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We study the formation, growth, and disintegration of jets following impact of a drop
on a thin film of the same liquid for We < 1000 and Re < 2000 using a combination of
numerical simulations and linear stability theory (Agbaglah et al. 2013). Our simulations
faithfully capture this phenomena and are in good agreement with experimental profiles
obtained from high-speed X-ray imaging. We obtain scaling relations from our simulations
and use these as inputs to our stability analysis. The resulting prediction for the most
unstable wavelength are in excellent agreement with experimental data. Our calculations
show that the dominant destabilizing mechanism is a competition between capillarity
and inertia but that deceleration of the rim provides an additional boost to growth. We
also predict over the entire parameter range of our study the number and timescale for
formation of secondary droplets formed during a splash, based on the assumption that
the most unstable mode sets the droplet number.
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1. Introduction

The impact of a drop on a film of the same fluid is ubiquitous in nature and arises in
many different contexts such as rain and surf interactions with the air-sea interface, fuel
injection systems, spray painting, and atomization. Depending on the governing dimen-
sionless parameters – mainly the ratio of the film thickness to the drop diameter, and
the Reynolds and Weber numbers – the impact may cause a splash (see e.g. Cossali et al.

1997; Rioboo et al. 2003; Deegan et al. 2008) herein defined as the generation of secondary
droplets. Splashing encompasses a broad variety of qualitatively different morphologies
distinguished by their regularity and size-distribution of secondary droplets. Whether
these differences arise from a single mechanism or multiple mechanisms remains an open
question. Indeed, the cause of splashing has been revisited often in century since the
pioneering studies of Worthington (1879) and has been answered in many, seemingly
contradictory ways: Rieber & Frohn (1999), Bremond & Villermaux (2006), and Zhang
et al. (2010) argue for the Rayleigh-Plateau mechanism, Gueyffier & Zaleski (1998) for a
Richtmyer-Meshkov mechanism, Krechetnikov & Homsy (2009) for a combination of the
Richtmyer-Meshkov and Rayleigh-Taylor mechanism, Krechetnikov (2010) for a combina-
tion of the Rayleigh-Plateau and Rayleigh-Taylor mechanism, and Yarin & Weiss (1995)
for a nonlinear amplification mechanism governed by the eikonal equation. More broadly,
Roisman and collaborators (Roisman et al. 2006, 2007; Roisman 2010) investigated the
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linear stability of a receding liquid sheet and concluded that the liquid rim is subject
to a Rayleigh-Plateau and Rayleigh-Taylor instability; a followup study by Agbaglah
et al. (2013) that included the growth of the liquid rim in the linear stability analysis
concluded that the rim is susceptible to both the Rayleigh-Taylor and Rayleigh-Plateau
instabilities but at different times during its evolution: at early times when the rim is
decelerating sharply the former dominates and at later times the latter dominates.

In the crown splash regime – the focus of this paper – the splashing proceeds through a
sequence of clearly distinguishable steps: a sheet-like jet emerges and grows outward from
the neck of fluid connecting the drop and the pool; the jet’s leading edge is pulled back
into the sheet by surface tension and forms a rim as it moves back into the sheet; lastly,
the rim develops transverse corrugations that grow, sharpen into fingers, and ultimately
pinch-off into secondary droplets. Because of its high degree of regularity the crown splash
offers the simplest scenario in which to examine extant issues on the origin of secondary
droplets.

Below we present the results of our numerical study of the initial axisymmetric phase
of a crown splash. The validity of these simulations is demonstrated by their faithful
reproduction of the finest details resolvable in experiments. Using the characteristics of
the jet obtained from simulation as inputs for the linear stability theory of Agbaglah
et al. (2013) we are able to reproduce the experimental results of Zhang et al. (2010)
on the breakup of the crown. We extend our predictions to regimes for which there are
currently no experiments by extracting from simulations scaling relationships for the rim’s
characteristics as a function of Weber and Reynolds number and using these to predict
the most unstable wavelength throughout the crown splash regime. We show that the
Rayleigh-Plateau mechanism is the dominant mechanism for the parameter range of our
study though its growth is significantly enhanced by the Raleigh-Taylor mechanism.

The manuscript is divided into a numerical section and a modeling section. In the
numerical section we describe our numerical technique; validate the results of the simu-
lations with high speed X-ray images; we compute the thickness of the jet and the radius
and position of the rim for a variety of Reynolds and Weber numbers and develop a
scaling relationship for the jet thickness at the moment it emerges from the impact. In
the modeling section we use these scaling relationship to predict the number of secondary
droplets as a function of Weber and Reynolds number.

2. Numerical computations

2.1. Numerical method

We simulate two incompressible fluids, a liquid and a gas, with constant densities ρL and
ρG and constant viscosities µL and µG, with the two-fluid Navier-Stokes equations:

ρ(∂tu + u · ∇u) = −∇p + µ∆u + σκδsn,

∂tρ + ∇ · (ρu) = 0,

∇ · u = 0.

In this formulation the density ρ and viscosity µ are constant within each phase and
discontinuous at the interface. The Dirac distribution function δs expresses the fact that
the surface tension term is concentrated at the interface, κ and n being the curvature
and the normal of the interface respectively and σ the interfacial tension.

Numerical simulations were performed using GERRIS (Popinet 2003b), an open-source
code where the interface is tracked using a Volume-of-Fluid method on an octree struc-
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tured grid allowing adaptive mesh refinement, and the incompressibility condition is
satisfied using a multigrid solver (see Popinet 2003a, 2009). This numerical code has
been validated with numerous examples and used successfully for many different multi-
phase problems (Fuster et al. 2009; Agbaglah et al. 2011) including splashing (see e.g.
Thoraval et al. 2012).

2.2. Numerical simulation

We simulated a spherical liquid drop of diameter D and velocity U impacting normally
on a uniform layer of thickness H of the same liquid in an initially quiescent gas. The
results depend on five parameters: the viscosity and density ratios (µL/µG and ρL/ρG),
the dimensionless fluid depth h = H/D, the liquid Reynolds number Re = ρLUD/µL

and Weber number We = ρLU2D/σ. We used the axisymmetric formulation of the
Navier-Stokes equations described above. Typically we stopped our simulation at t =
D/U because experiments (e.g. Zhang et al. (2010)) show that axial symmetry breaks
before this point and hence our axisymmetric simulation cannot follow the true dynamics.
Our computational domain extends 10D in the radial direction and 10D in the vertical
direction. We define t = 0 as the moment when the drop first touches the pool; this time
is slightly later ( ≃ 14 µs) than the usual experimental choice of t = 0 as the moment
when the bottom of the drop crosses the undisturbed level of the pool.

We assessed the convergence of the code at Re = 2042, We = 292, µL/µG = 69,
ρL/ρG = 709 for various dimensionless pool depths in the range 0.2 to 5 by observing the
velocity norm as a function of grid size. We used the L1, L2 and L∞ norms (respectively
the average of the absolute values, the root-mean-square norm and the maximum abso-
lute value) of the difference between the velocity at a given grid size (v(Xj , tk)) and the
velocity at the finest grid size (vr(Xj , tk)), at 66 spatial points dispersed over the com-
putational domain and at 20 different times. The average in time of the computed error
are shown in Fig. 1. The convergence is at the first order in the spatial resolution. In the
following, a 213 × 213 mesh is used in all the simulations. This corresponds to an initial
mesh size of ∆x = D/1638, and it is also the mesh size at the maximum refinement. The
mesh is adapted based on three criteria: 1) distance to the interface, 2) curvature of the
interface, 3) vorticity magnitude.

2.3. Validation

Figure 2 compares simulation results with the equivalent experiments obtained by using
high speed X-ray imaging as described in Zhang et al. (2011). The simulations at h = 5
correspond to the two-jets regime near the transition point from the one-jet regime
observed experimentally (Zhang et al. 2011). Due to the slenderness of the structures
(e.g. the ejecta or the gap between the ejecta and the lamella), at these parameter
values insufficient grid resolution is readily apparent and thus our comparison of with
experiments is a stringent test of our simulation’s accuracy. We find excellent qualitative
agreement between simulations and experiments.

As shown in the merged simulation-experiment panel of Fig. 2, the rim formed at the
edge of the crown is accurately captured in the simulation, but there is small shift at the
base of the sheet. We attribute the latter to various perturbations (e.g. surface waves
generated when the drop detaches from the needle or air resistance as the drop falls) that
cause the drop in the experimental system to deviate from the spherical geometry used
in simulations (see for instance Thoraval et al. (2013)).
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Figure 1. Convergence of the numerical simulations for Re = 2042, We = 292, h = 0.2,
µL/µG = 69, ρL/ρG = 709 parametrized by the L1 (�), L2 (©) and L∞ (△) norms on a log-log
scale. The lines correspond to power law fits that yield 2.5/x, 9/x and 55/x.

Figure 2. Validation. Left: Comparison of experimental profiles obtained using high speed
X-ray imaging and numerical simulations for h = 5, We = 451 and Re = 710 (top), and
h = 0.2, We = 324 and Re = 2191 (bottom). Right: Superimposed simulation (blue line) and
experimental profiles at t=335 µs (tU/D = 0.468) for h = 0.2, We = 324, Re = 2191.
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Figure 3. Scaling of rim radius evolution. Open symbols correspond to Re=500 and filled
symbols to Re=1000. (a) Rim radius versus time for We=400 (�), We=600 (©), and We=800
(△). Note the general trend of decreasing rim size with increasing Re and We. (b) Data from
(a) replotted with the rim radius rescaled to We r/D.

2.4. Numerical results

The aim of our numerics was to find a phenomenological law for the evolution of the
characteristics of the jet as a prelude to developing a reduced model of the rim’s dynamics.
In particular, we measured the size of the jet when it first emerges from neck eo, the time-
dependence of the rim radius r, and the vertical Hc and horizontal Rc distance of the
rim from the impact center

The time evolution of the rim radius is shown in Fig. 3(a) for six different parameter
sets. We varied Re and We (by changing only the liquid properties: µL and σL), keeping
h = 0.2 and the impact speed U constant. These data show that r grows linearly in time
and the overall scale decreases with increasing Re and We. As shown in 3(b), the radius
depends linearly in time; moreover, the slope scales as We−1:

r =
1

2
eo +

a

We
Ut (2.1)

where a is a real constant and eo is the initial diameter of the rim as it emerges from the
neck(see Fig. 4). Note that according to Eq. 2.1 the time at which the jet emerges and
t = 0 are identical; the difference in these times in our numerical calculations is no more
than 5 µs and thus we assume it is negligible.

We measured the size of the jet when it first emerges from the neck connecting the
drop and the pool from the distance between the inflection points on the neck as shown
in Fig. 4(b). The data for thirty different combinations of We (200, 400, 600, 800, 1000)
and Re (500, 1000, 1500, 2000, 3000, 4000) are shown in Fig. 4(b-d). We find empirically
that

eo ∝ DWe−0.2Re−0.5 (2.2)

Furthermore, the distance of the neck from the center of the drop when the jet first
emerges, usually called contact length, decreases with increasing Re (see Fig. 4(b); the
center of the drop is at x/D=0) in agreement with the results of Coppola et al. (2011).
Combining the scaling for eo and r yields:

r

D
≃

a

We

Ut

D
+

b

We0.2Re0.5 (2.3)

where a and b are constants with values obtained from fits to the data of 13 and 0.35
respectively.
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Figure 4. Emergence of jet. (a) Free surface profile from simulations just after impact. (b)
Magnified view of neck between the drop and the pool (see dashed box in (a)) at the moment
the jet emerges from the neck for We = 400 and Re = 2000, 1500, 1000, 500 (from left to right).
The arrow indicates the thickness of the jet as it emerges from the neck eo. Note that the jet
emerges at a distance from the center that decreases with increasing Re. (c) eo versus Re for
We = 200 (red �), 400 (green △), 600 (blue �), 800 (red ◦), 1000 (red •). The dashed line is
the power law Re−0.5. (d) eo versus We for Re = 500 (blue �), 1000 (green △), 1500 (blue �),
2000 (black ◦), 3000 (red •). The dashed line is the power law We−0.2. (e) Scaled jet thickness
versus Re. The color scheme is the same as in (c). The dashed line is the power law 0.7Re−0.5.
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Figure 5. Rim characteristics for We=600 and Re=1000 (black ∗), We=400 and Re=500 (blue
+), We=400 and Re=1000 (red ×) and We=600 and Re=500 (green �). (a) Crown radius
versus time. The line is the power law (tU/D)0.5. (b) Crown height versus time. The linear line
is y = 0.6(tU/D).

We measured the radius of the crown Rc from the horizontal distance of the leading
edge of the rim to the impact center as a function of time and the vertical distance of
the crown above the undisturbed pool Hc. These data are plotted in Fig. 5 for various
combinations of Re and We; Rc ∼ t1/2 and Hc ∼ t, largely independent of Re and We.
(Liang et al. (2013) observed the same behavior.) Hence the acceleration is primarily
along the radial direction.

3. Modeling wavelength selection of the rim instability

Zhang et al. (2010) showed good agreement of experiments with a stability analysis
based on the Rayleigh-Plateau instability that ignored the connection of the rim to the jet
and the deceleration of the rim. Fullana & Zaleski (1999) however argued that the former
effect is essential because it saturates the growth of the Rayleigh-Plateau instability and
thus prevents the formation of secondary droplets within the relevant timescale. More-
over, Krechetnikov & Homsy (2009) also argued that acceleration is important because
their measurements, albeit in a different regime from the crown splash, were consistent
with a Ritchmyer-Meshkov instability. Below we examine the effects of the connection
of the jet to the rim and the deceleration of the rim with a model that merges the
long-wavelength linear stability analysis of Agbaglah et al. (2013) and the results of our
numerical calculations.

Agbaglah et al. (2013) analyzed in the inviscid limit the stability of the rim of a flat
sheet-like jet of constant thickness and speed. Importantly, it incorporate both accel-
eration and capillarity. Their model agrees well with full numerical simulations of that
scenario. The crown sheet however is curved, its thickness and speed are nonuniform, and
its geometry is cylindrical. We gloss over these difficulties in an attempt to construct a
minimal model of the splash. The model of Agbaglah et al. (2013) requires as inputs the
ratio of the jet thickness to rim radius e/r and the acceleration of the rim. We supply
the former from the scaling relationship for e0 under the assumption that this value is
representative of e and the latter from the rim position. Based on this composite model
we predict the most unstable wavelength of a crown splash for a wide range of We and
Re numbers. In particular, for Re = 760 and We = 1060 for which there is high quality
experimental data available we find excellent agreement.
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Figure 6. Dispersion curves for We=760 and Re=1060. Growth rate vs wavenumber at various
times after impact for (a) the theory of Agbaglah et al. (2013) and (b) inviscid Rayleigh-Plateau
( ) and Rayleigh-Taylor ( )).

3.1. Wavelength selection and secondary droplet production

Using the rim radius and acceleration obtained in the previous sections as inputs for the
linear stability calculation of (Agbaglah et al. 2013), we computed the growth rate ω as
a function of wavenumber k, and from this dispersion relationship the power and wave-
length of the most unstable mode. The dispersion relationship for We=760 and Re=1060
is plotted in Fig. 6(a). Figure 6(b) shows the equivalent dispersion curves for the classi-
cal Rayleigh-Plateau and Rayleigh-Taylor instabilities. The most unstable wavelength of
the classical Rayleigh-Plateau most closely tracks the most unstable wavelength of our
stability calculation.

From the growth rate we compute the amplitude of the nth mode:

Ψn(t) = Ψo max
k

(

exp

{
∫ t

0

ω

(

k =
n

Rc
, t′

)

dt′
})

(3.1)

where Ψo is taken as a constant independent of wavelength under the assumption that
the initial microscopic corrugations present in the system are distributed like broadband
white noise. The peak mode is selected as the mode with the maximum amplitude at any
given time. The peak wavelength and its amplitude are compared with the experimental
measurements of Zhang et al. (2010) in Fig. 7. In addition, we plot the classical inviscid
Rayleigh-Plateau and Rayleigh-Taylor theory (Chandrasekhar 1981) in Fig. 7 for compar-
ison. In all three calculations Ψo is taken as an adjustable parameter chosen to maximize
the correspondence between the calculation and the experimental measurements. These
data show that our model is in excellent agreement with measurements.

We can predict the number of secondary droplets and the timescale for their onset
over the entire parameter range of the crown splash with a few further assumptions. We
repeated the above calculation of Ψn on a regular grid of parameter values (Re, We)
assuming that Ψo is the same for all parameters and equal to the value obtained from
the comparison in figure 7 (right). We further assume that when the amplitude of the
peak corrugation grows to a size comparable to the diameter of the rim (i.e. Ψn ⋍ 2r,
the choice of 2r is motivated by the fact that the antisymmetric part of the perturbation
is dominant in the nonlinear regime (e.g. see Fig. 9 and 10 of Agbaglah et al. (2013)))
nonlinear effects become dominant and lock in the most unstable mode. Lastly, we assume
that the number of droplets is given by the peak mode n∗ as suggested by the experiments
of Zhang et al. (2010). Figure 8 shows the resulting predictions. These data predict that
the number of secondary droplets increase with both Re and We. No secondary droplets
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Figure 7. Most unstable mode. (Left) Peak wavelength and (right) power in peak wavelength
versus time for We=760 and Re=1060 from experiments (blue �) (Zhang et al. 2011), Rayleigh–
Taylor theory with Ψ0/D = 1.9 × 10−3 (dashed green line), Rayleigh-Plateau model with
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are predicted for the hashed region of Fig. 8, since Ψn < 2r for the entire timescale of
splashing (i.e. t̃ . 2.7).

4. Discussion and Conclusion

We performed axisymmetric simulations of drop impact on a thin film in the crown
splash regime using a volume-of-fluid implementation of the Navier-Stokes equations and
validated these by comparing with experimental profiles obtained using high speed X-
ray imaging. By combining the result of our axisymmetric simulations with the theory of
Agbaglah et al. (2013) for symmetry breaking of a flat sheet, we predict the most unstable
mode of the axial symmetry breaking instability in a crown splash. With the further
assumption, supported by experiments, that the crests of the most unstable mode are
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the origin of secondary droplets, we predict the secondary droplet production throughout
the crown splash regime (We < 1000, Re < 2000).

From simulations we obtain scaling relations for the position (Rc and Hc) and the size
(r) of the rim, and the initial thickness (eo) of the jet. These are then used in the linear
stability theory of Agbaglah et al. (2013) to obtain the most unstable wavelength and
hence the number of secondary droplets. No adjustable parameters are used to predict
the most unstable wavelength; a single adjustable parameter, the initial amplitude of the
corrugation Ψo that initiates the instability, is used to predict the magnitude of the insta-
bility. Our predictions are in excellent agreement with the experimental measurements
of Zhang et al. (2010).

The agreement between experiments and theory could be perhaps improved if we
allowed for a dependence of Ψo on Re and We. However, in absence of experimental evi-
dence that would warrant this more complicated scenario, we chose Ψo to be independent
of wavelength, Re and We.

The debate about the cause of splashing has largely revolved around the relative im-
portance of capillarity versus acceleration, or – as it is frequently phrased in the literature
– whether the instability is primarily Rayleigh-Plateau-like or Rayleigh-Taylor-like. With
our simulation results we can quantitatively examine this question in the crown splash
regime. As shown by Fig. 6, our results favor a Rayleigh-Plateau-like instability as the
primary mechanism for wavelength selection.

Our calculation however, differs from the classical Rayleigh-Plateau in that it includes
the effects of deceleration of the rim and the connection of the rim to the jet. The
combination of these two effects yields a better fit to the experimental data. The rim-
jet connection weakens the destabilizing role of capillarity. For example, consider the
extreme case that prevails when the jet first forms: the jet ends in a semicircle with a
diameter equal to the sheet thickness. Unlike the case of a full cylinder, there is no surface
energy gain for transverse corrugation for the free end of the jet. Thus, we expect that the
classical Rayleigh-Plateau theory which is for a full cylinder will produce a greater growth
rate than our theory; this is indeed the case as shown by Fig. 6. The deceleration of the
rim however, counteracts the dampening effect of the rim-jet connection. As shown in
Fig. 9(a), the amplitude of the most unstable mode is significantly more amplified when
acceleration is included. Roisman (2010) reached a similar conclusion in the context of
flat sheets.
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How can we reconcile the obvious effect of acceleration on the magnitude of the mode
with its absence in wavelength selection? The deceleration phase is too short-lived to
effect wavelength selection. As the rim approaches the Taylor-Culick limiting speed (rel-
ative to the jet speed), acceleration and its destabilizing effect vanish. We find in our
simulations that this happens rapidly. The legacy of this initial acceleration phase is a
greater initial amplitude for the subsequent evolution of the rim due to the capillary
instability. Moreover, since the Rayleigh-Plateau and Rayleigh-Taylor instabilities have
similar peak wavelengths because they both originate from the same driving force, the
principal contribution of the acceleration instability is centered around the modes sus-
ceptible to the capillary instability.
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