Creating Interactive User Interfaces by
Demonstration using Crowdsourcing

Rebecca Krosnick
Computer Science & Engineering | University of Michigan, Ann Arbor
rkros @umich.edu

I. INTRODUCTION

People are becoming increasingly interested in creating their
own digital content and media. This is evident in the enormous
number of blogs, personal websites, and portfolios available
online. Website templates and creation/hosting services (e.g.,
Wix, WordPress, Google Sites) have made it possible for even
non-programmers to create websites. However, with these ser-
vices, non-programmers are limited to templates or basic user
interface elements and behaviors, lacking the ability to create
truly custom web pages that satisfy their needs. More complex
and custom user interfaces like digital games and software
are virtually impossible for non-programmers to create; even
visual programming (e.g., Blockly, GameMaker Studio 2)
and data flow languages that try to make computing more
approachable still require an understanding of programming
and computing concepts. As simple as it is for the average
person to sketch a User Interface (UI) on paper or describe
it in words, I believe it should be just as easy for them to
create the actual digital UI with all of the desired behaviors.
Programming should not be a barrier to creating new things
and sharing them with the world.

Programming by Demonstration (PbD) has been an approach
previously explored to enable end-user programmers to create
programs without writing program code. End-users instead
demonstrate how their program should work for example
scenarios. There has been a rich body of work in PbD, with
a number of papers focused on building interactive Uls and
games [1] [2] [3]. Although these systems proved promising
in lab studies, PbD has not seen much adoption in commercial
products, a couple reasons being: 1) often many demonstra-
tions are needed for the PbD system to correctly infer the end-
user’s intended behaviors, and 2) it can be difficult for end-
users to understand what exact demonstrations are needed [4].

In my future work I plan to address these challenges in
an effort to make PbD a more feasible approach for enabling
end-user programmers to build custom, interactive Uls.

#1: Make it more feasible to gather many demonstrations:
In prior PbD systems, it was assumed that the single end-
user would create all demonstrations and answer the system’s
clarifying questions. This requires much effort from one
person, and can make using such a system undesirable. I
propose applying crowdsourcing to this problem, to spread
the effort across multiple people. I am currently designing a

978-1-5386-4235-1/18/$31.00 ©2018 IEEE

crowdsourcing pipeline that leverages crowd workers to create
PbD demonstrations capable of accurately satisfying the end-
user’s UI behavior requirements.

#2: Make it easier to gather the right demonstrations: To
make it easier to gather demonstrations needed to correctly
disambiguate and refine UI behaviors, I propose finding ways
to guide crowd workers to create these demonstrations. I be-
lieve that by asking workers questions about what UI elements
and properties a behavior is dependent on, the system can
understand what new demonstration start-states or triggers
would be informative and can ask workers to demonstrate the
corresponding responses.

II. PBD FOR CREATING DYNAMIC UIs

As one step in the direction of enabling end-user program-
mers to build custom Uls, I have recently created Expresso [5],
a PbD tool for building Uls with custom responsive behaviors,
something that current template and website creation services
do not support. Expresso does not require the user to write
program code. With Expresso, a user starts with a static layout
web page and then creates keyframes — examples of how
the web page should look for different viewport widths —
by directly manipulating UI elements in a WYSIWYG editor.
Expresso can use a small set of keyframes to determine page
layout for any viewport width. By default, the layout for a
viewport width between two provided keyframes is the linear
interpolation of the two keyframes’ element property values,
or a smooth transition. Expresso also supports discontinuous
changes in layout as the viewport width is changed, for
example a UI element being horizontally centered for small
viewport widths and right-aligned for large viewport widths,
which is enabled by the ability to set a jump transition
between two keyframes. In a study I ran with participants who
had minimal Cascading Style Sheets (CSS) experience [5], 1
saw that participants were able to build realistic responsive
behaviors using Expresso. Although Expresso is effective for
creating responsive Uls, it does not support creating more
complicated behaviors, such as those in a digital game that
may depend on interaction events and the state of various
Ul elements. Many more demonstrations would be needed to
successfully encode such complicated behaviors using PbD.
Using crowdsourcing could make creating a large number of
demonstrations more manageable.

III. RELATED WORK IN CROWDSOURCING

Crowdsourcing is the act of making an open call for people
to complete work. It is often used to scale human computation,
which integrates human intelligence into a computational pro-
cess to complete work better than either humans or machines
could alone. Recent work has shown that continuous real-
time crowdsourcing [6] can be used for building and powering
UI prototypes based on end-user requests. Apparition [7], [8]
enables an end-user to use natural language and hand-sketches
to communicate UI requirements. The crowd then implements
a higher-fidelity prototype matching the requirements, and
can Wizard-of-Oz animation requirements. SketchExpress [9]
builds on Apparition by enabling workers to create, save,
and reuse animation behaviors, which the end-user can replay
later. However, neither of these systems support creating
truly automated interactive Uls. At run time, a human must
either manually animate behaviors (in Apparition) or man-
ually press “play” buttons to replay recorded behaviors (in
SketchExpress). Behaviors dependent on state changes or user
interaction events are not supported. By instead leveraging
crowd workers to create PbD demonstrations, a system can
infer a UI behavior model that can applied to automatically
render UI updates based on events and user interactions.

IV. FUTURE WORK

I am starting to design the crowdsourcing pipeline that
will generate the PbD demonstrations necessary to define
an end-user’s requested UI. An end-user requester will first
describe their UI behavior requirements by text or audio. Each
description will then be sent to a crowd worker, who will be
asked to create relevant demonstrations. Like some prior PbD
systems, we will likely ask the worker to demonstrate a “Ul
before-state” and events (e.g., user interaction, timer event, Ul
change event), and then the resulting “UI after-state”. A worker
will likely need to provide multiple demonstrations for the Ul
to correctly exhibit the behavior they were assigned.

As with most crowdsourcing systems, the system should
not blindly assume that any particular worker demonstration
is correct. However, it would defeat the purpose to have the
end-user check the validity of each worker demonstration;
in that case, the end-user could have just spent their time
creating all the demonstrations themselves. To address accu-
racy concerns while requiring zero or minimal work from the
end-user, I plan to gather redundant demonstrations for the
same (“before-state”, event) pair from multiple workers. For
a previously created demonstration, its (“before-state”, event)
could be passed to other workers, who would then be asked
to demonstrate the expected “after-state”. The system would
then need some intelligent, and likely automated, scheme for
aggregating the redundant demonstrations in order to generate
the most accurate demonstration of the requested behavior
as possible. Although asking for redundant demonstrations
will increase the total amount of work required, I claim that
the amount of work required for any single worker will still
be less than an end-user providing demonstrations alone, as

the system will not require every worker to complete every
(“before-state”, event) demonstration.

Since crowd workers will not be expert users of PbD or this
system, it will be particularly important to make creating the
right demonstrations easy. “Good” demonstrations are ones
that are meaningfully diverse, demonstrating a wide range of
the state-space and clarifying behavior differences for small
state changes. Achieving such diversity will be helpful in
building robust Uls that satisfy the end-user’s requirements. It
is likely that a worker may create a few initial demonstrations
but then notice that the UI still does not completely satisfy
the requester’s behavior requirements. I hope to help workers
create demonstrations for new, relevant (“before-state”, event)
pairs that would help the inference engine refine UI behaviors
correctly. To do this, I intend to take prior (‘“before-state”,
event) pairs and perturb them in meaningful ways, in order to
generate new (“before-state”, event) pairs whose full demon-
strations, completed by workers, would prove informative to
the inference engine. To perturb (‘“before-state”, event) pairs
in meaningful ways, I plan to also ask workers questions
about the semantics of the requested UI behaviors, for example
whether an element’s end location depends on its start location,
or whether an element’s color depends on another’s.

Some other interesting questions to explore will be: What
kinds of UI behavior descriptions can workers reliably under-
stand, and which ones can they not? What kind of training
will workers need to effectively use this system? Compared
to an end-user performing all demonstrations themselves, how
much faster can this crowdsourcing pipeline be?

I am excited about applying crowdsourcing to PbD as I think
it could make PbD more feasible for end-user programmers. In
general I am excited for a future where hopefully any person,
regardless of technical expertise, can create custom programs
and Uls that contribute to the world.

REFERENCES

[1] B. A. Myers, “Peridot: creating user interfaces by demonstration,” in
Watch what I do. MIT Press, 1993, pp. 125-153.

[2] R. G. McDaniel and B. A. Myers, “Getting more out of programming-
by-demonstration,” in Proc. of CHI. ACM, 1999, pp. 442-449.

[3] M. R. Frank, P. N. Sukaviriya, and J. D. Foley, “Inference bear: designing
interactive interfaces through before and after snapshots,” in Proc. of DIS.
ACM, 1995, pp. 167-175.

[4] B. A. Myers and T. J. J. Li, “Teaching intelligent agents new tricks:
Natural language instructions plus programming-by-demonstration for
teaching tasks.” Human Computer Interaction Consortium (HCIC), 2018.

[5] R. Krosnick, S. W. Lee, W. S. Lasecki, and S. Oney, “Expresso: Building
responsive interfaces with keyframes,” in Proc. of VL/HCC. IEEE, 2018.

[6] W. S. Lasecki, K. I. Murray, S. White, R. C. Miller, and J. P. Bigham,
“Real-time crowd control of existing interfaces,” in Proc. of UIST. ACM,
2011, pp. 23-32.

[71 W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S.
Bernstein, “Apparition: Crowdsourced user interfaces that come to life
as you sketch them,” in Proc. of CHI. ACM, 2015, pp. 1925-1934.

[8] S. W. Lee, R. Krosnick, B. Keelean, S. Vaidya, S. D. O’Keefe, S. Y. Park,
and W. S. Lasecki, “Exploring real-time collaboration in crowd-powered
systems through a ui design tool,” in Proceedings of the ACM Conference
on Computer-Supported Cooperative Work and Social Computing. ACM,
2018.

[9] S. W. Lee, Y. Zhang, I. Wong, Y. Y., S. O’Keefe, and W. Lasecki,
“Sketchexpress: Remixing animations for more effective crowd-powered
prototyping of interactive interfaces,” in Proc. of UIST. ACM, 2017.

