
Tools for Creating UI Automation Macros
Rebecca Krosnick

Computer Science and Engineering
University of Michigan
Ann Arbor, MI USA

rkros@umich.edu

I. INTRODUCTION

Automation macros enable users to perform digital tasks
programmatically to save time or support hands-free inter-
action. For example, macros can be used to perform web
scraping for a research project (e.g., scraping articles from
a news site) or personal task automation via natural language
(e.g., ordering food for delivery). Some kinds of automation
are built into our devices and are readily available (e.g., via
Siri [1] or Alexa [2]), but this set is limited and often will
not support a user’s niche or complex needs. Users can create
their own custom macros, but traditionally this requires writing
program code which involves a signifcant amount of effort for
programmers and is infeasible for non-programmers.

In my PhD work, I have studied and designed tools for
developers and end-users to more intuitively create user in-
terface (UI) automation macros. First, I studied the challenges
and needs of programmers writing web automation scripts [3],
both in a traditional text editor and in richer environments,
including a prototype IDE I built that provides context about
the target UI and feedback on element selection logic. Next, I
designed a programming by demonstration (PBD) environment
that enables end-users to create custom macros for answering
questions on the web without needing to write code [4].

So far my work has focused on helping users create macros
that perform a desired web scraping or automation task on a
single website. However, it makes sense that users might also
want to perform the same kinds of automation on semantically
similar websites. For example, a user might want to create
an automation macro that can order food not only from the
DoorDash website, but also from the GrubHub and Uber Eats
websites. Another user might want to create an automation
macro that scrapes data from staff directories across different
department and university websites. In both cases, the web-
sites’ content will be similar and the macro should perform
the same high-level actions, but the websites’ exact visual
appearance, widgets, and underlying implementation will vary.
Currently users would need to create separate macros from
scratch for each website.

In my future work, I plan to help users create semantic
macros -– macros that are capable of performing a given high-
level semantic task across different websites – without needing
to create new automation logic from scratch for each new
website.

II. DEVELOPER ENVIRONMENTS FOR CREATING MACROS

Traditionally, users need programming experience to create
an automation macro. This involves writing program code that
performs a sequence of interaction events on a UI, mimicking
user interactions – for example, clicking on buttons and typing
into text felds. This requires programmers to understand
the UI they are trying to interact with and the effect their
automation code has on the UI. Historically most libraries for
writing automation macros have been entirely text-based, e.g.,
Selenium [5] and Puppeteer [6], where the programmer must
reason about two related but disconnected environments – the
code in their editor/IDE, and the UI in the web browser. Newer
frameworks like Cypress [7] now allow users to see their
automation logic and target UI in an integrated environment.

In my prior work, I studied developers as they used these
environments to write automation macros [3]. First, I studied
programmers using traditional text editor environments, writ-
ing in Puppeteer. Participants faced a number of challenges,
ranging from identifying unique and robust element selection
logic, to appropriately interacting with complex widgets like
calendars, to understanding the source of automation errors.

Next, I studied programmers using richer UI automation
environments that provide UI context and feedback, namely
Cypress and a prototype IDE I built. We asked participants to
write scripts to scrape data about articles on a blog website
and pets on a pet adoption website. This involved appropriately
navigating across multiple pages on a given website. Partic-
ipants appreciated that these environments offered feedback
on each piece of element selection logic, allowing them to
visually see which elements were selected and confrm if
this matched their intent. However, even with the help of UI
context and feedback, participants still experienced challenges
in constructing element selection logic that appropriately
generalizes. For example, it was challenging to construct a
generalized CSS selector [8] for UI elements that had different
class names across different pages.

III. END-USER ENVIRONMENTS FOR CREATING MACROS

To make creating UI automation macros feasible for
non-programmers, many researchers have explored us-
ing programming-by-demonstration (PBD) approaches. With
PBD [9], [10], an end-user provides a demonstration of how
their desired program should behave in a given scenario, and

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

https://978-1-6654-4214-5/22/$31.00
mailto:rkros@umich.edu

the PBD inference engine then tries to infer a generalized pro-
gram. A key challenge of PBD is correctly inferring the user’s
intent. Sugilite [11]–[13], VASTA [14], and AutoVCI [15]
have used PBD to support end-users in building intelligent
agents (IAs) and macros that perform digital tasks in response
to natural language requests.

In my recent work [4] I have designed a PBD system that
enables end-users to create custom automation macros that
answer formulaic questions about content on a website. Our
key insight is that if a user provides a single demonstration of
how to answer a specifc question, then if that question and the
content on the website follow a structural pattern we can infer
a program for answering variations of that question. An end-
user starts with a concrete question they have about a particular
website, e.g., “How many home runs did Vladimir Guerrero
Jr. have?” on the Major League Baseball (MLB) statistics
website1. Next, the PBD system asks the user to identify how
the question can generalize through parameters and alternative
values. For example, the user might generalize the above
question to “How many <statistic> did <player> have?”.
Finally, the user chooses a specifc set of parameter values
(e.g., <statistic = “hits”> and <player = “Rafael Devers”>)
and demonstrates the correct answer for that question and the
necessary interaction events on the website UI to fnd that
answer. The PBD system then infers a generalized program
that answers questions of the form “How many <statistic> did
<player> have?” by leveraging the user-provided parameters
and values to understand relevant structural patterns in the
website UI’s Document Object Model (DOM) [16].

IV. FUTURE WORK

In my future work, I plan to support users in creating seman-
tic macros -– macros that perform a given high-level semantic
task (e.g., booking a fight) and are capable of doing this across
different websites (e.g., Delta, Southwest, JetBlue). Currently
to create automation that works across multiple websites, a
user would need to create a macro from scratch per website
(e.g., by writing program code, or using a PBD system capable
of the desired inference). However, this seems unnecessarily
tedious, as these websites are semantically similar and the
automation macros should be performing the same high-level
actions. For example, even though each airline website has
its own unique visual appearance, booking a fight involves
the same set of actions across websites: choosing a departure
location, arrival location, and fight date.

To reduce duplicate effort in creating common automation
logic, I aim to help users leverage an existing macro they
have (e.g., for booking a fight on Delta) and adapt it to a
new website (e.g., Southwest), so they do not need to start
from scratch. The high-level approach would be to take the
sequence of programmatic interaction events from the initial
macro and fnd the corresponding sequence of programmatic
interaction events on the new website. I hope to explore how

1https://web.archive.org/web/20220201043626/https://www.mlb.com/stats/

much of this adaptation we can do automatically, versus what
input and assistance we would need from the user.

I expect that the primary challenge in automatically adapting
a macro from one website to another will be in identifying
corresponding UI elements between the websites, e.g., that
the “Depart” feld on the Southwest website corresponds to
the “Origin” feld on the Delta website. There are multiple
reasons this is hard. First, different natural language labels
may be used to describe the same kind of UI element (e.g.,
“Depart” vs “Origin”). We cannot rely on fnding the exact
same natural language strings, and will probably want to use
WordNet [17] or knowledge graphs to look for related words
and phrases. Additionally, corresponding UI elements will not
necessarily have the same widget type. For example, selecting
“Round Trip” versus “One Way” is done through a dropdown
menu on the Delta website, but through radio buttons on the
Southwest website.

Even if we do fnd a candidate UI element on the new
website with the exact same text and widget type as the
original website, this is not necessarily the right match – e.g.,
at purchase time, there could be multiple text felds with the
label “Email” for inputing email addresses (e.g., one for the
buyer, one for sharing your itinerary with family). Rather than
naively identifying corresponding UI elements by just text
and widget type, we may also want to consider their spatial
proximity to other relevant UI elements, e.g., noting that the
email text feld closer to the user’s billing address is likely
the most relevant one. We may consider building knowledge
graphs like in Appinite [12] to represent the semantic and
spatial relationships between UI elements, here using them to
fnd similar semantic and spatial relationships across websites.

We may also want to consider machine learning and
computer vision approaches for identifying corresponding UI
elements. Prior work [18]–[23] has collected large datasets of
mobile user interfaces, interaction traces, and crowd worker
annotations to train machine learning models that can predict
UI properties (e.g., alt text, hierarchical structure) and UI
similarity from screenshots.

So far we have assumed all the necessary UI elements will
appear on the same page and immediately in view. However,
websites are typically dynamic multi-page apps. A desired
UI element might be hidden in a collapsed pane or may
even appear on the next page of the website. Our automated
adaptation algorithm may need to insert or remove interaction
events in order to bring the website into the correct UI
state to fnd desired UI elements. We may want to adopt
approaches from prior work on visual web test repair [24] that
programmatically interact with a website to explore different
UI states and search for desired UI elements.

Finally, our automated approach for adapting macros may
not always work. It will be important to understand the limi-
tations of our approach and to explore low-effort meaningful
ways to ask the end-user for help. For example, we may
want to ask the user to confrm a candidate corresponding UI
element we have low confdence in, or to perform a micro-
demonstration of how to interact with a unique UI element.

https://1https://web.archive.org/web/20220201043626/https://www.mlb.com/stats

REFERENCES

[1] “Siri,” https://www.apple.com/siri/, accessed: 2022-04-06.
[2] “Amazon Alexa Voice AI,” https://developer.amazon.com/en-US/alexa,

accessed: 2022-04-06.
[3] R. Krosnick and S. Oney, “Understanding the Challenges and Needs of

Programmers Writing Web Automation Scripts,” in 2021 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 2021, pp. 1–9.

[4] R. Krosnick and S. Oney, “ParamMacros: Creating UI Automation
Leveraging End-User Natural Language Parameterization,” in 2022
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2022.

[5] “Selenium,” https://www.selenium.dev/, accessed: 2020-09-11.
[6] “Puppeteer,” https://pptr.dev/, accessed: 2020-09-18.
[7] “Cypress,” https://www.cypress.io/, accessed: 2021-03-19.
[8] “CSS selectors,” https://developer.mozilla.org/en-US/docs/Learn/CSS/

Building blocks/Selectors, accessed: 2021-03-19.
[9] A. Cypher and D. C. Halbert, Watch what I do: programming by

demonstration. MIT press, 1993.
[10] H. Lieberman, Your wish is my command: Programming by example.

Morgan Kaufmann, 2001.
[11] T. J.-J. Li, A. Azaria, and B. A. Myers, “SUGILITE: Creating Mul-

timodal Smartphone Automation by Demonstration,” in Proceedings of
the 2017 CHI conference on human factors in computing systems, 2017,
pp. 6038–6049.

[12] T. J.-J. Li, I. Labutov, X. N. Li, X. Zhang, W. Shi, W. Ding, T. M.
Mitchell, and B. A. Myers, “APPINITE: A Multi-Modal Interface for
Specifying Data Descriptions in Programming by Demonstration Using
Natural Language Instructions,” in 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 2018,
pp. 105–114.

[13] T. J.-J. Li, M. Radensky, J. Jia, K. Singarajah, T. M. Mitchell, and
B. A. Myers, “PUMICE: A Multi-Modal Agent that Learns Concepts
and Conditionals from Natural Language and Demonstrations,” in Pro-
ceedings of the 32nd annual ACM symposium on user interface software
and technology, 2019, pp. 577–589.

[14] A. R. Sereshkeh, G. Leung, K. Perumal, C. Phillips, M. Zhang, A. Fazly,
and I. Mohomed, “VASTA: a vision and language-assisted smartphone

task automation system,” in Proceedings of the 25th international
conference on intelligent user interfaces, 2020, pp. 22–32.

[15] L. Pan, C. Yu, J. Li, T. Huang, X. Bi, and Y. Shi, “Automatically
Generating and Improving Voice Command Interface from Operation
Sequences on Smartphones,” in CHI Conference on Human Factors in
Computing Systems, 2022, pp. 1–21.

[16] “Document Object Model (DOM),” https://developer.mozilla.org/en-US/
docs/Web/API/Document Object Model/, accessed: 2021-06-29.

[17] G. A. Miller, “WordNet: a lexical database for English,” Communica-
tions of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[18] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, 2017, pp. 845–
854.

[19] T. J.-J. Li, L. Popowski, T. Mitchell, and B. A. Myers, “Screen2Vec:
Semantic Embedding of GUI Screens and GUI Components,” in Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, 2021, pp. 1–15.

[20] X. Zhang, L. de Greef, A. Swearngin, S. White, K. Murray, L. Yu,
Q. Shan, J. Nichols, J. Wu, C. Fleizach et al., “Screen Recognition:
Creating Accessibility Metadata for Mobile Applications from Pixels,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 2021, pp. 1–15.

[21] J. Wu, X. Zhang, J. Nichols, and J. P. Bigham, “Screen Parsing: Towards
Reverse Engineering of UI Models from Screenshots,” in The 34th
Annual ACM Symposium on User Interface Software and Technology,
2021, pp. 470–483.

[22] S. Feiz, J. Wu, X. Zhang, A. Swearngin, T. Barik, and J. Nichols,
“Understanding Screen Relationships from Screenshots of Smartphone
Applications,” in 27th International Conference on Intelligent User
Interfaces, 2022, pp. 447–458.

[23] J. Chen, A. Swearngin, J. Wu, T. Barik, J. Nichols, and X. Zhang,
“Towards Complete Icon Labeling in Mobile Applications,” in CHI
Conference on Human Factors in Computing Systems, 2022, pp. 1–14.

[24] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 503–514.

https://developer.mozilla.org/en-US
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://www.cypress.io
https://pptr.dev
https://www.selenium.dev
https://developer.amazon.com/en-US/alexa
https://www.apple.com/siri

