows down. Though the
block slows down, the system remains on the high damping
branch until the speed falls below u; because of the hyster-
esis. The system’s excursion through the high damping re-
gime can produce average speeds during the negative half-
cycle that are lower than the average speed during the
positive half-cycle, and thus the net motion becomes positive
and opening solutions occur.
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FIG. 4. (Color online) Shear stress o versus shear rate y for an
aqueous cornstarch mixture from oscillatory measurements at ()
=3.14 rad/s for increasing stress amplitude with low at the top.
The data, as described in the text, corresponds to the instantaneous
values of stress and strain rate during a single oscillation cycle. The
arrows indicate increasing phase of the cycle. When the shear-rate
increases beyond 1 s~ the curves begin to show a hysteretic
response.

B. Rheology of cornstarch suspension

The hysteretic rheology is the only rheology we found
that supports holes. Here we show that a cornstarch suspen-
sion that supports persistent holes exhibits hysteresis in os-
cillatory stress tests. Figure 4 shows a selection of the results
at 1=3.14 rad/s. These measurements were obtained by ap-
plying a low pass filter to the raw data, and averaging over
30-50 cycles. Figure 4 is a parametric plot of stress versus
the strain rate during a single oscillation cycle. For induced
shear rates less than 1 s™!, these curves are essentially single
valued. The small enclosed area by these curves is equivalent
in magnitude to what we measure for a Newtonian fluid, a
glycerol/water mixture, of similar viscosity. Above a shear
rate of 1 s7!, the stress response exhibits a qualitative
change in character in which hysteresis appears. During the
phases when |7 is increasing, the stress is lower than during
the phases when |}| is decreasing. Figure 5 shows similar
data to Fig. 4 but for larger torque amplitudes.

We observe hysteresis from our lowest measured fre-
quency 0.628 rad/s up to the maximum frequency that pro-
duces reliable data 6.28 rad/s. We also observe hysteresis in
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FIG. 5. (Color online) Fig:CompareEtaOscillatory measure-
ments of shear stress o versus shear rate y as in Fig. 4 but for
higher stresses. The black squares show the results from a steady
shear measurements.

our steady-state measurements between increasing and de-
creasing stress ramps, and thus, hysteresis may extend to all
lower frequencies.

Our rheological measurements are consistent with earlier
work in Brownian [15,16] and non-Brownian [17-19] sus-
pensions. These authors observed nonsinusoidal responses to
large amplitude sinusoidal drives. The consensus is that these
distortions are indicative of the creation and destruction of
some microstructure which follows the reversal of flow. We
adopt this viewpoint and view our hysteretic rheology as a
manifestation of a shear-rate driven first order phase transi-
tion from the liquid phase to the structured phase. The latter
is consistent with the notion of hydroclusters [20], or the
fore-aft asymmetry of experiments [21,22] and Stokesian
simulations [23-25].

C. Comparison of rheology, model, and experimental
observations

Figure 6 illustrates the similarities and differences of the
model and measured rheology. Like the model rheology, our
measurements show two distinct responses that are observ-
able when the shear rate exceeds a threshold. For low peak
shear rates, o(y) follows a single curve (denoted “low” in
Fig. 6) for increasing and decreasing 7. For an oscillation
cycle with a peak shear rates that exceed 1 s™!, o(7) follows
the low branch while (r)<<1, then switches to the high
branch following a path through the o-7 plane that depends
on the rate of change of y. As y— 0, there is another transi-
tion from the high to the low branch but we are unable to
resolve it, though we can say that it occurs before y changes
sign.

The main differences between the model and measured
rheology are that the measured low branch is nonlinear and
that the transition from the low to high branch in the mea-
surements displays dynamics not present in the model. The
first of these differences is inconsequential; our model can be
altered to have a nonlinear shear-rate dependence without
changing the qualitative result that opening holes are pos-
sible. The second difference cannot be addressed without in-
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FIG. 6. Schematic comparison of the assumed rheology (top)
with the measured rheology (bottom). The dashed lines correspond
to transition between the low and high branches.

troducing a more detailed model which accounts for the evo-
lution of the internal state of the fluid. Our preliminary
investigations into such a model suggest that the extra detail
introduces nothing new.

We now show that the model gives fair quantitative agree-
ment with experimental results assuming that the hysteresis
observed at low frequencies persists at higher frequencies.
We revisit the latter assumption below. Typical experimental
parameters at which persistent holes were observed by Merkt
et al. are given in Table II: ) and a are the driving param-
eters; 7, and p are the material properties where 7, is taken
from the steady-state measurements and p is the density; ry,
s, hy, hy are the geometrical parameters shown in Fig. 7; and
or is the amplitude of the hole’s oscillation during a cycle.

TABLE II. Experimentally parameters for the formation of per-
sistent holes as determined by [2].

Parameter Value
Q 942 rad/s
a 15¢
T 2.5 mm
ry 4.5 mm
hy 1 mm
hy 5 mm
m 50 Poise
p 1.7 glcc
or 0.35 mm
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FIG. 7. Fluid mass modeled in Eq. (2)

Combining these parameters into nondimensional forms
gives

l(rz—rl)QH
=y, =0, 8
“ 2(hy=hy) g 7 ®)
7
b, = =5, 9
2 pQHZ ()

where we used %—‘Z to compute y and assumed that H is the
boundary layer thickness V7,/p{). We assume that b,
=b,/5 based on the ratio of the high to low viscosity
branches in our current measurements. Similarly, we assume
that 0 <u; =<u,/10. The upper and lower limits are based on
our observation that u,>u; and u; is finite. Our model is
insensitive to the actual value of #; within these limits. Using
these parameters and numerically integrating Eq. (2) gives
opening solutions for 6.55<<I'<8.80, as shown in Fig. 8.
This compares favorably, given the approximations of our
model, with the measured onset of holes I'~12.

The frequencies ranges of the rheological experiments
and the experiments showing persistent holes also warrant
discussion. The experiment on persistent holes were per-
formed in a range around 100 Hz. Our rheological measure-
ments demonstrating hysteresis in a cornstarch solution were
performed at frequencies no higher than 1 Hz. We argue that

0 5 16 15
T'/g
FIG. 8. (Color online) Average velocity computed from Eq. (2)
with the hysteretic theology of Eq. (7) with u;=0.6, u,=6, b;=1,
b2=5 .
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the low frequency response is indicative of the response at
the higher frequencies at which persistent holes are observed.
Hysteresis is tied to the time scale for the microscopic con-
figuration to reach steady state, as in for example the nucle-
ation of crystallites in a supercooled liquid. In a particulate
suspension the time scale associated with the observed hys-
teresis might be for the formation of hydroclusters. Irrespec-
tive of the microscopic origin, the relevant time scale for
cornstarch, which are non-Brownian particles, is the inverse
shear rate. Thus, provided )~ 7, or alternatively that the
shear y~ 1, hysteresis ought to be present. This is consistent
with the observation of holes in which y=0.3.

Lastly, it merits highlighting that the hysteretic force in-
troduced here is meant to answer the question of what could
counter the hydrostatic pressure that would cause a hole to
collapse in any fluid except particulate suspensions. In par-
ticular, our model does not address the finite and preferred
size of persistent holes observed in experiments [2]: holes
grow without bound in our model. We do not yet know the
mechanism which limits the size of the hole. One possibility
is that the rise of the liquid layer caused by the hole increases
the hydrostatic pressure to the point that it balances the hys-
teretic force. This effect can be incorporated into Eq. (2) by
requiring that /i, in Eq. (A6) respect conservation of volume.
While this clearly a strong effect in some system (e.g., the
liquids investigated by [4]), it is less clear in cornstarch so-
lutions which only exhibit a localized rise in the fluid layer.

IV. CONCLUSION

In summary, our study shows that particulate suspensions
exhibit hysteresis. Our incorporation of a hysteretic rheology
into a minimal model for persistent holes illustrates that hys-
teresis can generate motion opposite to the time-averaged
applied stress. Our block model suggests that hysteresis can
account for the wall-like structures observed in vertically os-
cillated particulate suspensions [2]. Our study has implica-
tions for particulate suspensions in particular and complex
fluids in general. First, our rheology measurements are con-
sistent with a two-state system with a shear-rate driven tran-
sition. The presence of hysteresis implies a time scale for the
transformation from one phase to another. Second, our model
implies that the anomalous flow found in particulate suspen-
sions might be applicable to complex fluids other than par-
ticulate suspensions. Hysteresis is a generic feature of first
order phase transitions, and dynamically driven microstruc-
tural transitions are common in complex fluids. Hence, it
may be profitable to search for similarly unusual flows in
complex fluids in the vicinity of microstructural transitions.
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APPENDIX

Consider the block shown in Fig. 7. The block extends L
out of the page. We assume that the hydrostatic pressure is
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the dominant stress acting on the surface of the block. The
horizontal force due to pressure is

hy hy 1
LU dyp{(hl—y)—J dyp((hz—y)} =—EP§L(h§—h?),
0

0
(A1)

where ( is the total acceleration. The rate of energy loss
inside the block due to viscosity 7 is

f dvo - =9V,

where o is the viscous stress and V is the volume of the

(A2)

block. To rewrite this dissipation in terms of a force BR we
compare Eq. (A2) with the rate of work due to BR,

PHYSICAL REVIEW E 81, 036319 (2010)

d (* . .
— J BRdx = BR?. (A3)

dt),
Defining H= y/ R, it follows that B:fl%/.

Let M be the mass of the block and R the distance of its
center of mass from the origin. Newton’s second law gives

MR =-BR+m{, (A4)
where
1
m=pLhy = hi), (AS)
M=pV. (A6)
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