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I. STABILITY ANALYSIS FOR TWO SPIRALS ROTATING IN THE SAME DIRECTION

Here we want to examine the stability of the solutions of eq. 9 for which |Azy,| is constant, i.e., eq. 11. For this,
we assume a small variation of the steady solution, of the form

|Azg| = |Azy| + ek

A /T .
= (§+mﬂ'—4p) T g, with e, < 1. (14)

Inserting 14 into eq. 9 (in the paper) and considering only the square of the absolute values, we write:
(|Azk, |+ ek11)” =(|Azk,| + 21) + (2 cos(Av))”

2 2
+ 4hcos(Ap) (| Az, | + £x) - cos(io + S|z | + e T): (15)

Since ¢, and also h are assumed to be small (< 1), we drop all higher order terms of these quantities. Reformulations
of (15) gives then:

ept1 = er — (=1)™2h cos(AY) (1 + 8k> (eR2m/A). (16)

|Zko‘

e and |z, | are positive. Thus, if cos(Ay) > 0 [cos(Ay) < 0], for even [odd] m it is ex11 < £f and thus [Azy,| is
stable. For other m, |Azy,| is unstable.

Having this said, we show in fig. 1 the vector field of Az as a function of Az (eq. 9) for positive cos(Av). There,
the stable and unstable limit cycles are clearly visible.

II. VECTOR FIELD OF §Az FOR COUNTER-ROTATING SPIRALS

Figure 2 shows the field of §Azj, as a function of Az, (eq. 12). It is clearyly visible that there are fixpoints at |Azy, |
as described by eq. 13. Depending on the angle arg(Azg, ), these points can be both stable and unstable.
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FIG. 1. Orientation of 6Az as a function of Az, regarding eq. (9), for positive hcos(Ay) = 1. The red and blue curves show
the evolution of Az with time, as it settles on the circular limit cycle starting from different initial conditions.
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FIG. 2. Orientation of Az as a function of Az, regarding eq. (12), for h = 0.1 and cos(A¢) = 0. The blue curve shows the

evolution of Az with time, starting from its initial value of (x=18, y= 9).



