
Quantized orbits in weakly coupled Belousov-Zhabotinsky reac-

tors

S. Weiss1,2 and R. D. Deegan1

1 Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan
2 Institute for Terahertz Science and Technology, University of California, Santa Barbara, California

PACS 05.45.Xt – Synchronization; coupled oscillators
PACS 82.40.Ck – Pattern formation in reactions with diffusion, flow and heat transfer
PACS 05.45.-a – Nonlinear dynamics and chaos

Abstract – Using numerical and experimental tools, we study the motion of two coupled spiral
cores in a light-sensitive variant of the Belousov-Zhabotinsky reaction. Each core resides on
a separate two-dimensional domain, and is coupled to the other by light. When both spirals
have the same sense of rotation, the cores are attracted to a circular trajectory with a diameter
quantized in integer units of the spiral wave length λ. When the spirals have opposite senses
of rotation, the cores are attracted towards different but parallel straight trajectories, separated
by an integer multiple of λ/2. We present a model that explains this behavior as the result of
a spiral wavefront-core interaction that produces a deterministic displacement of the core and a
retardation of its phase.

Higher complexity in nature emerges from interactions1

between simpler systems [1, 2]. Coupling discrete oscilla-2

tors, for example, gives rise to large-scale structures such3

as spiral wavefronts and chimeras [3–6]. The emergence of4

order in coupled oscillators has been studied in a multi-5

tude of geometries [7, 8], in the discrete and continuous6

limit [5], and with a variety of connectivities [7, 9–11].7

In contrast, few studies have explored coupling between8

spatially-extended systems, despite their importance in9

nature [12,13]. Such explorations include synchronisation10

of turbulent phase- and amplitude fields in coupled one-11

dimensional complex Ginzburg-Landau equations (cGL)12

[14], unidirectionally coupled multi-spiral wave patterns13

generated by a Barkley model [15], or coupling between14

stationary and oscillating Turing patterns [16]. While all15

these systems were investigated using numerical tools, the16

only experimental investigation of coupled spatially ex-17

tended systems were performed by [17]. They found that18

coupling of two multi-spiral patterns decreases their spa-19

tial disorder, so that only a single or no spiral is left in the20

asymptotic limit. The same group also conducted simula-21

tions, and found that weakly coupling of single spirals re-22

sults in a coherent motion of their spiral cores, namely cir-23

cles for co-rotating and straight lines for counter-rotating24

spirals. This motion was later also observed in coupled25

cGL by [18].26

These large scale spiral core motions are the subject 27

of this paper. We observe for the first time experimen- 28

tally coherent motion of two coupled spiral cores in a 29

light sensitive Belousov-Zhabotinsky (BZ) reaction. The 30

BZ reaction [19, 20] in two dimensions exhibits spatio- 31

temporal patterns such as spiral or target wave. In the 32

light-sensitive variant [21] the wavefront speed and thus 33

the spiral frequency can be altered with illumination [22], 34

making the BZ reaction an ideal system to study the cou- 35

pling of spatially extended oscillating systems. 36

We also utilize numerical simulation to investigate the 37

large scale motion. We find that when spirals share the 38

same sense of rotation, their cores move along a common 39

circular path with a diameter quantized to integer multi- 40

ples of λ where λ is the distance between crests of a spiral 41

wavefront along the radial direction originating from the 42

core. When the spirals have opposite sense of rotation 43

their cores move on different but parallel straight trajec- 44

tories separated by integer multiples of λ/2. We developed 45

a deterministic model that reproduces these quantized or- 46

bits based on the simple premise that each wavefront cross- 47

ing a core perturbs the core position and phase. Quantized 48

obits are limit cycle attractors within this model. 49

In our numerical simulations we integrate the two- 50

variable Oregonator model [23, 24] with forcing (see e.g. 51
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[25, 26]):52

∂tui = ∇2ui +
1

ǫ

[

ui − u2
i − (fvi + Ii)

ui − q

ui + q

]

(1)

∂tvi = 0.5∇2vi + ui − vi , (2)

using an Euler scheme on a two-dimensional (580 × 580)53

large grid with time steps ∆t = 0.001 and grid spacing54

∆x = 0.2. Here u is the concentration of the autocat-55

alytic reactant hydrobromous acid (HBrO2), v is the con-56

centration of the oxidized catalyst (Ru(bpy)3+), I is the57

additional bromide production induced by illumination,58

and i stands for the domain number 1 or 2. The other pa-59

rameters are constants that depend on the concentration60

of other chemical species and their reaction rates. These61

are fixed at q = 0.0015, ǫ = 0.08 and f = 1.5 in all our62

simulation. While more sophisticated models are avail-63

able [27,28], this implementation of the Oregonator is only64

qualitatively accurate. The catalyst is mobile, and Eq. 265

includes a diffusive term with a diffusivity estimated from66

the molecular mass of Ru(bpy)3+. For these parameters67

the Oregonator can support either a uniform oscillatory68

state or spirals undergoing rigid rotation. However, since69

the spiral frequency is faster, once a spiral nucleates it70

overruns any areas with homogenous oscillations.71

The forcing term Ii(~x, t), was calculated as follows:

Ii(~x, t) = I0 · H(vj(~x, t) − vt), with i 6= j, (3)

where I0 is the coupling strength, H(x) is the Heaviside72

function and vt is a threshold value (vmin+vmax)/2 where73

vmin and vmax are the extreme values of v during a single74

cycle in the unforced homogeneous Oregonator model.75

In our experiments we used a Ruthenium complex com-76

pound Tris (bipyridyl) dichlororuthenium (Ru(bpy)2+)77

as the catalyst. It absorbs light with wavelength ≈78

450 nm, opening a production channel for the inhibitor79

(Br−) [22, 27]. The reaction ran in a continuously fed80

stirred tank reactor (CSTR) [29–32], consisting of two81

chambers connected by a 0.5 mm thick, 19 mm diame-82

ter porous glass membrane (Vycor) into which reactants83

from both chambers slowly diffuse, meet, and react. Thus,84

the reaction occurs exclusively within the membrane. One85

chamber was supplied with an aqueous solution of sodium86

bromide (NaBr), malonic acid, sulfuric acid (H2SO4), and87

sodium bromate (NaBrO3) with respective concentrations88

0.02 M, 0.1 M, 0.5 M, 0.15 M; the other was supplied with89

aqueous solution of Ru(bpy)2+, H2SO4, and NaBrO3 with90

respective concentrations 0.5×10−3 M, 0.5 M, 0.15 M.91

Peristaltic pumps continuously fed fresh reactants into92

each chamber and removed reaction products, thus keep-93

ing the concentrations of reactants constant in each cham-94

ber.95

Two distinct circular domains of equal diameter (≈96

9 mm) were defined on the membrane by shinning light97

outside these areas with a large intensity. This ensured,98

that waves originating in one domain could not enter into99

the other. We call these domains cell 1 and cell 2. The 100

light from the projector is filtered with a shortpass filter 101

(λlight < 475 nm) before striking the reactor. Before each 102

experimental run, in each cell we coaxed the formation of a 103

single spiral with a predefined core location by projecting 104

a slowly rotating Archimedean spirals. 105

The cells were coupled by a camera and video projec- 106

tor system. The image of one cell was captured with a 107

monochrome camera (PixeLink PL-E531MU), binarized, 108

and projected (Optoma TX542) back onto the other cell, 109

and vice versa. In each cycle the threshold was reset to 110

the 60th percentile of the intensity distribution. During 111

image capture a diffuser was placed in front of the pro- 112

jector and the output of the projector was set to a uni- 113

form image dimmed to the minimum level. Since the fil- 114

tered light is absorbed by Ru(bpy)2+ but not Ru(bpy)3+, 115

the Ru(bpy)2+-rich regions appeared dark in transmission 116

whereas the Ru(bpy)2+-poor (Ru(bpy)3+-rich) regions ap- 117

peared bright. The duration of each cycle - and thus the 118

refresh time of the projected image - was typically less 119

than two seconds, which is small in comparison to a typi- 120

cal 40 s spiral period. Thus, we don’t expect the capture- 121

projection cycle to introduce additional forcing to the sys- 122

tem. 123

We find in experiments and simulations that spirals with 124

the same sense of rotation are attracted to a circular limit 125

cycle (see Fig. 1). [17] observed similar phenomena in sim- 126

ulations but with a different coupling scheme. Initially the 127

cores exhibit a transient, particularly clear in simulations, 128

before settling on a limit cycle. In simulations the limit 129

cycles in both cells are identical, whereas in experiments 130

they exhibit small differences that we attribute to inhomo- 131

geneities in the membrane and misalignment of the optical 132

system. 133

The trajectories in the xy-plane are well described by

x(t) = x0 + R cos(Ωt + Θ0) + r cos(ωt + ψ0)

y(t) = y0 + R sin(Ωt + Θ0) + r sin(ωt + ψ0), (4)

where R, Ω and Θ0 are the radius, rotational frequency 134

and phase of the large revolution, and r, ω and ψ0 de- 135

note the same quantities for the small but faster cycloidal 136

motion. Here we focus on R, Ω and Θ0. 137

We conducted multiple simulations with a range of ini- 138

tial core-to-core separation distances d0, tracked the core 139

positions, and fit these to eq. 4. In all cases the phase 140

difference was Θ
(1)
0 − Θ

(2)
0 = π. Thus, at any moment the 141

cores are on opposite sides of the circular limit cycle and 142

always 2R apart. 143

Figure 2(a) shows that R and Ω vary in discrete steps 144

with d0. R and Ω are near enough equal in both cells so 145

that their differences are nearly indistinguishable in the 146

plot. R increases in steps of size ∆R = 9.2 ± 0.1 with 147

increasing d0. This value is close to half the wavelength 148

of the coupled spiral λ ≈ 18, though we note that the 149

spiral is distorted and the wavelength is ambiguous. The 150

wavelength of uncoupled spirals is clear and equals 15. 151
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(a)

(b)

2R
2r

Fig. 1: Trajectories of weakly coupled spirals with the same
sense of rotation in simulations (a) and experiments (b). The
background patterns show the initial pattern before the cou-
pling is turned on. The arrows indicate the parameters r and
R from eq. 4.

But coupling causes the wavelength to increase (due to the152

smaller rotation frequency) and the ensuing motion causes153

a doppler-like compression and dilation of the wavelength154

along the direction of motion. Ω is also quantized and155

decreases with d0, and is has the same sign as ω, indicating156

that the cores move in the same direction as the spiral157

rotation. Fig. 2(b) shows that Ω varies inversely with R;158

a power law fit yields Ω ∝ R−0.8±0.1.159

Spirals with opposite sense of rotation move along160

straight parallel trajectories, as shown in fig. 3. Similar161

behavior was also observed in simulations by [17]. We162

conducted multiple simulations with different initial sepa-163

ration distances d0 and found a similar quantization of the164

separation distance (see Fig. 4). The difference between165

plateaus is dn − dn−1 = 9.3 ≈ λ/2. We see in Fig. 4, that166

d can take different values for the same d0, since it does167

also depend on the initial phases ψ0.168

The quantization of the trajectories is recovered from a
model based on the idea by [33] that a short light pulse
causes a displacement h of the spiral core and a phase
lag δθ. We approximate the spiral as a counterclockwise
rotating Archimedian spiral

θ = −
2πr

λ
+ θ0(t) with θ0(t) = ψ0 + ωt, (5)

where ψ0 and ω are the same as in eq. 4. We assume that
passage of a wavefront from spiral #1 across the core of #2
(and vice versa) is equivalent to Zykov’s short light-pulse.

Therefore, after k such wavefronts

θ0(t) = ψ0 + ωt − k · δθ. (6)

We also assume that the light pulse shifts the spiral core
location z = x + iy by δz. The direction of the shift de-
pends on the instantaneaous spiral phase. Following [33],
we code the directionality using δz = h exp(iϕ + iθ0(t)).
After k + 1 pulses the core’s location is

zk+1 = zk + h exp [i(ϕ + ψ0 − k · δθ + ωt)] (7)

We first consider two counter-clockwise rotating spi-
rals with their cores at positions z(1) and z(2). Spiral
#1 experiences a light pulse whenever an arm from spi-
ral #2 passes z(1). This condition is met when θ(2) =
arg(z(1) − z(2)) + 2πn1 with θ(2) specified by eq. 5, where
n1 is any integer, and r = |z(1) − z(2)|. For spiral #2 the
expression is the same with 1 → 2 and 2 → 1. Under the
assumption that the frequencies of both spirals (ω) are the
same1, combining this with eq. 6 yields :

ψ
(j)
0 − kδθ−

2π|z(l) − z(j)|

λ
+ ωtj = arg(z(j) − z(l)) + 2πnl

(8)
where j, l ∈ {1, 2} and j 6= l. tj is the time when core j
is hit by a wavefront from core l. Solving 8 for ωt1 and
ωt2, inserting the result into 7, and substituting ∆ψ =

ψ
(1)
0 − ψ

(2)
0 and ∆zk = z

(1)
k − z

(2)
k , the location of the

jth core after k + 1 pulses is: Note, the introduction of
the Kronecker delta δj2 which originates from the relation
arg(−∆zk) = arg(∆zk)+π. Thus the vector between core
#1 and #2 is

∆zk+1 = ∆zk + δ∆zk with

δ∆zk = 2h · cos(∆ψ) exp[i(ϕ + arg(∆zk) +
2π

λ
|∆zk|)])

(10)

We now analyze the map given by Eq. 10. First we note
that for the special case of ∆ψ = (2n+1)π/2 (n ∈ Z), ∆zk

is constant for all times and k. For other values of ∆ψ,
the dynamics are more interesting. We look for solutions
of Eq. 10 with constant core-to-core distance |∆z|. These
occur when δ∆zk is perpendicular to ∆zk:

ϕ + arg(∆zk) +
2π

λ
|∆zk| = arg(∆zk) +

π

2
+ mπ. (11)

Solving for |∆zk|:

|∆zk0
| =

λ

2π
(−ϕ + π/2 + mπ). (12)

Eq. 12 shows already the quantization of |∆z| and thus 169

also of R. However, not all of these steady solutions are 170

1This is most certainly true since they are produced with the

same parameters. In addition, we have assumed that k is the same

for both spirals as well. This is also a valid assumption, because its

number depends on the rotation frequency ω, which is the same for

both spirals.
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z
(j)
k+1 = z

(j)
k + h · exp

[

i(ϕ − ·(−1)j∆ψ + arg(∆zk) + πδ2j +
2π

λ
|∆zk|)

]

. (9)

stable. One can show, that for cos(∆ψ) > 0 [cos(∆ψ) <171

0], solutions are stable [unstable] for m = 0, 2, 4 . . . , but172

are unstable [stable] for m = 1, 3, 5 . . . 2. In any case, only173

clockwise rotation of ∆zk are stable, i.e. the same sense174

as the spiral rotation. Thus, the difference between two175

stable trajectories is |∆z(m + 1)| − |∆z(m)| = λ. This176

agrees with our observation that the radii of successive177

limit cycles differ by λ/2. Now we can calculate the pa-178

rameter ϕ (by using eq. 10) to be ϕ = −0.50. We point179

out, that the relation |∆z = 2R| assumes that the center180

point (z
(1)
k + z

(2)
k )/2 is constant. One can show from 9181

that this is true for cos(∆ψ) = ±1. While the presented182

model here treats ∆ψ as an initially given parameter, in183

the simulation we observe that after the initial transient,184

the spirals have fixed phase relations of either ∆ψ = 0 or185

∆ψ = π.186

Note, that eq. 10 suggests a constant velocity along the187

trajectory, such that Ω ∝ R−1, whereas we find in simula-188

tions that γ ≈ −0.8. We attribute the discrepancy to the189

difference in the coupling. While the model assumed an190

infinitely short light pulse, the forcing schemes in the sim-191

ulation produces spatially extended regions close to the192

wavefront maxima. Wave fronts further away from the193

spiral core travel slower (due to their smaller curvature)194

and thus cause a longer forcing to the other spirals core.195

Applying the same reasoning to counter-rotating spirals,
we arrive at an expression for the difference vector between
cores:

∆zk+1 = ∆zk−2h·cos(ϕ+
2π

λ
|∆zk|) exp[i(∆ψ−arg(∆zk))]

(13)
From eq. 13, we see, that ∆z is constant for all k if

|∆zk0
| =

λ

2π
(−ϕ + π/2 + mπ) with m ∈ Z . (14)

Eq. 14 shows the same quantization of the spiral distances196

as eq. 12. However, now the amplitude of δ∆z vanishes197

and thus ∆z does not change at all. In addition, the198

stability of the steady solution (eq. 14) depends only on199

∆ψ−arg(∆zk) and therfore, one finds stable solutions for200

any m. Note, that with eq. 14 fullfilled, only ∆z is steady,201

whereas z1 and z2 move parallel to each other. We show202

the steady solutions of eq. 14 as red lines in fig. 4. For this203

we used ϕ = −0.50 as calculated from the case of two co-204

rotating spirals. We see, that there is a small discrepancy205

between the results from simulation (blue points) and the206

model prediction (red lines), which increases with increas-207

ing m. We attribute this discrepancy to the infinite small208

pulse time assumed in the model in contrast to the finite209

forcing time in the simulations.210

2See suplementary material.

Here we presented simulations and experiments on the 211

coupling of spatially extended oscillating media. Weak 212

coupling of two spirals leads to a synchronized large scale 213

motion of their cores. Co-rotating spirals move on circular 214

trajectories with diameters equal to integer multiples of 215

the spiral wavelength and counter-rotating spirals move 216

along straight trajectories parallel to each other, separated 217

by integer multiples of half the wavelength. A theoretical 218

model that assumes a small change of the spiral phase and 219

the spiral core location whenever a wavefront of one spiral 220

hits the core location of the other explains well the motion 221

of the coupled spirals and the observed quantization of 222

their relative core distance. 223
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Fig. 2: Slow rotation as a function of the initial separation
distance between the spiral core in cell 1 and the spiral core
in cell 2. (a): Radius R of cell 1 (blue solid bullets) and of
cell 2 (blue open circles) as a function of the initial separation
distance (left y-axis). Also shown is the frequency Ω for spiral
core rotation in cell 1 (red solid squares) and cell 2 (red open
squares). (b): Ω as a function of R. The solid line is a power
law fit with exponent γ = −0.8. The insert shows the same
data plotted on a log-log plot.
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(a)

(b)

Fig. 3: Weak coupling of two spiral, rotating in opposite di-
rections. Shown are results from simulations (a) and from ex-
periment (b, images are digitally enhanced). The gray images
show the initial patterns. The blue and red curves mark the
trajectories of the spiral cores
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Fig. 4: Final separation distance d as a function of the initial
separation distance d0 for counter-rotating spirals. Red hori-
zontal lines mark predictions by eq. 14, with ϕ and λ calculated
from the case of two spirals with the same orientation.
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