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A drop dried on a solid surface will typically leave a narrow band of solute deposited
along the contact line. Here we examine variations of this deposit due to the inclination
of the substrate using numerical simulations of a two-dimensional drop, equivalent to
a strip-like drop. An asymptotic analysis of the contact line region predicts that the
upslope deposit will grow faster at early times, but the growth of this deposit ends
sooner because the upper contact line depins first. From our simulations we find that
the deposit can be larger at either the upper or lower contact line depending on the
initial drop volume and substrate inclination. For larger drops and steeper inclinations,
the early lead in deposited mass at the upper contact line is wiped out by the earlier
depinning of the upper contact line and subsequent continued growth at the lower contact
line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper
contact line is insurmountable despite its earlier termination in growth. Our results show
that it is difficult to reconstruct a postiori the inclination of the substrate based solely
on the shape of the deposit.

1. Introduction

Evaporation from a sessile droplet drives a convective current that advects non-
volatile solutes towards the contact line where they form a ring-like deposit (Deegan
et al. 1997). This phenomenon - the so-called coffee-ring effect - has been extensively
studied in a wide range of contexts (see Larson 2014, for a recent review), and in
particular for a variety of symmetry-breaking conditions due to thermal and capillary
driven convection (Hu & Larson 2005, 2006; Soltman & Subramanian 2008); the shape
of the contact line (Deegan 2000; Lin & Granick 2005; Park & Moon 2006; Witten 2009);
pinning strength variations (Bodiguel et al. 2009, 2010; Craster et al. 2009; Deegan et al.
2000); solute morphology, disparity, and interaction (Cheng et al. 2008; Grzelczak et al.
2010; Joksimovic et al. 2014; Kuncicky & Velev 2008; Yunker et al. 2011); selective
evaporation (Harris et al. 2007); and electric fields (Eral et al. 2011), to name a few.

Here we examine a simple non-symmetric condition brought about by drying the drop
on an incline and address the question of whether the deposit is greatest downslope or
upslope. There has been extensive work on interpreting bloodstains and spatter patterns
of dried blood (see e.g. de Bruin et al. 2011; Adam 2012) to reconstruct crime scenes
based on a bloodletting event. However, there have been few investigations that apply
to forensic analysis the advances in fluid dynamics in drying drops achieved in the past
few decades (Attinger et al. 2013). This work was motivated by the need to determine a
postiori if a drop had dried on a flat or vertical surface in a forensic investigation (Mollett
2012).

Drops dried on vertical surfaces typically leave a residue, like the one shown in fig. 1(a),
that is larger downslope. While this result may seem natural given that gravity acts
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FIGURE 1. Contact line deposits for drops dried on a vertical surface for (a) coffee and (b) an
aqueous solution of ferroin. The upper contact line depins in both cases. The differences in the
deposits is due to re-pinning of the contact line multiple times in (b) and not at all in (a). The
arrows in (b) indicate separate deposition bands formed each time the contact line is pinned.
The direction of gravity is from top to bottom.

downward, it is at odds with the existing theory of contact line deposits. As argued
by Deegan et al. (1997), at early times the mass of the deposit m grows with time ¢ as
t¢ where ( is a function of the local contact angle . For an almost flat drop, o ~ 0 and
¢ —4/3; for « = 7/4, ¢ = 1/3; and for a hemispherical drop o = 7/2, ¢ = 0. In short,
bigger contact angles equal smaller deposition rates. When a drop is placed on an incline,
the lower angle is largest and thus the theory predicts a greater upslope deposit.

Why then does the deposit in fig. 1(a) so obviously differ from the theoretical pre-
diction? Several possibilities suggest themselves immediately. If the late time behavior
is crucial, the asymptotic theory for early times is not applicable. Even within the
asymptotic theory there is a crossover time that in principle could be shorter than
the drying time, leading to a later downslope deposit. The answer is more mundane
and is revealed by the fig. 1(b). As the drop dries the upper contact angle decreases and
ultimately reaches a depinning threshold (see for example de Gennes (1985)). Thereafter,
the lower contact line deposit remains wetted and continues to grow whereas the upper
deposit is frozen at the size it had when the contact line depinned. The depinned contact
line will continue to lay down deposits but at a location that depend on the vagaries of
the slick-slip motion (Adachi et al. 1995; Deegan 2000; Kusumaatmaja & Yeomans 2007;
Orejon et al. 2011; Snoeijer & Andreotti 2013; Stauber et al. 2014).

While examples such as those in fig. 1 demonstrate that larger downslopes occur,
they do not rule out the possibility of larger upslope deposits. Moreover, the asymptotic
theory suggests that larger upslope deposits are at least conceivable. The upslope deposit
grows faster due to the evaporative singularity, but not for as long because of depinning.
Nonetheless, this deposit will be larger if conditions are such that the early lead it enjoys
is insuperable by the deposition that takes place downslope subsequent to the depinning
event.

To investigate this possibility we numerically integrate a Lagrangian creeping flow
model of a two-dimensional drop (i.e. a strip-like drop). The shape of the drop is assumed
to be instantaneously in static equilibrium. The flow is generated by evaporation that we
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FIGURE 2. Computational domain. We model a two-dimensional sessile drop (equivalent to an
infinitely long strip of fluid extending out of the paper) on a solid substrate inclined by 6. The
upper contact angle is denoted by a. Vector labelled g indicates the direction of gravity. The
upper right corner inset shows the physical arrangement of the substrate.

assume is diffusion limited. The evaporation rate is obtained from the exterior diffusion
problem using a boundary element method. The solute is treated as passive tracers in
the flow. The depinning event that terminates deposition at the upper contact line is
crucial is modeled using a receding contact angle of zero. For sufficiently large drop our
model produces a larger upslope deposit.

2. Model

In order to systematically study the effect of substrate inclination on contact line
deposits, we performed numerical calculations of the deposition from two-dimensional
drops (i.e. strips) subject to diffusion-limited evaporations. Numerical simulations appear
to be the only theoretical avenue for attacking this problem given the shape of the
drop can differ substantially from spherical cap approximation that was used in previous
studies. We limit the simulations to two-dimensional because the full three-dimensional
problem lacks any simplifying symmetry and as such is a major undertaking. Moreover,
for the 2D problem there is a simple exact closed-form solution for the evaporation profile
for a spherical cap that we use to validate our computations.

We follow the formulation of the problem used by Deegan (2000). We define the depth-
averaged velocity of the liquid u(z,t) within an evaporating drop at position = along the
substrate (see fig. 2 for geometry) and time ¢

1 h(:r,t)
wan=g [ Uy (21)

where y is the vertical distance above the substrate and U is local velocity. Mass
conservation provides the relationship between u, the height of the interface above the
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substrate h, and the flux through the interface due to evaporation j:

oh 1 0

= —j/1+ (W)= —(h 2.2

51 = VT = (), (22)
where A’ = 0h/0zx, and p is the density of the liquid. Integrating eq. [2.2] from an
arbitrary starting point x to the contact line at z = L , yields u in terms of h and J

L
u(z, t) = %/ E}J 14 (h')2 + % dz. (2.3)

In general h is coupled to the flow through the pressure and so must be solved for
simultaneously with the flow field. If however the evaporation rate is sufficiently slow,
the interface assumes the equilibrium shape prescribed by the Young-Laplace equation

h//
—— | — pg(xsinf — hcosf) = P. 24
7[(1+h,)3] py( ) (2.4)
with the boundary conditions fixed by the conditions that the contact line is pinned at
x = £ L and the upper contact angle « is fixed

h(xr = +L,t) =0, (2.5)
W(x=-L,t) = a(t),

Here ~ is the liquid-air surface tension, 6 is the inclination of the substrate relative
to the direction of gravity, g is the acceleration due to gravity, and P is an unknown
coefficient determined by the boundary conditions. Note that specifying the contact angle
is equivalent to specifying the volume.

Given the interface shape the evaporation rate in the diffusion-limited regime is
determined by the diffusion equation for the vapor field above the drop. With the
assumption that the vapor density c is close to steady state, the time dependence vanishes
and the density obeys Laplace’s equation. The boundary conditions follow from the
physical conditions that the atmosphere immediately outside the drop is saturated with
vapor, on the solid substrate the vapor flux vanishes, and far from the drop the density
approaches the prevailing density cs:

V2e =0,
Oyc = 0 on substrate, (2.6)
¢ = ¢, on surface of drop,

C=Cso 88 R — R,

where c; is the saturated vapor density. Given c(z, t), the flux at the surface follows from
j = —Dn-Vc where D is the diffusion coefficient for vapor.

We treat the solute as a passive tracer, an assumption shown to be quantitatively
accurate for dilute (< 1%) suspensions (Deegan et al. 2000). The amount of solute
advected to the contact line is specified by u. Consider a packet of fluid initially at
2(0) = x,. Under the action of the flow, the packet is transported towards the contact
line and ultimately reaches the contact line at some time 7'(z,). But within this time all
the fluid that initially lays between z, and the contact line will also have reached the
contact line. Hence, the mass at the contact line m at ¢t = T'(x,) is all the mass of solute
initially between x, and the contact line:

+L
my(t) = / ) ¢ h(z,t =0) dz, (2.7)
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where ¢ is the initial concentration of non-volatile solute in the drop, the =+ is for the
upper (+) and lower (—) contact lines. The relationship T'(z,) is found from

dx

— =U. 2.8

g (2.8)
This equation generates a family of curves x(¢; x,) parameterized by the initial position
Z,. By integrating x forward in time, the time at which = reaches one of the contact line
is T(x,).

3. Numerical Scheme

The model was rendered dimensionless by rescaling lengths by ¢ = \/v/pg, vapor
concentrations by cs — coo, times by (cs — coo)/(£2Dp), and masses by ¢¢2. This yields
a single dimensionless parameter, the Bond number Bo = pgL?/y = (L/{)?, that
determines the influence of gravity. Since the contact angle o decreases monotonically in
time, the contact angle was used as the independent variable,

L[5)-40)

s(z) T
u(z,a) = m </0 j(s,a) ds + d[L %h(m,a) dx) , (3.2)

and s is the arclength along the drop surface from r = —L. Starting from the initial
condition a = ay,, on each iteration o was decremented with a variable step size. For the
sth iteration:

(1) the position of the drop’s surface above the substrate h;; = h(ay, ;) was calculated
from eq. [2.4] using a finite difference Matlab routine BVP4c. We used 1280 nodes
uniformily spaced on the x axis.

(ii) the evaporation flux j; (spatial dependence suppressed) was calculated from
egs. [2.6] by the boundary integral method Ang (2008) using the result of step one to
complete the specification of the domain. In all cases, R, = 10L. The surface of the drop
was meshed with the 1280 nodes (z;, h;;) obtained from the Young-Laplace equation.

(iii) the shape was recomputed for 1.01a; to obtain Oh;/d«.

(iv) & was computed from the ratio — fOS(L) ds j;/ ffL dz Oh; /0

(v) u was computed from the above values inserted into eq. [3.2]

(vi) eq. [3.1] was integrated with the forward Euler method.

The result of the above procedure was a family of curves x(¢;x,) from which the
resulting mass of the solute deposit was computed using eq. [2.7].

where

4. Validation

When the substrate is horizontal and the size of the drop is small compared to the
capillary length, the drop takes the form of a circular cap. For these conditions Yarin
et al. (2006) found an exact analytical expression for the evaporation flux for a strip-like
droplet. Near the contact line this expression is approximated by

7= DLCS 1n(Roo/L1)—A1n(1 —)\)} (%)A (41)
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FIGURE 3. Validation of numerical simulations with analytical result for a circular drop with
Bo = 0.01, « = 5°, and # = 0. (a) Evaporation flux (mass per unit time per unit length)
and (b) velocity versus distance from the contact line. Red circles are from simulations. The
dashed green line is the analytical result from Yarin et al. (2006) and the solid black line is the
asymptotic results in eq. [4.1]. All units are dimensionless.

where s is the distance along the drop surface from the contact line and A = (7—2a) /(27—
2a). Figure 3(a) shows a comparison of j calculated from the analytic expression and the
boundary element code for a small Bond number. The agreement is good down to 1074,

We can also use the prefactors provided by eq. [4.1] to calculate early time asymptotic
results for the depth averaged velocity and the mass at the contact line. Within a
horizontal distance € < 1

h ~ etana, (4.2)
s ~ eseca, (4.3)
J = As™* ~ A(cosa)*e . (4.4)

where A is a constant fixed by the geometry of the drop. Integrating eq. [2.3] with these
expressions yields
A (cosa)?

UN;(l—/\)Sina

et = Be (4.5)

By integration of u = —de/dt, the relationship between the starting position € and the
transit time to the contact line is

e ~[(A+1)Bf] ¥, (4.6)

Combining this with eq. [2.7] yields
1 1
m o~ §¢tanoz €~ i(btana[()\ + 1)Bt]°, (4.7

where

2 7m-a
COA+1 3r—a’
Figure 3(b) and fig. 4(a) compares eqs. [4.5], [4.7] and results from our numerical
calculation. The agreement between the numerics and the asymptotic expressions is very
good within the limitations of the latter (i.e. early times and short distances from the
contact line).

¢ (4.8)
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FIGURE 4. (a) Mass deposited on upper (red o) and lower (blue o) contact lines for a flat
substrate (6 = 0), Bo = 1 and a, = 5° normalized to the total mass of solute in the drop

me = qbijL h(z,0)dx versus time normalized to the drying time t¢. (b) Normalized mass

deposited on the upper (red A) and lower (blue V) contact line for Bo = 1, o = 5°, and 6 = 40°
versus time normalized by the time at which the upper contact line depins t4. The initial time
for data in (b) are different because of the different speed of the Lagrangian elements used to
track the mass. The solid lines are the early time asymptotic results. All units are dimensionless.

5. Results:

Figure 4 shows typical results from our simulations. The upper contact line deposit
is greater at all times right up to and including the depinning point (i.e. @ = 0). This
result is in agreement with the early-time asymptotics. For ¢ < 1 the mass deposited at
the upper and lower contact lines, m,, and my, is of order %+ and t%¢, respectively. Since
the upper contact angle is smaller than the lower contact angle, {, < (4 and mg <K My,
ast — 0.

Figure 4 also shows that even outside of the asymptotic regime the upper deposit is
greater. This was the case for all initial conditions and system parameters we examined.
Since mg > m, as t — oo, there exists a crossover time where my and m, exchange
dominance. Our simulations imply that the crossover time is always longer than the
depinning time. We have no a priori reason to expect this; nonetheless, it is so.

Following depinning the upper deposit experiences no further growth, whereas the
lower deposit continues to grow. Modeling the process beyond this point would be of
limited utility without focusing on a particular solute size and shape, and liquid-substrate
wettability because the results depend sensitively on these factors. Instead, we answer the
question of whether it is possible that the upper deposit is greater than the lower deposit
for a particular depinning criterion: o = 0. This criterion demands some justification.
For pure fluids, the natural choice for a would be the so-called “receding contact angle”.
However, in ring-forming drops the depinning angle is found experimentally to be far
lower and often close to zero. Deegan (2000) ascribed this anomalously low receding
contact angle as a self-pinning effect caused by alterations of the substrate geometry due
to the accumulation of solute.

We calculated the deposition mass at both contact lines up to the point that o =
0. Thereafter, we assume that all the remaining solute is ultimately swept to the
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FIGURE 5. (a) The normalized distance from the center of two fluid elements that simultaneously
reach the contact line at the moment of depinning (i.e. & = 0) versus upper contact angle for
Bo = 0.25 and 0 = 47°. The contact angle is a parameterization of time, and so larger contact
angles equal earlier times. The red V (blue A) correspond to an element advected towards the
lower (upper) contact line. (b) Mass deposited at contact line at the moment of depinning as a
function of the initial upper contact angle. Colors and symbols as in (a). The dashed black line
corresponds to mass at the lower contact line shifted upward by the mass of solute remaining
in the drop at the depinning moment. The point at which the dashed black crosses the curve of
blue A indicates the minimum initial contact angle needed to ensure that the the upper contact
has a greater deposit. After the upper contact line depins, the remaining mass will continued
to be deposited at both contact lines, but because the upper one is mobile the deposit will be
smeared out.

lower contact line, the most favorable scenario for a larger lower deposit. Rather than
calculating the deposit for each initial condition we use a scheme that captures all
initial conditions («,) in a single calculation. Consider the element of fluid that arrive
simultaneously at the upper and lower contact line at the moment of depinning. These
elements lay somewhere in the bulk at earlier times; figure 5(a) illustrates a particular
set of positions x, and x4 for Bo = 0.25 and § = 47°. Any initial contact angle is
captured by these trajectories and completely prescribes the mass that will be deposited
at the contact line between ¢t = 0 and the depinning time. For example, for an initial

contact angle a, = 20°: x4 = 0.36L and x,, = —0.2L, and my = foj?%L dz h|la=q, and
my, = __L0'2L dz h|a=q,- Figure 5(b) shows the mass at each contact line at the moment

of depinning versus the initial contact angle. It also shows (the dashed black line) how
we compute the initial contact angle needed for the upper deposit to be larger.

For droplets much smaller than the capillary length, gravity does not affect the shape of
the drop and therefore at any inclination the upper and lower deposits are identical. For
droplets that are 2-3 times larger than the capillary length, the droplet can not be pinned
at all but the smallest of inclinations. Thus, the interesting range is 0.01 < Bo < 4.

The results of our calculations, summarized in fig. 6 for various Bo, show that for
any inclination there are two regimes: (1) for large initial contact angles even if all the
remaining solute is swept into the lower contact line, the upper contact line will have a
larger deposit; and (2) for small initial contact angles assuming that all the remaining
solute is swept to the lower contact line, the lower contact line will have have a larger
deposit.

We carried out qualitative experiments to test the main prediction of our computation:
that there exists certain configurations that produce bigger upslope deposits. We made
two-dimensional drops by placing a strip of coffee on a highly corrugated substrate. We
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FIGURE 6. Phase diagram as a function of initial contact angle oo = «(0) and inclination of
the substrate 6 for various values of Bo: (a) 0.0625, (b) 0.25, (c¢) 0.56 (d)1.0. White indicates a
larger deposit at the upper contact line, while red indicates a larger deposit at the lower contact
line. The green % corresponds to the parameters of the deposition pattern in Fig. 7.

FIGURE 7. Strip of coffee dried on a substrate inclined at # = 10°. The drop was originally
0.4 cm wide (Bo = 0.5), and had an upper contact angle a, = 45° and a lower contact angle
of 49°. The component of gravity tangent to substrate points from top to bottom in the image.
Note that the deposit at the upper contact line is larger.

tilted the substrate, and observed the resulting deposition. Figure 7 shows an example of
the deposit for Bo = 0.5, § = 10°, and «,, = 50°. Referring to fig. 6, the upper contact line
deposit is predicted to be larger, and the experiment is in agreement with the prediction.
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6. Discussion and Conclusions

We conducted numerical simulations of the formation of contact line deposits from a
two-dimensional drop on an incline undergoing evaporation. We find, in agreement with
the early time asymptotics, that the upper deposit grows faster. However, the upper
contact line eventually depins and thereafter there is no further growth of the upper
deposit. In contrast, the lower contact line always remains pins and will continue to
grow after the upper line depins. Whether the upper deposit is greater than the lower
one or vice versa depends on the difference in their respective masses at the moment
of depinning, which in turn, as shown in fig. 6, depends on the initial volume of the
drop and inclination of the substrate. A larger initial volume delays depinning and thus
favors a larger upper deposit. A greater inclination promotes depinning but also a more
rapid/slower growth of the upper/lower deposit; thus, its effects is indeterminate.

Our criterion for depinning (i.e. the receding contact is zero degrees) is somewhat
simplistic particularly when compared with the state of the art (e.g. Rio et al. (20006);
Musterd et al. (2014)). However, it is known that contact line deposition pins the
contact line far more robustly than the simpler case of pure fluid on a chemically or
microscopically rough substrate due to self-pinning: the roughening of the substrate that
occurs as the deposit accumulates reinforces whatever defects pinned the contact line
in the first place (Deegan 2000) . Even in the cases when all the system parameters
are specified modeling the motion of the contact line in the presence of ring formation
have met with limited success. Thus, in lieu of a more complicated model that would be
suspect anyway, we chose the simpler criterion used above.

The simulations presented above were for two-dimensional drops, i.e. long strips of
fluids. While drops are usually roughly circular, computing the deposition for this more
realistic case is a daunting task given that the direction of the velocity field within the
drop is likely to vary with depth and thus entail a full three-dimensional computations
(three space plus one time), rather than the simpler one space plus one time we employed.
Nonetheless, we can extrapolate to the circular case from our results. Depinning of the
upper contact line will be more difficult since the contact angle will vary smoothly along
the perimeter, i.e. even if the the contact angle reaches zero at one point, the adjacent
segments of the contact line will be able to maintain some tension on the line. However,
we do not expect any qualitatively significant deviation from our main conclusion: there
will exist combination of inclinations and initial volume that can yield either of the cases
of enhanced lower or upper deposits.

This work was motivated by the need to determine a postiori if a drop had dried on
a flat or vertical surface in a forensic investigation. Our results show that it is difficult
to reconstruct the inclination of the substrate based solely on the shape of the deposit
because a slightly larger or smaller initial drop volume could change the ratio of masses.
It may be possible to carry out the reconstruction based on the stick-slip pattern left by
the deposit as in fig. 1(b), but as demonstrated in fig. 1(a) this stick-slip motion is not
always present.

The authors thank the James S. McDonnell Foundation for support through a 21st
Century Science Initiative in Studying Complex Systems Research Award, and the
National Science Foundation for support under Grant No. 0932600. RDD thanks the
Lady Davis Foundation for support.
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