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Weakly and strongly coupled Belousov-Zhabotinsky patterns
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We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns
in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different
synchronization modalities appear depending on the coupling strength and the initial patterns in each domain.
The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly
coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under
weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective
interaction between cores in opposite domains. In the case where each domain initially contains a single spiral,
the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of
multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few
cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by
interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
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I. INTRODUCTION

The Belousov-Zhabotinsky (BZ) reaction is an oscillating
chemical reaction wherein a catalyst periodically cycles
between areduced and an oxidized state. This cycling produces
a periodic color change in a well-mixed solution [1-3] and
spatiotemporal patterns, typified by spiral or target waves in
two dimensions [2,4,5] and scroll waves in three dimensions
[4,6], when the spatial extent of the reactants is limited by
diffusion. The shape and dynamics of these patterns are
characteristic of a broad class of oscillatory and excitable
systems that includes heart tissue [7], chicken retina [§],
human tongues [9], or colonies of starving amoeba [10].
Therefore, the BZ reaction is an important model system
for investigating pattern formation in excitable and oscillatory
media and has been extensively researched for many decades
(see, for example, Refs. [5,11-14]).

A typical single-armed spiral wave (see Fig. 1) consists of a
core and a spiral-shaped wave front whose innermost end—its
tip—orbits the core. We define the spiral wave phase ¥ as the
angular position with respect to the vertical of the spiral tip
on the core, as shown in Fig. 1. In time the spiral appears to
rotate counterclockwise as the wave front propagates outward.
Depending on the chemical concentration, the core is either
stationary or mobile; in our system the core is stationary in the
absence of coupling.

Using the ruthenium complex compound tris (bipyridyl)
dichlororuthenium [Ru(bpy)32+] as the catalyst, the reaction
kinetics can be regulated by blue light (A; &~ 450 nm) [15].
In particular, the propagation speed of the wave front, and
hence the rotation rate of the spiral, can increase or decrease
depending on the light intensity and the concentration of
the other reactants. In the more common case, illumination
produces additional bromide ions (Br™) that inhibit the
reaction and decrease wave-front speeds and spiral rotation
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rates [16,17]. For large concentrations of sodium bromate
(NaBrOs3), however, illumination was reported to increase the
wave speed [16], and while the exact mechanism remains
obscure, at these concentrations illumination induces the
production of the activator HBrO, [18,19].

The light-sensitive BZ reaction is a convenient system for
studying the behavior of spiral waves subjected to temporally
periodic forcing. Zykov and coworkers conducted numerical
and experimental observations of the spiral tip’s motion due to
periodic forcing at various frequencies and intensities [20,21].
In their unforced system, tips moved on simple circles around
the core (i.e., rigid rotation). When exposed to periodic forcing,
the tip traveled on an epicycloid with the large radii inversely
proportional to the difference between the forcing frequency
and the spiral frequency of the unforced system. Additional
resonances and synchronization phenomena were found for
spirals that exhibit epicycloidal motion in the unforced
system. Mantel and Barkley developed a zero-dimensional
coupled system of differential equations for the trajectories of
periodically forced spirals using only the position of the cores
as the dynamic variable [22]. Additional experiments showed
that spirals forced with planar traveling waves move on straight
trajectories [23].

In the above investigations the forcing strength, i.e., the
light intensity was small, and so only the wave front speed
was affected. Experiments by Lin and coworkers [13,17,24,25]
showed that rotating spirals are destroyed when forced at
sufficiently large strength. The spiral wave patterns are then
replaced by oscillating domains with fixed boundaries that
resonate with the applied forcing frequencies.

Grill et al. [26] measured the influence of feedback stimuli
on spiral core motion. In their experiments and simulations,
whenever a wave front reached a preselected trigger point
on the spatial domain, a light pulse was applied to the core
after a certain time delay. Depending on the time delay, the
illumination intensity, and the distance between the trigger
point and the spiral core, the core exhibited cycloidal motion
very close to the trigger point (entrainment attractor) or larger
circles around that point (resonance attractor).
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FIG. 1. The central region of a counterclockwise rotating spiral
wave. The gray scale represents inhibitor concentration. The most
salient features are the front of the wave (thick red line), the tail of
the wave (blue thin line), the spiral tip (blue dot) where the front and
tail meet, the core defined as the zone enclosed by the trajectory of
the spiral tip (dashed circle), and the phase of the spiral .

Hildebrand et al. [27] examined two weakly coupled BZ
domains with the catalyst immobilized in a silica gel matrix.
They projected the image of one reactor onto the other and vice
versa. They showed that the patterns in both regions evolve
towards a common pattern. In the long time limit, a single
spiral in each of the regions was all that remained. They also
found in simulations that weakly coupled single spirals causes
them to move along either cycloidal or straight trajectories
when both spirals share the same orientation or have opposite
orientations, respectively.

In Ref. [28], we reported the results of experiments and
simulations similar to those of Hildebrand et al. [27]. We
observed synchronized epicycloidal trajectories for spirals
with the same chirality and straight trajectories for spirals
with opposite chirality. We also found that the spiral cores are
attracted to orbits in which the separation between the two
cores in different domains are quantized with integer values of
half the spiral wavelength. We further developed an analytical
model to explain these observations in terms of “kicks” to the
core, small location and phase changes of the core following
an encounter with a wave front in the other domain.

Here we report on the effects of coupling two separate,
two-dimensional domains of the BZ reaction. We previously
showed the existence of quantized orbits in simulations [28];
here we show that the same quantization is present in experi-
ments. In addition, we report on the role of coupling strength
and initial conditions. The paper is structured as follows.
Section II presents our numerical and experimental methods.
Section IIT A explains and discusses the difference between
the weakly and strongly coupled regimes. Section IIIB
focuses on experimental and numerical results for weakly
coupled systems and the dependence on initial conditions.

PHYSICAL REVIEW E 95, 022215 (2017)

(a) < | >

@

=
x
[}
=
N

Mixer 1

1 &

Waste

%

Mal, H2804, Ru(b 2+
NaBr NaBrO; (bpy)
(b) membrane (Vycor)
low pass
filter .

projector camera
] ]

diffuser -

BZ reaction cell

FIG. 2. Schematic of the experimental setup. (a) Reactor and
the pump arrangement. Arrows mark directions in which the
chemical solutions are pumped. (b) Optical arrangement (see text
for explanation).

Sections III C and III D focus on the strongly coupled regime
and the transition from weak to strong coupling.

II. METHODS

A. Experiment

Our experiments were preformed with a continuously fed
unstirred tank reactor, similarly to the one reported by Ouyang
and Swinney [29] and later used by many others [5,17,30].
The schematic is shown in Fig. 2(a). The reactor consists of
two chambers separated by a porous membrane (a Vycor glass
disk) through which the species diffuse from chamber A and
B, meet, and react. The disk had a thickness of 0.5 mm and an
open diameter of 2 cm. Chamber A was filled with an aqueous
solution of sodium bromide (NaBr) at a concentration of
0.02 mol/1, malonic acid (Mal) at 0.1 mol/l, sulfuric acid
(H,SO4) at 0.5 mol/l, and sodium bromate (NaBrOj) at
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0.15 mol/l. Chamber B was fed by a solution containing
the light-sensitive catalyst (2,2’-bipyridyl)dichlororuthenium
[Ru(bpy)32+] at a concentration of 0.5 x 1073 mol/1, H,SO4
at 0.5 mol/1, and NaBrOj at 0.15 mol/1. As shown in Fig. 2(a),
the chemical solution in both chambers was recirculated by a
peristaltic pumps (P1) at a high flow rate (170 ml/h) such that
the contents of the chambers (volume 4.5 ml) was renewed
every 95 s. Depletions of the reactants was counterbalanced
by the addition of fresh solution to mixers inline with the
recirculation loop at a rate of 20 ml/h for chamber A and
5 ml/h for chamber B. Excess fluid in the recirculation loop
was routed to a waste bottle.

Figure 2(b) shows the optical arrangement of our exper-
iment consisting of a computer controlled video projector
(Optoma TX542), a shortpass filter (475-nm cutoff wave-
length, Edmund Optics), a diffuser (opal diffusing glass,
Edmund Optics) mounted on a flipper so it could be removed
from the optical path, the reactor, and an 8-bit monochrome
camera (PixeLink-E531MU) equipped with a 12- to 36-mm
2.8 zoom lens (Computar). The projector was used both for
illumination during image acquisition and for forcing. During
image acquisition the diffuser was inserted into the optical
path to provide a uniform background, and the projector was
set to project a black image at which setting the minute
light leakage from the DLP-micro-mirror array provided
sufficient illumination for imaging purposes. The shortpass
filter rendered areas in the red, reduced state [Ru(bpy)32+]
as dark, and the green, oxidized state [Ru(bpy)33+] as light.
During forcing the diffuser was removed from the optical path
and an image was projected onto the membrane.

The image acquisition-forcing cycle consisted of inserting
the diffuser, projecting a uniformly “black” image, acquiring
an image, processing the image (described below), removing
the diffuser, and projecting the processed image. This sequence
lasted approximately 2 s, a period short in comparison to the
typical spiral period of more than 50 s. (The homogeneous
oscillation period is even longer.) The forcing phase occupied
approximately 50% of this cycle.

The membrane was subdivided into two separate circular
reaction domains 8.6 mm in diameter. This separation was
achieved by illuminating the remainder of the disk (i.e., the
areas outside the two domains) with an intensity sufficient to
stop the reaction and thus waves were unable to cross from
one domain to the other.

The gray-scale image from the camera was converted
into a black-and-white image ready for the projector by the
following sequence. First, the camera image was divided by a
background image in order to remove spatial inhomogeneities
in the brightness of the image. The background image was
calculated as the average of 230 images acquired prior to
starting the experiment. Next, the images was binarized using
a dynamic threshold chosen such that 40% of pixels lay
above the threshold. A dynamic threshold was necessary to
compensate for small difference in the average gray value
of an image caused by fluctuations of the projector output
and differences in the lowest and highest gray values in the
forced and the unforced system from which the background
was taken. While this forcing scheme differs from the one used
in our simulations for which the threshold was constant at all
times, the difference is slight and the outcome is qualitatively
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identical. We note that the observations presented here are
qualitatively robust irrespective of the exact choice of the
threshold. A change of the threshold, however, would change
the observations quantitatively. For example, the spiral rotation
rate, the spiral wave number, or the spiral decay rate as
discussed in Sec. III B 2, would slightly differ for different
thresholds. Finally, the image was flipped so when projected
onto the reactor the binarized image of domain 1 overlaid
domain 2 and vice versa. Failure to have proper registration
between the image and its projection leads to a nonlocal
interaction and in experiments produces drift (see below).
Thus, great care was taken to ensure that if the image of a
point in domain one x; was projected onto domain two at x,
then so, too, was the image of x, projected onto x;.

In the following, we use the relative intensity Z as a measure
of the coupling strength, with Z normalized to unity at the
maximum intensity achievable with our projector (250 W /m?).
Note that the physical value of the light intensity by itself is
insufficient for comparison with other experiments, since light
sensitivity of the reaction depends strongly on the chemical
concentrations of all species.

B. Numerical simulation

The two-variable Oregonator model [31,32] with forcing
(see, for instance, Refs. [23,33]):

1 P =
&ui::Vzm—%—[uy—u%—(fw—%b)ﬁ——z}
€ Ui +q

3 v; = D,V +u; — v; (1)

was integrated using an Euler scheme. Here u represents
the concentration of the autocatalytic reactant (hydrobromous
acid, HBrO,), v is the concentration of the oxidized catalyst
[Ru(bpy);**], and I is the additional bromide production
induced by illumination of the system. The constants €, ¢,
and f depend on the concentration of the other species and the
specific reaction kinetics. The domain number i = [1,2].

In our experiments both species # and v diffuse. In the
absence of data on the diffusivity of the catalyst, we assume
it scales as the cube root of its molecular mass. This yields a
diffusivity half that of u. However, we note that the exact value
is rather unimportant and that our simulations are comparable
with simulations assuming a nondiffusive catalyst. In fact, for
D, = 0.5 the spiral rotation rate is equal (within 0.5%) to the
spiral rotation rate for D, = 0.

The parameter values were fixed at values given in
Table I. For these parameters, the homogeneous system is
in the oscillating regime, i.e., the entire domain oscillates

TABLE I. System parameters. Experiments: Chemical concen-
trations in chamber A and B. Simulations: Parameters for Eq. (1).

Experiments A B Simulations
Sodium bromide 0.02M - f 1.5
Malonic acid 0.1 M - q 0.0015
Sulfuric acid 05M 0.5M € 0.08
Sodium bromate 0.15M 0.15M D, 0.5
Ruthenium complex - 0.5 mM Iy 0-1
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uniformly in the absence of spirals. Nevertheless, since the

spiral frequency is faster than the frequency of homogeneous

oscillations, spirals once nucleated will dominate. For these

parameters and I; = 0 (uncoupled), spiral cores are stationary

and spiral patterns undergo steady rotation with period of 3.56.
The forcing term /;(x,t), was calculated as follows:

' ) svixt) 2, . . .
Li(x,t) = {0 L Ux) < v, with i # j.

Here I is the coupling strength, and v, is a threshold value
that is calculated as

Uy = (Umin + vmax)/27

where v, and vp,x are the minimal and maximal values
of v occurring during a single cycle in the unforced ho-
mogeneous Oregonator model with these parameters. Two
dimensional simulations where conducted on a 580 x 580
grid and advanced in time using an Euler scheme with time
steps At = 0.001 and the grid spacing Ax = 0.2. In the
figures below showing simulations results, the v field is plotted
because then light areas in both experiments and simulations
correspond to high Ru(bpy);>* concentrations.

III. RESULTS

A. Weak versus strong coupling

The results of coupling two BZ reactions depend on the
coupling strength (I for simulations or Z for experiments) and
the chemistry [concentration of the reactants for experiments
or parameters f, €, and g in Eq. (1) for simulations]. Here
we focus on the role of the coupling strength by fixing the
chemistry. We find that as the coupling strength increases there
is a qualitative change in the synchronization of the system;
below we refer to the phases on either side of this transtion as
the weakly coupled and strongly coupled regimes.

The weakly coupled regime is characterized by an in-
terdomain interaction between wave fronts that slows the
propagation of both wave fronts but does not break them.
This effect is illustrated in Fig. 3(a): Wave fronts that without
coupling are uniformly curved (see Fig. 1) develop kinks where
their advance has been retarded by an interaction with a wave
front in the other domain. Crucially, at no point is the effect
sufficient to break the wave front.

\(a)

FIG. 3. (a) At weak forcing, wave fronts are distorted due to a
local decrease of their propagation speed. The coupling strength here
was Z = 0.4. (b) At strong forcing, wave fronts break and give rise
to new spiral cores. The coupling strength here was 7 = 0.7.
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Coupling of any magnitude causes cores to become mobile.
In the weakly coupled regime no new spirals can form but
spirals are destroyed by collisions with the boundary or with
an oppositely handed spiral. Therefore, the number of spirals
can only decrease or remain steady in time. This effect is
discussed more fully below in Sec. III B 2.

In the strongly coupled regime the interdomain interaction
is sufficiently strong to suppress the reaction and thus wave
fronts break wherever the intensity exceeds a certain threshold.
The two newly created ends curl up to form two new counter-
rotating spiral cores. This situation is illustrated in Fig. 3(b)
that shows the resulting wave fronts almost immediately after
the coupling was turned on. Thus, the number of spiral cores
can increase with time provided it outpaces the annihilation
mechanisms mentioned above (see also, e.g., Fig. 9). In our
experiments, the transition from weak to strong coupling
occurs at Z = 0.45. We reiterate that the exact value depends
highly on the chemical concentrations. For example, the
strongly coupled regime is beyond the maximum intensity of
our projector when the concentration of NaBrOj is increased to
0.3 mol/1. Between the weakly and strongly coupled regimes
there is a small transition regime wherein wave fronts can
break but do not always do so depending on the history at the
specific location (see also Sec. III D).

B. Weak coupling
1. Experimental coupling of two corotating spirals

Without coupling, spiral waves are stationary for our
experimental conditions and simulation parameters: The tip
of the spiral circles a stationary core. With coupling, cores
become mobile because the tip of the spiral is perturbed every
time it meets—yvirtually—a wave front in the other domain.
Henceforth, we refer to the motion of the cores in both domains
as though they occur on a single virtual plane defined by
superimposing both domains so points that are coupled lie
on top of each other. In Ref. [28] we showed in experiments
and simulations that if each domain is occupied by a single
spiral wave, then the coupling between the domains causes an
effective attraction between their cores. We further showed in
simulations that when both waves have the same handedness
the cores orbit a common center with diameters that are integer
multiples of half the spiral wavelength and at any instant they
lie on diametrically opposing sides of the center.

We define the spiral wavelength as the average distance
between consecutive wave fronts. The wavelength without
forcing X( is spatially uniform and is 0.66 +0.03 mm in
experiments. With forcing the motion of the core causes a
Doppler-like distortion of the spacing between wave fronts
depending on the direction of motion at the instant the
wave front is emitted; the spatially averaged wavelength in
experiments with forcing A is 0.69 £ 0.03 mm, about 5% larger
than A.

In Ref. [28] we developed an analytical model for the core
trajectories based on a single ingredient: A wave front striking
a tip imparts a deterministic translation and phase delay ¢ of
the tip. The model predicts orbits spaced at radii

. 1 ¢\A
R(m) = (m + 5 ;)Z 2
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FIG. 4. Typical example of a spiral tip trajectory in experiments
in the weakly coupled regime. Solid circles in (a) mark the positions of
the spiral in the xy plane of domain one for different times (indicated
by the symbol color - see color bar). Panels (b) and (c) show separately
the x and y coordinates versus time for the spirals in both domains.
Solid lines in (a), (b), and (c) are fits of Eq. (3) for the position of the
spiral tip in the first domain.

The stability of the orbit with radius R(m) depends on the
relative phases of the cores. Defining Ay = | — Y, as the
difference in phases of spirals (see Fig. 1) in domain 1 and 2,
orbits with radii R(m) are stable for even m and cos(Ayr) > 0
or for odd m and cos(Ayr) < 0. In simulations Ay — O or &
at long times, depending on the initial conditions; in our
analytically model ¢ is an input parameter.

Here we report for the first time experimental evidence
of this quantization. We conducted experiments with various
initial core-core separation of two spiral waves with the same
handedness. We find, in contrast to simulations, that the cores
exhibit circular trajectories with a superimposed drift (see
Fig. 4). We attribute the drift to imperfect alignment of the
optical path in the experiment and inhomogeneities of the
membrane that cause small variations of the spiral frequencies
across the reactor.
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We subtract this drift by fitting the core position r; = (;“j)
in domain i to

3)

ri(t) =ro; + Vit + R; [COS(Q[Z + ®i)i|,

SiH(Qit + @,)

where R; is the orbital radius, €2; the rotation frequency, ®;
the phase of a circular core trajectory for domain i = {1,2},
and v; is the drift. An example of the experimentally measured
core trajectory with a typical drift is shown in Fig. 4(a) on
the x-y plane and in Figs. 4(b) and 4(c) for each component
as a function of time. The trajectory of each tip is well
approximated by an epicycloid, i.e., the curve generated by
a point on a disk rolled around the circumference of a smaller
circle. Thus, the trajectories in Figs. 4(b) and 4(c) show a fast
small-amplitude oscillation superimposed on a slower large
oscillation (and a constant drift v). The small oscillations
correspond to the rotation of the tip around the core. Since
the core motion is our primary interest, we did not attempt to
resolve the small oscillation and neglected the corresponding
terms in our fit [Eq. (3)]. With this caveat in mind, Eq. (3) fits
the data well.

Figures 4(b) and 4(c) show the x and y positions of the
spiral tips in their respective domains. We note that both spirals
drift roughly in the same direction with very similar velocities
v; and v;. That the drift is along a linear path suggests that
misalignment of the optics is the primary cause of the drift
because if it were due to frequency differences of the spirals
the drift would be along a curved path. Once the drift is
subtracted, the cores follow circular orbits around a common
center point on diametrically opposite sides with quantized
radii. This behavior is in accord with the simulations. However,
unlike in simulations, the radii of these circular orbits [R; in
Eq. (3)] are not necessarily equal.

Figure 5 (inset) shows a plot of R; versus R, measured
from fitting Eq. (3) to the data from 19 experimental runs.
The clustering of data points around particular values and the
gaps between neighboring clusters are manifestations of the
quantization of the radii. The best fit to Eq. (2) yields a value for
A = 0.7 mm which is equal within experimental uncertainty to
the spiral wavelength with forcing A. Figure 5 shows the inset
data replotted with the radii normalizing by A. The degree
to which the system exhibits quantization is attested by the
proximity of the data to integer values of R/ (}1)»). The most
common case is that both radii are the same (i.e., m; = m;)
but there are a few instances where m, = m; + 1. For small
orbits (m < 4) the quantization is clear and for larger orbits
less so.

While Fig. 5 confirms the existence of quantization in the
experimental system predicted by simulations, the experiments
differ from the simulations in that (1) R; and R, are not
necessarily equal and (2) the quantization appears to weaken
for large separations. We argue that both issues are due to
idealizations implicit in the simulations.

The first idealization in simulations is constancy of spiral
frequencies across domains. However, experiments show that
the spiral frequency in domain 2 is systematically higher
than in 1 by as much as 4% even though both domains
nominally share the same substrate and are exposed to the
same chemical gradients. (These differences are likely due to
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FIG. 5. Radii of orbits in domain 1 and 2 plotted against each
other. Radii are normalized by a fitted value of the wavelength over
four to highlight the m dependence in Eq. (2); the fit yields a value of
A =0.70 mm and ¢ = 1.5 rad. The clustering of data around integer
values of R; /(%)\) is indicative of quantization. While most orbits
have equal radii [i.e., R;(m) = R,(m); red dashed line], we observe
some instances of orbits with R;(m) = R,(m + 1) (dash-dotted line).
Inset: Un-normalized radii.

inhomogeneities in the substrate that result in variations of
the diffusion coefficient across the membrane.) If spiral 2 is
rotating faster, then core 1 will receive more kicks per unit
time than core 2, and thus, according to our model, core 1 will
travel a greater distance. Since R; > R, as seen in Fig. 5, it is
plausible to attribute the cases where R; # R, as the result of
differences in the rotational rates.

The second idealization in simulations is perfect registra-
tion between domains. In experiments the presence of drift
attests to some degree of misalignment in the experimental
system. Furthermore, the effect of drift is greater for larger
orbits because the long duration and large trajectory of the
orbit exacerbates experimental issues due to variations in the
membrane diffusivity, optical distortions, fitting accuracy, and
so on. We ascribe the imperfect quantization for large orbits to
these issues.

2. Random initial conditions

Here we describe the results of weak coupling for initial
conditions consisting of multiple randomly positioned spiral
cores. Figures 6 and 7 show examples of the evolution with
time of such patterns in experiments and simulations.

We prepared the initial state of these experiments by
first allowing the system to develop naturally. This typically
produced several randomly positioned spiral cores. Once this
state reached steady state, we projected a short-duration high-
intensity, artificially generated, spiral pattern that chopped the
wave fronts into small pieces from which new cores were

PHYSICAL REVIEW E 95, 022215 (2017)

FIG. 6. Evolution of initially random BZ patterns for an ex-
periment in the weakly coupled regime (Z = 0.15). Left: Gray-
scale image of both domains. Right: Skeletonized image showing
superimposed wave fronts extracted from the left [dark (blue)] and
right [light (red)] domains. The small circular mark on the left side
of the left domain is a small air bubble attached to the window of the
reaction chamber; it did not affect the reaction pattern.

formed. We then coupled the resulting patterns and followed
their evolution in time.

Figure 6 shows a typical example of the evolution of the
system from random initial conditions. Initially (at t = 0), the
wave fronts are short and there is no obvious alignment of
fronts between domains. Later (at t = 2200 s ~ 42 rotational
periods) the number of spiral cores has decreased, the extent
of any given spiral wave has increased, and there are patches
of interdomain wave-front alignment (e.g., at the bottom). The
latter is particularly evident in the skeletonized image. Much
later (r = 21744 s &~ 430 rotational periods), there is a strong
alignment of the wave fronts.

This progression is reproduced in simulations as shown in
Fig. 7 and is even clearer because we are able to observe the
evolution over more initial configurations and for longer time
spans. Att = 114 (corresponding to 28 spiral rotation periods)
in Fig. 7 the number of cores is highly reduced from its value at
t = 0 and the degree of alignment between domains is easily
discernible. By t = 424 (102 rotation periods), the cores of
the largest spiral waves are on top of each other. The phase of
paired-up spirals differ by about 180°, such that wave fronts
of one domain are in between wave fronts of the other in
their superimposed coordinate system. In summary, the most
notable behaviors of weakly coupled domains with a random
distribution of cores are that with time the number of cores
decreases, cores pair up with a partner in the other domain,
and once the cores are coincident wave fronts are aligned.
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FIG. 7. (a) Evolution of weakly coupled initially random BZ
patterns in the simulation. Gray images of both domains are shown at
the left side. The right column shows the extracted wave fronts of the
first [dark (blue)] and the second domain [bright (red)] superimposed
on each other. (b) Spiral core annihilation. Two counter-rotating spiral
cores merge and subsequently disappear. In this way, spiral cores are
destroyed, leading to an increasing synchronization of the patterns.
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Our experiments with single cores suggest the following
mechanism for this progression towards synchronization. The
interdomain interaction causes the core in one domain to move
as it is buffeted by wave fronts in the other domain. This
motion is erratic—akin to a random walk—in the long term
because over its lifetime the core interacts with multiple cores
in the other domain. If, however, a core encounters the edge
of the domain or a core with the opposite chirality (in its
own domain), it is annihilated. Since there is no core creation
mechanism, the number of cores decreases monotonically with
time. The erratic motion of the core will only cease when it
pairs up with a core with the same chirality in the opposite
domain. Thus, paired cores will survive provided their orbit
does not intersect the boundary. Survival is most likely when
the cores lie on top of each other because the orbit is very
small. Thus, in the long term a few bound cores remain.

To examine this scenario we measured the number of
cores versus time from simulations (see Fig. 8). The counts
were obtained by skeletonizing the gray image and counting
the end points of each wave front. This method is fast but
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FIG. 8. Number of spiral cores as a function of time for the
simulation shown in Fig. 7 for domain 1 (o) and domain 2 (¢). The
dashed and dotted lines mark fitted solutions n(¢) and n,(t) of Eq. 4.
Inset: Same data plotted logarithmically; data for domain 2 (¢) shifted
downwards for clarity. The vertical dashed line at # = 155 marks a
transition suggested by the change of the slope.

undercounts the true value because the end of the wave front
may touch another wave front during a brief interval of the
period so it is not visible in the skeletonized image. Thus,
our count can fluctuate upward or increase on short time
scales, even though no new spiral cores form. Discounting
these fluctuations because they are artifacts, the number of
spiral cores decreases monotonically in time with equal rates
in both domains. These data show that (i) the number of cores
in each domain are roughly equal at all times and (ii) the decay
is exponential with a time constant that changes abruptly at
t ~ 150 s from faster to slower (see Fig. 8, inset).

We attempted to model the observed decrease in spiral
cores using the annihilation mechanisms described above. Our
model describes the dynamics in terms of four variables n%’rTl},
the number of right- or left-handed spirals in the ith domain.
Their evolution is given by the following system of equations

ﬁgi) — —ani") _ ﬂnﬁi)ngi)
r'z;i) = —omfi) — ﬂnﬁi)nfi), “4)

where the first term on the right-hand side accounts for
cores leaving the domain and the second term accounts for
annihilation of oppositely handed cores.

At early times there are many cores and so the second term
is dominant; at later times when few cores remain, these are
more likely to encounter the boundary than each other, and so
their number decreases exponential with a 1/e time constant
of @~!, consistent with the observed exponential at late times
[see Fig. 8 (inset)]. Moreover, we observed in simulations that
for larger domains the spiral number decrease due to the lateral
boundaries becomes less important and that the onset time for
the long-time exponential decay increases.

Since our data do not distinguish between left- and
right-handed cores, we compare the total number of cores
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n; =n® + n(l) given by Eq. (4) with our data in Fig. 8. A
least—squares fit to the model yields o = 1.0 x 1073 s and
B =3.5 x 107* s. The model captures well the overall trend
and the late time exponential but does not display the early
time exponential presumably because of the overly simple
interaction term n;n, in Eq. (4).

C. Strong coupling

An example of the evolution of a strongly coupled system
in experiments is shown in Fig. 9. The initial patterns (r = 0)
consist of multiple spirals irregularly distributed about the
domains. The skeletonized wave fronts (right column) show
no particular alignment between domains or correlations of
core locations.

With time the coupling causes the wave fronts to weaken,
and eventually break, wherever they intersect a wave front
in the other domain. New spiral wave subsequently develop
from the free ends where the wave fronts broke. The magnified
view in Fig. 10 illustrates the details of this process. Due to
the creation of new spirals and the inhibition of propagation of
wave fronts that do not coincide with a wave front in the other
domain, the pattern of wave fronts synchronize so the wave
fronts in both domains are aligned and in phase with each other.
Synchronization is achieved rapidly; in the example shown in
Fig. 9 the two domains are almost completely synchronized
by 151 s, approximately three rotational periods.

In simulations we observe the same processes driving
the system towards a synchronized state but with one major
difference: Wave fronts are shifted by & across domains. So
instead of identical patterns in both domains as in experiments,
the resulting patterns are complements of each other (see
Fig. 11).

Clearly, the photosensitive Oregonator model does not
accurately capture the experimental system. The problem
originates in the form of the coupling. The photosensivity
in the Oregonator was proposed as the “simplest necessary
modification” of the original Oregonator to include the effects
of illumination [33]. The modification consisted of augmenting
the production of the inhibitor Br™ in proportion to the intensity
of light, i.e., fv = fv + I in Eq. (1). However, subsequent
studies by Kadar et al. established that the production of Br™
is mediated by Ru(bpy)32Jr and thus its presence is necessary
for inhibition. Therefore, illuminating bright areas, which are
high in Ru(bpy),*" and low in Ru(bpy),>*, forces the system
much weaker than illuminating dark areas [high in Ru(bpy)32+
and low in Ru(bpy);>*].

The patterns observed in experiments are consistent with
this Ru(bpy)32Jr dependence, and the waves from opposite
domains line up peak to trough so they inhibit each other
minimally. When the patterns in both domains are the
same, either high-intensity light is projected onto regions
of high Ru(bpy);*>" concentration and thus low Ru(bpy);*"
concentration, or low-intensity light is projected onto regions
of high Ru(bpy)32+ concentration. In either case, the local
inhibition of the reaction is weak. Conversely, high-intensity
light on dark regions is highly inhibitory.

Contrary to experiments, the effective coupling in the
Oregonator model [Eq. (1)] between domains is least when
the patterns do not overlap. Regions with high v, produce high
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dommnl

domain 2

FIG. 9. Time evolution of strongly coupled spiral patterns in
the experiment (Z = 0.5). The left and middle columns show the
extracted wave fronts superimposed on the gray-scale pattern for
various times. The right column shows the superposition of the wave
fronts from cell 1 [dark (blue)] and cell 2 [bright (red)]. The region
within the dashed square (green) is used in Fig. 10. The rotation
period of the undisturbed spirals was 48 s.

t=0 20 2s 40 3s 80 6s 1OO 8s 141.0s 180.8s 212.0s

domain2 domain 1

FIG. 10. Fragmentation of wave fronts and formation of new
spirals during the evolution towards synchronization. Images cropped
from Fig. 9.
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FIG. 11. Wavefront patterns synchronized by strong coupling in
(a) experiments and [(c) and (d)] simulation. Bright areas correspond
to high concentration of the oxidized catalyst [Ru(bpy),*" in the
experiment, v in the simulation]. [(b) and (e)] Wavefronts extracted
from (a), (c), and (d) illustrating the degree of synchronization.

forcing in domain 2 which in turn is inhibitory only in regions
with large u, and vice versa. However, if the patterns are
intercollated as in Fig. 11(e), the effective coupling is weakest
because high forcing falls on regions of low v (and low u since
v follows u closely).

Though there are models [19,34] that incorporate more
sophisticated treatments of the chemical kinetics that may
resolve this discrepancy, we did not implement these.

D. Characterizing the transition from weak to strong coupling

We investigated the degree of synchronization with the aim
of identifying an order parameter to distinguish weak from
strong coupling. These simulations were performed using
a random spiral configuration as the starting condition. To
analyze the pattern in time, we first calculated phase fields
¢i(x,y,t) at each point in space (x,y) by mapping the time
interval between two consecutive maxima in v; onto the phase
interval O to 2.

Figure 12 shows examples of ¢;(x,t) and the phase
difference between domains 1 and 2,

Ap(x,t) = (¢1(x,1) — pa(x,1)) mod 27

for weak [Figs. 12(a)-12(c)] and strong forcing
[Figs. 12(d)-12(f)]. For weak forcing [Fig. 12(c)], the
phase difference varies across the domain and assumes
all values between O and 2w, whereas for strong forcing
[Fig. 12(f)] the phase difference is everywhere close to w
except in the vicinity of spiral cores where our method yields
a phase singularity.

We then calculated the time-dependent root-mean-square
difference o, (t) = \/((Aq) — (A@)s)?),, where (), denotes the
spatial average at fixed time. Figure 13 is a plot o,(¢) for
different coupling strengths (denoted by line color). For zero
and very weak coupling, o, ~ 1.8. Since /+/3 ~ 1.81 is the
value expected for uncorrelated phase fields, we conclude that
for Iy < 0.03 there is no synchronization. For large coupling
strength (Iy = 0.1) o, decreases sharply at the beginning
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] I27r

1,
FIG. 12. Phase of domains 1 [(a) and (d)] and 2 [(b) and (e)], and

their pointwise difference [(c) and (f)] for weak (I, = 0.03, top row)
and strong coupling (/y = 0.16, bottom row).

and reaches a plateau with o, ~ 0.3, a value we take to
be, based on visual inspections of the fields, equivalent to
full synchronization. Note that even though theoretically full
synchronization ought to have o, = 0 (i.e., Ap(x) = (Ag);
for all x), in practice the presence of phase singularities in our
computations raises this value to approximately 0.3.

At intermediate values of the coupling strength oy initially
decreases slightly and then fluctuates strongly. The initial
decrease is due to attrition of spiral cores by the mechanisms
discussed in Sec. III B 2. The spirals that survive this initial
phase pair up with partners in the other domain and orbit
each other. Due to the finite size of our system and the small
number of cores present, the phase differences vary greatly in
time because of variations of pattern from the orbital motion
of the core and occasional collisions of a core with the domain
boundary.

These qualitative observations are quantified in Fig. 14,
which shows (oy),, the time-averaged oy minus n/«/§, and
the standard deviation in time of oy, \/ {(o5(t) — {04))*)s,
plotted versus Iy. The time averages were computed for
t > 40 (denoted by the black vertical line in Fig. 13) in order
to eliminate transients. These data show the hallmarks of

2 % 0.2
0.15
S 0.1
0.05
ol—L . . . L . L . L 0
0 50 100 150 200 250 300 350 400 450 500
time

FIG. 13. Spatial standard deviation of the phase differences
between domain 1 and domain 2, as a function of time for different
coupling strength I (color coded). The dashed vertical line marks an
arbitrary chosen threshold #, = 40. Only data for r > f, were used to
calculate statistical properties shown in Fig. 14.
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FIG. 14. (a) The difference between the average o, at I, = 0 and
at Iy (blue circles). (b): The standard deviation (red squares, right
y axis) as a function of the coupling strength. These values were
calculated based on the times larger than 7, = 40 (black vertical line
in Fig. 13). The solid line (blue) is a fit of ocy/Ij to the data as expected
for a pitchfork bifurcation.

a bifurcation (see, e.g., Ref. [35]): the sudden appearance
of an order parameter (o;); and strong fluctuations of the
order parameter near the transition. Assuming a pitchfork
bifurcation, a fit of a square-root function to the data near
the onset of strong coupling gives a value of I, = 0.05 for the
transition from weak to strong coupling.

IV. SUMMARY

We investigated experimentally and numerically the effects
of point-to-point coupling of two spatially extended light-
sensitive Belousov-Zhabotinsky systems in the parameter
regime where spiral cores are stationary. Coupling causes the
domains to synchronize with modalities that depend on the
forcing strength and the initial wave pattern of the BZ reaction.

There are two regimes as function of coupling strength
distinguishable by the effect of wave fronts on each other. In
the weak-coupling regime wave fronts are locally deformed,
due to a reduction of the propagation speed when illuminated,
but do not break, whereas in the strong-coupling regime
wave fronts break. In both cases, spiral cores are no longer
stationary. We showed previously [28] that weak coupling
with a single spiral in each of the two domains induces a
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synchronized state in which the two spirals with the same
orientation orbit a common center along circular trajectories.
Furthermore, our simulations showed that the radii of these
trajectories are quantized with integer multiples of half of
the spiral wavelength. Here we showed that the experimental
system also exhibits this quantization.

For an initially random spiral pattern in the weak-coupling
regime we found that the number of spiral cores decreases in
time until the only cores remaining are those that have formed
abound pair with a core in the other domain. Spirals annihilate
by collisions with oppositely handed spirals or the boundary,
with the former dominating at early times when there are
many spirals and the latter dominating at later times when
spiral-spiral collisions are rare. The only cores that survive are
those whose trajectories are stabilized by forming a bound pair
with a core in the other domain.

In the strongly coupled regime patterns synchronize quickly
and completely, resulting in nearly identical patterns in both
domains regardless of the initial condition. The mechanism for
rapid synchronization is wave-front breaking. Wherever two
wave fronts from opposite domains overlap, they break and
new spiral waves form from the broken ends. The only spiral
cores that survive this process are those that share the same
position as a core in the opposite domain.

While experiment and simulation agree for weak coupling,
they differ for strong coupling. In experiments the pattern
become identical in both domains, whereas in simulation they
differ by a phase shift of 7. This discrepancy indicates a short-
coming of the simplest light-coupled Oregonator model that
assumes a production of inhibitor (Br™) that is proportional
to illumination but independent of the concentration of the
oxidized catalyst [Ru(bpy);>*].

Our examination of the crossover from weak to strong
coupling revealed a sharp transition. We used oy, the standard
deviation of the local phase difference between domains 1
and 2, as an order parameter. For weakly coupled domains
o, ~ 1/~/3, indicating uncorrelated phase fields, and in the
very strongly coupled regime oy =~ 0, indicating complete
correlation between domains. The change between these two
limits occurs abruptly and is well fit by a pitchfork bifurcation.
Furthermore, near the transition the fluctuations in time of
o5 (1) peak, consistent with the weakened damping near a phase
transition. Thus, we conclude that the transition from weak to
strong coupling is a phase transition.
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