VideoDoc: Combining Videos and Lecture Notes
for a Better Learning Experience

by
Rebecca P. Krosnick
S.B., Massachusetts Institute of Technology, 2014
Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the
Massachusetts Institute of Technology
September 2015
© 2015 Rebecca P. Krosnick. All rights reserved.
The author hereby grants to MIT permission to reproduce and to distribute publicly

paper and electronic copies of this thesis document in whole or in part in any
medium now known or hereafter created.

Author:

Department of Electrical Engineering and Computer Science
June 12,2015

Certified by:
Robert C. Miller
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by:

Albert R. Meyer
Professor of Electrical Engineering and Computer Science
Chairman, Masters of Engineering Thesis Committee

VideoDoc: Combining Videos and Lecture Notes
for a Better Learning Experience

by
Rebecca P. Krosnick

Submitted to the Department of Electrical Engineering and Computer Science on
June 12, 2015 in Partial Fulfillment of the Requirements for the Degree of Master of
Engineering in Electrical Engineering and Computer Science

Abstract

Videos provide learners an engaging way to learn material, but they are not easy to
navigate. Electronic textbooks are easy to navigate and help learners review
material they have already seen, but they are not very engaging. VideoDoc combines
videos and textbooks to provide learners with a single resource that engages them
and is easy to navigate. The interface can be played like a video or read like a
textbook. Lecture videos and their corresponding transcripts are broken into
sections by topic, and each section also has screenshots of representative video
frames. A user can navigate the interface by scrolling through the sections or
clicking on section titles in an interactive table of contents. A VideoDoc lecture is
automatically generated from a time-annotated text transcript and a labeling of
talking-head video frames, and an instructor can fine-tune section boundaries and
add section titles using an editing interface. Through a user study we found that
VideoDoc helped users more easily navigate lecture videos, but some users had
trouble learning how to use features of the editing interface.

Thesis Supervisor: Robert C. Miller
Title: Professor of Electrical Engineering and Computer Science

Acknowledgements
[would like to thank:

* My outstanding advisor, Rob Miller, for his guidance, support, and interest. |
appreciate the substantial amount of time he invested in me and this project
even though [was a short-term member of his research group.

* Rob Miller and Elena Agapie for conceiving of the original idea of VideoDoc.

* Michele Pratusevich for working alongside me this year to build the
computer vision parser that provides input to VideoDoc about people and
lecture material. Thank you for your quick responses to my emails
requesting JSON files.

* Juho Kim for offering advice and resources as [wrote my thesis proposal and
designed my user study.

* My roommate and fellow UID member Elena Glassman for thoughtful
conversation about research and life.

* The rest of the User Interface Design group, including Max Goldman, Carrie
Cai, Amy Zhang, Abby Klein, and Lyla Fischer, for playtesting VideoDoc and
offering suggestions and support.

* My friends and family for their support throughout this process. I would
especially like to thank my parents, Lisa and Steven, and my sister, Sarah, for
their endless love and support this year and always.

Table of Contents

1 T 3
ACKNOWIEAZGEMENLS.......ccieicinrsinsnsssnssssssssssssssss s e s s a s n e n e 4
1 INErOAUCHION .t 7
2 Related WOrK ... 12
2.1 Making Videos ENGAZiNgcccourismsmnmsmssmsmsmsmsssassssssssassnss 12
2.2 Navigating VIdEO0Scccuuremrmnmismsnsississsisssssssssssssssssssssssssss s ssssssssssssssssssssssssssssssssssssss 13
2.3 Combining Video and TeXtc.cccuuimmmsmsmsmsmssassssssssasssss 16
2.4 Massive Open Online COUTISESuimmmmmmmsmsmsmsnssasssss 17
2.5 Video DigesStS...ccuminmsmsmsnmssmsssnsssnssassssssssssssssssssssssssssassssnns 21
3 User INterface.....ssssssssssssssssssaas 23
3.1 Student INTerface ... ———————————— 23
3,11 DEfINTTIONS coeueereeeeeereeseeeee st seesets s s ses s e s bbb s bbb 24
3012 LAY OUL ceeereureeeeeuseiseesseesessse e sesesesssesssesss s s s bR R R e 25
3.1.3 Getling AN OVEIVIEWcocececerceresresesesessss s sessessessss s sessessessssssssssssessessessssssssssssessessessssssssssens 26
3,14 WaAtCRING oottt ettt ettt ss e bbb bbb e 27
3,15 NAVIGATNE coeeieerieriereeeeeeeeseessessseessesssesssesssessse s s s bbb bR R bbbt 31
3.1.6 SEATCHINE ceoeeeerieeeeseeeeteee ettt sees et es s see s bbbk R R bbb 32
3.1.7 REVIEWING e cuieiecereereeresresseeees s ses s ssessssss s ses s s s s s e s sa s s nnens 33
3.2 Author INterface ... ————————_————— 34
3.2.1 SeCtiON BOUNAATIES..cuiereeecereeeectseeseesseessessseesse e ssss s ss s ss s ss s st 35
3.2.2 THELES correeeeeereeesseees s sress s s ses e as s e s s RS R R 41
32,3 TEXE SEYIINE ettt ettt bbb s bbb 41
3.2.4 TeXE BTN iuriereereerereeeseeeseeeseesecssesssessseesse s s bbb b s s s bbbt 44
3.2.5 Original Transcript With EditScoienmneneneeeeeesececesesssesssesssesssessssssssssssesssseses 45
4 IMPlementation ... ————————————————————————— 47
4.1 Section JSON File FOrMat........iisicsessssssessessessessessesssssssssssssssssssnssnssnssssssssssssssssnsans 47
4.2 Generating a Section JSON File.....nssssssssssssssssssssssssss s 54
4.3 Displaying the INterface ... ———————————— 57
R D o)7 1 T] 58
4.5 AUthor INtErface ... ————————— 60
4.5.1 Text EAiting and StYHNE ...oocreriereeneereeseieseessssseesseessesssesssesssssssessssssss st ssssssssssesssssssasssees 60
4.5.2 Indicating Text Styling in the TOOoIDar ...t sessees s 61
4.5.3 Section Boundary Changesceneneenseseessssssesssesss s ssssssssssssssssesssssssesssees
4.5.4 Determining the Selected Sentence
4.5.5 Displaying Transcript Additions and Deletions.........cnenmeenneensensesneeeseessessseesens 63
5 EValuation ... 65
5.1 Research QUEeSHiONS ... ————————————— 65
5.2 PartiCipants ... s s 66
5.3 Student INterface ... —————————————— 66
5.3.1 PIOCEAUIE ettt et sse s see s s bbb bbb 66
5.3.2 LECTUTE VIAEOS coouieurieeeneeereereetressectsesssesssessse s s s s s s st s sss s s st 69
5.3.3 Vide0DOC Preparation ... eeeeseiseeseissssssssessssssesssssssesssssssessssssssssssssssssssssssssssssssssns 70
5.3.4 USET TaSKS oeuieuieueeureeseeeeeseessesssesssesssesssesssessse s s s bbb 72
5.3.5 Satisfaction and Usability QUESTIONScoceriureermeenneeneeeseeiectseessess s sssesssseses 73

LIRS T U111 74

5.3.6.1 First Time Watching EXPerienCe. ... ieneereeenseiseessesssesssessssssssesssessssssssesssessssesssassssssaseess 74
5.3.6.2 Navigation
5.3.6.3 Other ODSEIVAtiONS ...iuueeeeeeereesseessesssesssesessesssesssessssssssessssesssass s ss s ss s s s et s saas s basases 78
5.4 AUthor INErface ... s 79
514.1 PIOCEAUIE ettt et ss s see s s bbb bbb 79
5.4.2 LECTUTE VIAEOS ccouteuriereeeeereerettsessecssessesssessse s s s bbbt s sss s s st 80
5.4.3 VideoDOC Preparation ... eeseiseesessssssssssssssssesssssssesssssssesssssssssssssssssssssssssssssssssss 81
5.4.4 Satisfaction and Usability QUESTIONScoeriereenmeenreeneeeseitnectseessessseeseesssssesssssesssesseseses 81
5145 RESUIES ettt ettt et s s s s bbb RS R

5.4.5.1 General EAiting APPIOACHES ..cieieeeeerieeeeesetiseessesssesssesssesssesssesssss e sssessssssssessses s sssassssssasssas
5.4.5.2 Changing Section Boundaries
5.4.5.3 Titles for Merged and Split Sections

5.4.5.4 LECUTE SHAES i s b s bbb b bbb bbb b
5.4.5.5 Representative Frames....
5.4.5.6 Styling Text........
5.4.5.7 Editing Text.......cn....
5.4.5.8 Other ODSEIVAtIONS. ..o b s bbb bR bbb bbb bbb
6 Discussion and FUtUIe WOTKccciiiiimmimmmismsiesissnssssnsess 88
LS S 0T o) 11 88
6.2 Other FUBUIE WOTK..iiiiisirsssssssssssssssssssssssssssssssssssssssnsssssssssssssssssssasssssnssssssssnsssnssssanssnssnses 89
728 O 4 L 1) 1 o) o T 91
8 2 =T =) o =) 4 o 92

1 Introduction

Videos and electronic textbooks are two important resources used in online
education, and each has its advantages and disadvantages. Videos are highly
engaging due to their dynamic nature and the presence of a human voice and often a
human face, whereas textbooks are less engaging due to their static content and lack
of human interaction. On the other hand, textbooks are easier to skim than videos. A
user can see hundreds of words on a page of a textbook at time, allowing them to get
an overview of the content included, whereas in a video a user must scrub through
to see multiple frames of content. Since no audio is played during scrubbing, a user
is also missing out on these important spoken words, diminishing the quality of
their skimming. The quality of skimming is closely related to the quality of
navigation. A user can navigate a textbook relatively easily by using the table of
contents and the index to identify a set of relevant pages and then using the Ctrl-f
keyboard shortcut and skimming to narrow in on the desired content. In order to
navigate a video, the user must scrub until they find the desired content, since they
do not know ahead of time at what time which content occurs. They must rely on
visual cues during scrubbing, and if visual cues are not informative enough, the user
will use trial and error as they pause and play the video to determine if they have

found the desired content.

Users take advantage of both videos and electronic textbooks in a single course [1]
so they have an effective tool for each of their learning needs. They can use video the
first time they learn the material so they are engaged and motivated. They can use

the textbook for subsequent times they review the material because it is easier to

navigate. Users can also use the textbook for the very first time they encounter the
material to get an overview of the material contained. However, if the video and
textbook for a class do not appear on the same webpage, it is difficult for students to
use them at the same time. Additionally, if the video and textbook content do not
cover identical content, it is difficult for users to find the corresponding parts in the
two resources, and it is also difficult for instructors to maintain the two resources.
An example of non-identical content is the video and textbook using different

example problems to explain the same concept.

To address these problems, we propose VideoDoc (Figure 1), an online lecture
interface that combines videos and a textbook layout into one resource in order to
improve online lecture delivery. VideoDoc can be played like a video or read like a

textbook. These are VideoDoc'’s key features:

* Sections: A lecture video is broken up into sections by topic, shown with a
title, the corresponding text transcript, and representative video frames.

* Table of Contents: A list of section titles appears on the left of the page,
serving as a table of contents for the lecture.

* Static Content: A user can quickly skim the text, representative video
frames, and table of contents to get an overview of the material on their first
encounter. They can later read the text to review the material.

* Playback: A user can watch the engaging video to learn the material.

* Navigation: A user can easily navigate the lecture by scrolling through the
page or by clicking on a table of contents title to be taken to the
corresponding section.

* Talking-head vs. Content: VideoDoc extracts talking-head clips from a video
and then displays content and talking-head video streams in parallel,
allowing a user to view relevant content frames while watching the talking-

head. The content video stream is played in the currently selected section’s

content area, and the talking-head stream is always played in the bottom left

corner of the viewport.

Combining videos and text, segmenting videos into sections and streams, showing
representative video frames, and offering an interactive table of contents provides a

user with greater control over the content they view.

then sounds like it isn't better to do sorting before we
do the search. But that seems disappointing. And in
fact, it is because we're not completely taking into

Selection Sort account everything that we want to do.

+ What are the implications of sorting?

« Is it worth sorting before searching? 7 \
« Amortized cost of sorting
« Selection sort overview Amortized cost of sorting
« Selection sort code 171
« Selection sort summary Suppose we want to actually search a list more than Amortizi ng costs
* Loop invariant once. We want to search it say, let's just say k times
+ Proof of comrectness for some value k. Then the question we want to ask * But suppose we want to search a list k times?
« Complexity of selection sort is, is the cost of sorting plus k searches less than the .
cost of just k linear searches? And you can already * Thenis sort(L) + k*log(len(L)) < k*len(Ll?

see it's going to depend on k and it's going to — Depends on k, but one expects that if sort can be

depend on sort, but one expects that if the sort can e & N
ne efficiently, then it i r fir
be done efficiently, then it is going to be better to sort done efficiently, then it is better to sort first

first, and then search. This is what we refer to as rrlortizing cost of sorting over multiple searches
amortizing, or spreading out the cost. We're may make this worthwhile

spreading out the cost of sorting over multiple 4
— How efficiently can we sort?
searches. And doing something may well make this

worthwhile.

So now the question is how efficiently can we

sort? Because if we can do it well, we really may be
better off using binary search. And that takes us
back to where we started, which is to say then we
can reduce a lot of search problems just to a known
solution, which is binary search.

Figure 1: VideoDoc student interface, showing a 6.00.1x edX lecture on selection sort. Here
the lecture is in play mode and currently at the last sentence of the section titled “Amortized
cost of sorting”, as indicated by the sentence’s yellow highlighting and the section’s blue
border.

Creating a VideoDoc lecture requires as input the lecture video, a time-annotated
text transcript, and a labeling of which parts of the video display a talking-head and
which parts do not. With this input we are able to create a basic VideoDoc with
default section boundaries and no section titles. A course instructor can then edit
their VideoDoc using the author interface (Figure 2), tailoring section boundaries,

creating section titles, and adding text styling.

B I U X2 X & | Transcript: - Current text Original transcript | Split section Merge text up Merge text down Merge section up Merge section down

untitled lecture

+ untitled section 1

+ untitied section 2 untitled section 4 An exam |e
« untitled section 3 p

« untitled section 4
« untitled section 5
« untitled section 6
« untitled section 7
« untitled section 8

So there's the structure, let's see if this does the
right thing. Well, here's my code, and let's just walk _
through this. We won't run it on idle, we'll just walk X ',3
through it. Initially, x is bound to 3, ans is bound to 0, ans =0
and jtersLeft is bound to 3. The while loop says, test g
to see if this is equal to 0. Since it is not equal to 0, Ilersl‘eﬁ7= X _

the test is True, and therefore, | take the current whil @rs[_eﬁ 1= Q)F \
value of ans, the current value of x, add them ans = ans :)(. (

together, and rebind that to ans. | then take itersLeft, \ Y,
subtract one from it, and rebind that to itersLeft. So itersLeft = itersLeff==%-
I've decremented itersLeft, and I've incremented e
ans. | go back up, and again, | check. Is that not
equal to 07 It is not equal to 0. Therefore, | take ans
and | take x, | add them together, and | rebind those
to be the new value of ans. | change itersLeft by

1. That's my new value there. And again, | go back
through the loop. That is not equal to 0. Well, the
test is still True, so again, | take ans, | take x, add
them together, create that to be my new binding for
ans, which is 9. | take jtersLeft, subtract 1 from it,
there's my new value of jtersLeft. And again, | go
back to the top of the loop. At this point, 0 being not
equal to 0 is False. Terrible way of saying it, but that
test is no longer True. It's False. In which case, | will
skip to the end of this loop, and print out that x * x, or

(str(x) + "' + str(x) +' ="+ str(ans))

This code squares the value of x by repetitive addition.

Figure 2: VideoDoc author interface, showing a 6.00.1x edX lecture on iteration [2]. Titles
and the text transcript are editable text areas. The toolbar at the top of the screen allows for
styling text, viewing text additions and deletions as compared to the input transcript, and
changing section boundaries by splitting and merging sections.

We evaluated how the VideoDoc student interface affects learners’ watching and
reviewing experiences as well as how usable the interface is. We conducted a
controlled study that compared the VideoDoc student interface with the edX video
viewing interface. Participants watched and then answered questions about short
6.00.1x lectures in each interface. We found that while watching a lecture in
VideoDoc, participants enjoyed being able to preview upcoming lecture material via
the table of contents and scrolling through video content frames. When answering
questions about the lecture material, participants found the overview provided by
the table of contents to be helpful in guiding their search for material and found
clicking on table of contents titles and scrolling through the page to improve

navigation. Participants generally found the interface easy to learn.
We evaluated the usability of the VideoDoc author interface by presenting

participants with a raw, unedited VideoDoc and asking them to edit it as if they were

an instructor for the course. Participants were easily able to add and edit section

10

titles, but about half of the participants had trouble changing section boundaries,
attempting to do so by copying and pasting text rather than by using the merge and
split buttons in the toolbar. After coaching them on the features they had trouble
learning, participants felt that the author interface allowed them to make all desired

edits to the VideoDoc lecture.

The main contributions of this thesis are:

* Aninterface that presents a lecture video in a textbook-like layout to provide
an overview of material, improve navigation, and reduce disruptions caused
by media transitions

* A method for generating a bare-bones lecture provided the lecture video,
time-annotated text transcript, and labeling of talking-head video frames

* An editing interface for modifying section boundaries, adding titles, editing

text, and styling text

11

2 Related Work

In this chapter we present existing lecture delivery interfaces and how users learn
with them. We explore properties that affect viewer engagement and navigation in

videos, and we discuss the effect of combining videos and text.

2.1 Making Videos Engaging

Because videos are more engaging than text, we wish to make the video component
of VideoDoc as engaging as possible. Engagement is defined as learner attention,
motivation, and satisfaction. Previous work has shown three ways to make videos

more engaging: include talking-heads, make videos short, and include tablet-writing.

Kizilcec et al. [3] study how picture-in-picture lecture videos that include a talking-
head in the corner of the screen impact learners’ information retention, visual
attention, and affect as compared to lecture videos without a talking-head. They
found that the presence of the talking-head did not have a significant impact on
information retention, that “on average, learners spent 41% of time looking at the
face when it was present and transitioned between looking at the face and slides
every 3.7 seconds”, and that learners greatly prefer the picture-in-picture lecture

videos. Although there is no evidence that learners learn better with the presence of

12

a talking-head, it appears that learners are more engaged and motivated to learn
when the talking-head is present. In VideoDoc we therefore include a talking-head

when footage exists in order to maximize engagement.

Guo et al. [4] also explore properties of videos that are particularly engaging. They
measure engagement “by how long students are watching each video, and whether
they attempt to answer post-video assessment problems”. They analyze the user’s
level of engagement with respect to video length, the instructor’s speaking rate,
whether the video was a lecture or tutorial recording, and the form of delivery. The
most significant findings are that the most engaging videos for learners are short
videos of less than 6 minutes in length, videos that include talking-heads, and videos
that are Khan-style. As a result, VideoDoc presents lecture videos as a series of
shorter clips, and when there is appropriate footage, we include talking-heads and

Khan-style drawings.

2.2 Navigating Videos

Kim et al. [5] study click data from edX MOOCs to analyze when users drop out of
videos and which parts of videos users interact with the most. They find that users
tend to drop out of videos that are longer, re-watched, or tutorial-style. They also
find that high levels of user interaction often occur at visual transitions. One such
example is users re-watching a video at the point where the slide has just changed
and the instructor is starting to explain a new concept. Since this is a common place
for users to want to start re-watching the video, we would like for it to be easy for
them to navigate to. However, it currently is not easy for them to navigate to, since
they must scrub. VideoDoc eases navigation to the beginning of distinct concepts,
where interaction peaks are likely to occur, by segmenting videos by concept and
displaying all video clips on the screen at the same time. In fact, Kim et al. [6]

suggest “displaying a representative frame for each interaction peak [to] visually

13

summarize a video”, and this is what VideoDoc does, not only to summarize the
video but also to make navigation easier. The representative frame for a video clip is
the slide explained inside of it. As a result, the user is able to see, at the same time,
all the slides contained inside the video and is able to easily skim the slides to

determine which video clip contains their topic of interest.

Another example of high levels of user interaction occurring at a visual transition is
users re-watching the slide that occurred right before the video transitioned to the
talking-head. This may happen when the video transitions to the talking-head before
the user finishes digesting the previous slide. VideoDoc tries to prevent these abrupt
transitions by showing the user two video streams in parallel: a talking-head stream
and a content stream. Instead of a slide disappearing when the video transitions to a
talking-head, the slide remains visible in the content stream while the talking-head
is shown in the talking-head stream, allowing the user to continue digesting the

slide while the talking-head speaks.

Lietal. [7] built and tested a video delivery system that speeds up viewing and
improves navigation. The system speeds up viewing by removing pauses in speech
and by allowing the user to change the playback speed. The system improves
navigation primarily with a table of contents and shot boundary frames. For a
conference presentation or classroom video, the video is segmented into smaller
clips based on slide boundaries, and each clip is represented in a ribbon of frames
by a screenshot of its corresponding slide or talking-head. The user can then easily
scroll through the ribbon to see the contents of the video and click on a particular
frame to play the corresponding clip. Each clip has a corresponding line in the table
of contents, which can also be clicked to play the clip. Li et al. found that users
enjoyed the video delivery system because it saved them time and they felt they had
more “control over what content they watched” as compared to a traditional system.
Users likely felt they had more control because they could easily scan through the
set of slides to get an overview of the content as well as to navigate to a desired

topic. They could also watch the video continuously and anticipate when the next

14

visual transition would occur and what content the next slide would contain.
VideoDoc uses a similar concept of slide screenshots in order to ease navigation and
give users more control, but shows content and talking-heads in two parallel

streams.

Li et al. tested their system on a variety of scenarios including classroom lectures,
conference presentations, sports games, shows, news programs, and travel videos.
For scenarios that did not include slides, clips were segmented based on significant
boundaries as according to the system. Users particularly enjoyed the ribbon of
screenshots in baseball games because they could choose to watch only clips where
their team of choice was up to bat. They also enjoyed the screenshots in news
programs because they could get a quick overview of the stories included and

decide which ones they wanted to watch.

Monserrat et al. [8] built NoteVideo, a system that improves navigation and content-
awareness in tablet-writing videos. In NoteVideo, each distinct blackboard character
in the original video is linked to the corresponding video clip that starts at that
character, and a user can click on a character to start playing the corresponding
video clip. This is easier than scrubbing the video to the location where the letter of
interest first appears, as is necessary in a traditional video interface. Additionally, at
all times all characters from the original video appear on the screen, with future
characters faded. This feature allows users to have a better idea of the overall

content of the video.

Monserrat et al. next built an improved version of the software called NoteVideo+
that adds a hovering text transcript for each character and adds a scrubber. The
transcript for each character allows a user to see more information about a
particular part of the video before playing it. Scrubbing with the scrubber helps a
user to understand the order in which certain characters appear in the video. In the
first version the user could only easily determine which characters appeared before

and after the character currently being written. The user could guess the order of

15

characters based on their location on the screen but when multiple columns of
writing started appearing, this became more difficult. NoteVideo+ is an interesting
solution for improving video navigation and content-awareness, and VideoDoc
should allow similar video formats. However, we cannot rely solely on the
NoteVideo+ video format to improve content delivery because not all lectures will

contain tablet writing.

2.3 Combining Video and Text

Breslow et al. [1] conduct a broad study on edX’s first MOOC, 6.002x. They analyze
how and when students use each MOOC resource, discuss student demographics,
and analyze student success. They found that students overall spend more time
watching the lecture videos than they spend using any other single resource. They
also found that textbook usage peaks around exam time and that during exams
students spend more time using the textbook than any other single resource. These
usage patterns suggest that students use video as their primary source of learning
and that they use textbooks to study for exams and to search for particular content
for answering exam questions. These observations indicate that it is important to
have engaging videos for the first stage of learning and that it is important to have
easily-skimmable text for later stages, like reference. Since videos and textbooks
accommodate different and essential aspects of learning, it is important to include

both of these resources in online course delivery.

An early, but high quality, video-text hybrid for education is eClass, built by Abowd
et al. [9] in the late 1990s. The system provides a page of vertically scrollable slides
and a continuous video of the professor and classroom from lecture. There is also a
timeline of the lecture that includes slide and website references. The user can get
an overview of the content by scrolling through the slides and can navigate to a

particular part of the video by selecting the appropriate slide, similar to navigation

16

in the system created by Li et al. [7]. VideoDoc provides similar functionality to
eClass with the addition of a text transcript of the audio. We believe a transcript will
help the learner review explanations without having to re-watch the video. The
transcript will also allow a learner to read along watching the video if they wish to
do so. Adding in the transcripts requires us to modify the layout, but we keep the

vertically scrollable slides.

In 2012, Miller et al. [10] built an interactive electronic textbook for teaching novice
programmers. The textbook includes traditional text, short videos that cover the
most important concepts, and a code visualizer. The visualizer allows students to
run code written by the instructors, write and run their own code, and see the state
of their variables and the program output at each time step. Miller et al. found that
for students in a blended class using the textbook, the students found classroom
lectures to be the most helpful to learning, followed by reading the textbook and
then using the code visualizer. Students also enjoyed having all of the course
material in one place, which supports the hypothesis that a hybrid video-textbook
system like VideoDoc will improve the learning experience. VideoDoc does not,
however, show short video clips that cover material non-identical to the text
because we believe this is confusing for students and difficult for instructors to
maintain. It is interesting that students did not mention the short videos in the
textbook as one of the more helpful learning tools. Perhaps the fact that students
ranked classroom lectures and textbook reading high indicates that students find
audiovisual lectures given by humans to be helpful when introducing the material

and they find text helpful when reviewing the material.

2.4 Massive Open Online Courses

We must of course also explore MOOCs because they are a large multimedia

educational resource used today. We will see that current MOOCs do not provide the

17

quality of navigation and content-awareness that we would like. The major MOOC
platforms are edX [11], Coursera [12], and Udacity [13]. Their MOOCs have videos as
the centerpiece and they also have PDF course notes, homework assignments, and
discussion forums. In Figures 3, 4, and 5 we show screenshots of the video-viewing

interface on each MOOC platform.

The MOOCs show spoken words to varying degrees. edX MOOCs have a full text
transcript next to the playing video, with the line currently being spoken highlighted
in the transcript. Coursera MOOCs provide a transcript that can be downloaded as a
text file from a different page on the site than where the video is played. A user
could download the transcript to view side by side with the video, but this is not
convenient. Udacity MOOCs provide no transcript at all. In Coursera and Udacity a
user can turn on closed captioning to view spoken words as text on the screen, but

closed captioning is not as informative as a full transcript.

Additionally these MOOCs are not as navigationally friendly as the systems built by
Lietal. [7] and Abowd et al. [9]. Coursera videos are long, most longer than 10
minutes and many longer than 15 minutes. Yet Coursera gives no indication of the
topics within a video besides one very general topic for the entire video, making it
difficult for a user to navigate to a specific concept when re-watching the video.
Udacity has short videos, most less than 5 minutes long, and each video is labeled
with a topic on the ribbon of boxes at the top of the page. However, the user must
hover over a particular box to see the topic for the corresponding video, so the user
still cannot get an overview of all the short videos by just glancing at the screen. edX
has a similar ribbon to Udacity and longer videos than Udacity, so it is also difficult

to navigate and to get an overview of the lesson.
Udacity videos are always the tablet-writing style, but note that edX and Coursera

videos can be a variety of production styles, not just the ones shown in the Figures 3

and 4. Possible production styles include slides, tablet-writing, picture-in-picture,

18

studio whiteboard, green-screen instructor, and traditional lecture hall, among

others.

Course Info Averill 3 i Di i Periodic Table Wiki Progress

Overview

Entrance Survey

S8AV2: LEWIS STRUCTURES

a Week 1
]
T
Count all the valence electrons.
Week 2
So you take all the valence electrons off
of all the atoms and then just
Week 3
count them all up.

— —— S And then what you do, you draw a

Week 4 S = = single bond
TRAWING LEWS STRUCTURE'S N
that's, of course, two electrons.

O canter” the elemen” w it lowest AVEE
Q@ comt* all valunce o= ™) t counts as two electrons
@ Paw « Sisle ko' ol from each surrounding atom to the
center.

Covalent Bonding
Learning Sequence

Periodic Trends and Bonding
Learning Sequence

Molecular Orbitals ,-x'\d‘uf LOL;ME‘)’OU %LibUEL M(f ‘
Learning Sequence electrons from your tally each time

you draw a bond

Additional Study Material

Be: e they consist of two electrons.
Week 4 Problem Set ,
Homework due Mar 20,2015 at @ And then you distribute the remaining
23:59 UTC electrons s until
each atom has an octet.
4 2:54/7:02 d We'll come up with some exceptions to
Week 5 o

Figure 3: An edX Introduction to Solid State Chemistry lecture [14]. To the right of the video
appears an interactive text transcript. Directly above the video appears a ribbon of other
lectures and exercises in the Covalent Bonding learning sequence. At the top of the
screenshot are links to other class resources including the textbook and discussion forum.

19

The Tagging Problem (10:01) Help Center %

Two Types of Constraints

Influential /JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC
Means/NNP Committee/NNP introduced /VBD legislation/NN that/WDT
would /MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN
bailout/NN agency/NN can/MD raise/VB capital /NN ./.

» “Local": e.g., canis more likely to be a modal verb MD
rather than a noun NN

» “Contextual”: e.g., a noun is much more likely than a
verb to follow a determiner

» Sometimes these preferences are in conflict:
The trash can is in the garage

07:42/10:01 [c] of

Prov:HNaxh: ‘o o

Figure 4: A Coursera Natural Language Processing lecture [15]. Coursera lectures do not
provide a text transcript on the same page as the video.

i Lessonl > Symmetric Cryptosystems
5xgmMQ‘€r"c Cf‘jp‘}OSkjg-"em5 Get Help
/ ™ e, Discussion Topic

P[]

y

» o 017/226 o & Yofd []

Previous Next

Instructor Notes Downloadables
No additional notes for this sectior

Videos

Transcripts

Figure 5: An Udacity Applied Cryptography lecture [16]. Above the video appears a ribbon
of other lectures and exercises in Lesson 1. Below the video are downloadable videos and

transcripts for Lesson 1. On the left of the page are links to other class resources including
written materials and the discussion forum.

20

Another popular multimedia educational resource is Khan Academy [17]. Most
lessons include tablet-writing videos, but no talking-head videos, and a transcript
similar to that of edX lectures. Like the MOOC lectures described above, Khan
Academy lessons do not allow for easy navigation or content overview. A screenshot

of the Khan Academy video interface is shown in Figure 6.

Separable differential equations introduction Total energy points
68

Separable equations

Separable differential
equations introduction

uation example

eparable differential

Old separable differential
equations introduction

Old separable differential
equations examy ple

Modeling with differential equations

2:40 DX.
2:43 Now why is this interesting?
2:45 Because we could integrate both sides.

47 And now this also highlights

Figure 6: A Khan Academy Differential Equations lesson [18]. Below the video appears the
interactive text transcript and to the left of the video appears the Separable Equations
lesson sequence.

2.5 Video Digests

Bret Victor presents his lecture “Media for Thinking the Unthinkable” [19] online as
a video digest, a webpage that presents a lecture video as a set of chapters and
sections. Each chapter represents a major topic in the lecture and has a title, a
viewport for playing this part of the video, and several sections. Each section
represents a subtopic and is displayed as a video frame thumbnail and a short

textual summary. A user can click on a chapter’s video viewport to start playing

21

from the beginning of the chapter. A user can click on a section to start playing its

parent chapter from the beginning of the section.

Pavel et al. [20] built a system that creates video digest webpages for lecture videos.
They found that users can more easily browse and skim video digests than
traditional lecture videos. VideoDoc also presents a lecture video broken into
sections by topic with representative video frames but offers the video’s text
transcript instead of section summaries. The video digest section summaries
provide general information, can direct a user to the appropriate section during a
search, and perhaps provide a better content overview than VideoDoc, but the user
may need to re-watch part of the video if they cannot find desired information in the
section summary. With a text transcript in VideoDoc, a user can find any desired

information on the page without needing to re-watch the video.

The system built by Pavel et al. automatically generates video digests but also allows
authors to edit video digests through an authoring interface. The authoring interface
features a WYSIWYG video digest editor that allows authors to change chapter titles,
section summaries, and section thumbnails. Next to the WYSIWYG editor is the
video’s text transcript where users can add and delete chapters and sections and
shift their boundaries by placing and moving chapter and section start point
markers within the text. VideoDoc’s author interface also allows users to modify
section boundaries through a text transcript but uses Split and Merge buttons to
perform the appropriate operation at the user’s selected section and cursor location

rather than using start point markers.

22

3 User Interface

In this chapter we present the student and author interfaces of VideoDoc. We

discuss features and associated design decisions and user tasks.

3.1 Student Interface

Traditional lecture video players have 3 main problems:
e Itis difficult to search for material of interest.
e [Itis difficult to obtain an overview or review the lecture material without
watching the video.
e Ifthe video transitions from visual content to a talking-head during play

mode, the learner cannot continue viewing that visual content.

We created VideoDoc in an attempt to solve these problems. Here we discuss the
features offered by VideoDoc’s student interface, first by describing the general page
layout and then by explaining how users can perform typical video-related tasks

using the interface.

23

then sounds like it isn't better to do sorting before we
do the search. But that seems disappointing. And in
fact, it is because we're not completely taking into

Selection Sort account everything that we want to do.

« What are the implications of sorting?

+ Isit worth sorting before searching? N\
+ Amortized cost of sorting
« Selection sort overview Amortized cost of sorting
« Selection sort code A 171
mortizing costs

* Selection sort summary Suppose we want to actually search a list more than g
* Loop invariant once. We want to search it say, let's just say k times
« Proof of correctness for some value k. Then the question we want to ask * But suppose we want to search a list k times?
« Complexity of selection sort is, is the cost of sorting plus k searches less than the . . - o

cost of just k linear searches? And you can already * Thenis sort(L) + k*log(len(L)) < k Ien(L)

see it's going to depend on k and it's going to — Depends on k, but one expects that if sort can be

depend on sort, but one expects that if the sort can
be done efficiently, then it is going to be better to sort ——
first, and then search. This is what we refer to as —@onizing cost of sorting over multiple searches
amortizing, or spreading out the cost. We're méy make this worthwhile

spreading out the cost of sorting over muitiple
searches. And doing something may well make this
worthwhile.

done efficiently, then it is better to sort first

— How efficiently can we sort?

So now the question is how efficiently can we

sort? Because if we can do it well, we really may be
better off using binary search. And that takes us
back to where we started, which is to say then we
can reduce a lot of search problems just to a known
solution, which is binary search.

Figure 1 (reproduced for convenience): VideoDoc student interface, showing a 6.00.1x edX
lecture on selection sort [2]. Here the lecture is in play mode and currently at the last
sentence of the section titled “Amortized cost of sorting”, as indicated by the sentence’s
yellow highlighting and the section’s blue border.

3.1.1 Definitions

We define a talking-head to be video footage of the instructor’s face or body. We
define content to be video footage that visually shows lecture material. In technical
lectures content is usually lecture slides, tablet notes, or chalkboard notes but can

also be a code console, science demos, or pictures.

We choose to make a distinction between talking-head and content footage because
we want to help the user focus on content while watching a lecture and allow a user
to see screenshots of important content frames while reviewing a lecture. A
screenshot of a talking-head usually does not provide the user any information
about the lecture material. Note that in interview settings where people are the
focus, footage of people may count as content since this content alerts users of the
special guest speaker. In these cases there often are not slides or other concrete

visual material to show anyway.

24

In VideoDoc we show the talking-head and content in different locations in the

interface, as explained below.

3.1.2 Layout

VideoDoc provides in its main pane a vertically scrollable list of sections, each
containing a small topic of the lecture. In the left part of a section is the section title
and below it an interactive text transcript. The text transcript within a section may
also be broken into paragraphs to improve readability. In the right part of the
section is the content area, with representative frames from this part of the video.
For technical lecture videos with slides or handwritten notes, we intend for there to
be just one representative frame per section, since likely one topic is contained
within one slide or small set of notes. This representative frame would most often
be the final frame of the section, showing the completed built-up slide or notes. For
lectures that show pictures or interview people in quick succession, these pictures
and people can be shown together in the same section as thumbnails (Figure 7). A
thumbnail can be a full video frame or a cropped video frame and often is shrunk so
multiple thumbnails fit in the content area. When a section is being played, the

content area shows the playing content video instead of the representative frames.

25

4 '
Introductions
Wolfpack Runners
Andrew: Hi. My name's Andrew Toeman. I'm 72.
« Introductions
+ History of the Wolfpack Jack: I'm Jack Rosenthal. I'm almost 77.
« Keeps us healthy
+ Stretching Evelyn: My name is Evelyn Van Hille Sousana and |
+ Running am 62 years old.
« Injuries
+ Many benefits Frank: My name is Frank Elekes. I'm 68 years old.
Armana: I'm Armand Cymbalista. I'm 81, and I've
been with the Wolfpack since 1979.
\ J
History of the Wolfpack
Andrew: Wolf Burnett formed it about 50 years ago,
and at that time there were very few runners. But
over the years, | could say several thousand people
have gone through the wolf pack. We run regularly »
0:00/3:03 Tuesday night, Thursday night, and Sunday morning ‘
all season, all year, even in this weather outside !

tonight. Oh, it's a beautiful evening. Look at this.

Figure 7: An edX Body101x lecture shown in the VideoDoc student interface. Multiple
representative video frames are shown in each section. The first section shows interviewed
individuals, and these thumbnails are cropped video frames. The second section shows
pictures describing the history of the Wolfpack, and these thumbnails are full video frames.

In the left pane of the page are the lecture title, a table of contents of the section
titles, the talking-head video viewport, and a video control bar with a scrubber to
indicate progress, the time elapsed, and a play/pause button. The left pane is pinned

to the page, with all components visible even when the user scrolls the main pane.

3.1.3 Getting an Overview

A user can get an overview of the lecture video by viewing the table of contents
titles or by scrolling through the page and viewing section text and representative
frames. VideoDoc allows users to get an overview of the lecture material without
having to watch the video or scrub the scrubber to view content, such as slides.
Watching a video takes time and using the scrubber is tedious, so VideoDoc offers

users faster and more pleasant options for obtaining an overview of a lecture video.

26

3.1.4 Watching

A user can play or pause the lecture using functions similar to those in other video
players. They can press the play/pause button in the control bar, press the spacebar,
double click on a transcript sentence, click on a representative frame or the content
video, or click on the talking-head video if it is visible. We'll talk more about clicking

on representative frames and videos later.

When the user plays the lecture, the lecture starts playing from the current playhead
position and progresses downward through the sections automatically. The section
currently playing has a blue border around it, its title in the table of contents is
bolded, and the currently spoken sentence is highlighted yellow in the text
transcript. We emphasize the current section and sentence to help the user focus on
and keep track of their current place in the lecture. In particular, if a user spends
most of their time watching the content video but misses a word and wants to find it
in the text transcript, they are still able to quickly find their place using the yellow
highlighted sentence. The blue border allows a user to scroll around the lecture to
briefly view other sections and then quickly find and return to the currently playing
section. In a traditional video player a user has no way of keeping their spot when
they want to view a different part of the video. They scrub the scrubber and leave no

bookmark behind.
Additionally, when a section is playing, its representative frames disappear from its

content area and the content area now shows the current content at that point in the

lecture (Figure 8). The content video takes up the entire content area.

27

s A
Introductions

Wolfpack Runners
Andrew: Hi. My name's Andrew Toeman. I'm 72.
« Introductions

« History of the Wolfpack
« Keeps us healthy

« Stretching

+ Running

« Injuries

+ Many benefits

Jack: I'm Jack Rosenthal. I'm almost 77.

Evelyn: My name is Evelyn Van Hille Sousana and |
am 62 years old.

Frank: My name is Frank Elekes. I'm 68 years old.

Armand: I'm Armand Cymbalista. I'm 81, and I've
been with the Wolfpack since 1979.

History of the Wolfpack

Andrew: Wolf Burnett formed it about 50 years ago,
and at that time there were very few runners. But
over the years, | could say several thousand people
have gone through the wolf pack. We run regularly
u 0:00 Tuesday night, Thursday night, and Sunday morning
all season, all year, even in this weather outside
tonight. Oh, it's a beautiful evening. Look at this.

Figure 7 (reproduced for convenience): An edX Body101x lecture shown in the VideoDoc
student interface. Multiple representative video frames are shown in each section. The first
section shows interviewed individuals, and these thumbnails are cropped video frames. The
second section shows pictures describing the history of the Wolfpack, and these thumbnails
are full video frames.

s N\
Introductions ‘

Wolfpack Runners
Andrew: Hi. My name's Andrew Toeman. I'm 72.

« Introductions
« History of the Wolfpack Jack: I'm Jack Rosenthal. I'm almost 77.
« Keeps us healthy
« Stretching

« Running

« Injuries

« Many benefits

Evelyn: My name is Evelyn Van Hille Sousana and |
am 62 years old.

Frank: My name is Frank Elekes. I'm 68 years old.

Armand: I'm Armand Cymbalista. I'm 81, and I've
been with the Wolfpack since 1979.

History of the Wolfpack
Andrew: Wolf Burnett formed it about 50 years ago,
and at that time there were very few runners. But

over the years, | could say several thousand people
have gone through the wolf pack. We run regularly

Tuesday night, Thursday night, and Sunday morning
all season, all year, even in this weather outside
tonight. Oh, it's a beautiful evening. Look at this.

Figure 8: The VideoDoc in Figure 7 in play mode. The representative frames of the current
section disappear and the video is played in the section’s content area. Here Frank is being
interviewed as is indicated by the yellow-highlighted sentence and the footage in the
content area.

28

We considered not hiding the current section’s representative frames during play
mode. The video would play through one representative frame viewport at a time,
jumping through the frames to play through the relevant frame viewport. For
example, when Frank is being interviewed in the Body101x lecture shown in
Figures 7 and 8, rather than footage of Frank occupying the entire content area as in
Figure 8, the footage would occupy only Frank’s representative frame in Figure 7,
and the video would jump to the next representative frame when the next person is
being interviewed. However, we decided against playing through representative
frames for a few reasons. Currently we allow cropped rectangular thumbnails of any
aspect ratio and we also allow multiple thumbnails per a given video frame (e.g.,
there are 2 pictures in one video frame). We thought playing the video through an
odd shaped thumbnail would be strange, and if there were multiple thumbnails it
might be strange to choose one thumbnail over another. In addition to odd
thumbnail shapes perhaps the thumbnails may be too small to play the video and
adequately show detail. Another reason we decided not to play through one
representative frame and still show the others is the concern that seeing the other

representative frames could be distracting to the viewer.

If the current playhead is at the talking-head, the content area displays the most
recent video content. This behavior allows users to continue viewing content such
as slides or handwritten notes after the video transitions from content to the
talking-head. After this kind of transition often the instructor is discussing the
content just shown, so it is useful for the user to be able to view the content the
instructor is discussing. Also, the user may not have fully digested the content, so
continuing to display the content while the talking-head speaks gives the user more
time to understand the material. In a traditional video player the user would no
longer be able to view the content after the transition and would need to scrub
backward to see it. Scrubbing disrupts the watching experience and still does not
allow the user to view the content while the talking-head is later discussing it.
Allowing the user to view relevant content while the talking-head is shown is the

reason we separate talking-head and content video. Note that when a new section

29

begins, if the section begins with a talking-head then the content area will show the
last content frame of the previous section. This is the case even if the talking-head is
no longer discussing this content because it allows the viewer to continue to digest

the most recent content until the video transitions to new content.

Note that during a transition from the talking-head to content the talking-head video
in the bottom-left corner of the screen fades away over one second and then the
content video starts playing in the content area. We fade away the talking-head

rather than abruptly removing it to prepare the user for the transition.

When a section finishes, it loses focus. The blue border and bolded title move to the
next section and the page automatically scrolls downward to put the new section in
view. In addition to losing its selection, the old section’s content area now displays
its representative frames, and the new section’s content area shows the content at

the current playhead.

We include the ability to click on a video or representative frame to play or pause
the lecture in order to mimic the similar behavior of clicking on the video viewport
to play or pause in a typical video player. In VideoDoc, when the video is currently
playing and the talking-head is speaking, if the user clicks on the talking-head the
lecture will be paused and a gray overlay with a play button icon will appear over
the talking-head. Whenever the lecture is paused and the talking-head is visible at
the current playhead, the talking-head will have this play button overlay. The user
can click on the overlay to play the video. When a user clicks on a representative
frame, the lecture will begin playing from the first point in the containing section
that is content and is not the talking-head. We chose to begin playing from the first
content time rather than the beginning of the section because we thought users may
be confused if upon clicking on the representative frame the content area was not
playing and instead the talking-head was playing. Note that clicking on
representative frames has not yet been fully explored for when there are multiple

representative frames per section. Currently, clicking on any representative frame

30

will start playing the section from the first instance of content. In the future perhaps
we may want clicking on a representative frame to start playing the lecture from the
time where the screenshot was taken. Also note that when the lecture is playing and
the user clicks on a representative frame in a different section, the current section
will stop playing, its representative frames will be restored, and then the new
section will start playing. When a section has already been playing, clicking on the
content video will pause the video, but no overlay will appear over the video. We
chose not to put an overlay over the content video since the content area may
contain useful information for a user, such as equations, definitions, or diagrams.
When a user pauses the video, it is likely because they want more time to
understand the material, possibly by looking at the current content frame. Adding

an overlay would make it harder for a user to see the content.

3.1.5 Navigating

A user can navigate the VideoDoc interface by scrolling through the page or clicking
on a table of contents section title to automatically be scrolled to that section.
Clicking on a table of contents section title also selects that section, giving it the blue
border and bolding the table of contents title. Note, however, that only the section is
selected and not a particular sentence. The section’s content area continues to show
the representative frames and no sentence is highlighted yellow. We chose this
section representation rather than immediately selecting the section’s first sentence
and showing the corresponding content frame because it allows users to get an
overview of a section upon selecting it. If we instead selected the first sentence upon
clicking a table of contents title, the content area would show the beginning state of
the section’s content, perhaps a blank page or slide, which would not be
representative of the section’s material. Even though the first sentence is not
highlighted, the playhead is moved to the beginning of the section, so when the

lecture is played it will play from the beginning of the section. Besides clicking on a

31

table of contents title, another way to select a section is to click on any whitespace in

the section.

A user can also move the video playhead by clicking on a sentence in the text
transcript. Clicking on a sentence highlights it yellow, moves the video playhead to
the beginning of the sentence, and shows the appropriate talking-head and content
frames. Hovering over a sentence in the text transcript shows a dotted gray border
around the sentence to help users discover the ability to click on sentences and to
help users see the start and end points of the sentence. The mouse cursor also

changes to a pointing finger as another affordance for clicking on sentences.

A user can also use the scrubber to move the playhead and update the selected
section and sentence, but this is a less likely choice since it is often hard to predict

which direction and how far to scrub on the scrubber to find the desired material.

3.1.6 Searching

With these options for navigating a lecture, it should be easier for a user to search
for desired material in VideoDoc than in many other lecture video players. For many
searches, the table of contents titles should be able to help a user determine which
part of a lecture contains the desired material and then quickly navigate to that part
by clicking on the appropriate title. If a user is searching for a particular diagram or
equation, they can scroll through the VideoDoc page and find the diagram or
equation in a representative frame. Users can also use the Ctrl-f “find” keyboard

shortcut to search for spoken words.

In other video players, a user needs to scrub through the video to find a frame
containing the desired diagram or equation. The user could also search through an
interactive text transcript, if one is available, but this could be challenging if the

transcript is not well formatted and not broken into sections like in VideoDoc. The

32

worst case is if the user is searching for spoken words and no interactive transcript
is available. The user would need to scrub, using trial and error, and stop
occasionally to listen to for the desired words. This kind of scrubbing truly would be
tedious. VideoDoc's table of contents, text transcript, and representative frames

should ease searching for desired material in a lecture.

3.1.7 Reviewing

After a user locates their desired material in VideoDoc, they can review that
material without needing to watch video. They can read the text transcript and view
representative frames. In a traditional video player, a user who wants to review
material likely needs to watch at least part of the video. They could scrub through
the video to view slides or notes, but they would need to watch the video if they
want to know lecturer’s spoken words. Watching a video takes time. If a text
transcript is provided then the user might not need to watch the video, but

scrubbing to view slides or notes is still inconvenient.

The way the text transcript is broken into sections and presented as paragraphs in
VideoDoc should also help in reading the transcript. The presentation is similar to
that of a textbook. The text transcript in edX lecture videos, on the other hand, is
displayed as a list of phrases of variable length. One phrase may take one and a half
lines, and then the next phrase would begin at the start of the next line. Reading text
in this format may be challenging since it requires the reader’s eyes to shift around

more.

33

3.2 Author Interface

The VideoDoc author interface allows course instructors to edit existing VideoDocs.
An editing interface for VideoDoc is necessary because the automatic VideoDoc
generation does not include section titles and likely the sectioning is not ideal. The
VideoDoc author interface allows a course instructor to modify section boundaries,
add section titles, style text, and edit the text transcript. The author interface is the
same as the student interface except that the titles and the text transcript are
editable textboxes and there is an editing toolbar at the top of the screen. A user can
play and navigate the VideoDoc author interface as they would the student interface.
Note that a user can make edits to the VideoDoc while playing the lecture. Also note
that all edits are saved immediately. The user does not need to press a “save” button.

Here we discuss the editing operations in more detail.

B I U X, X2 & | Transcript: | Current text | Original transcript | Split section Merge text up Merge text down Merge section up Merge section down

untitled lecture

« untitled section 1
- untitled section 2 untitled section 4 An exam Ie
« untitied section 3 p

* untitled section 4 So there's the structure, let's see if this does the
right thing. Well, here's my code, and let's just walk
through this. We won't run it on idle, we'll just walk x=3
through it. Initially, x is bound to 3, ans is bound to 0, ans =0

« untitled section 5
« untitled section 6
« untitled section 7

« untitled section 8

to see if this is equal to 0. Since it is not equal to 0, itersLeft = x__

the test is True, and therefore, | take the current while @rsl_eﬁ I= .4,
value of ans, the current value of x, add them e v (
together, and rebind that to ans. | then take itersLeft, \
subtract one from it, and rebind that to tersLeft. So itersLeft = itersLel

------------ r t(str(x) + ™' + str(x) +' =" + str(ans))

This code squares the value of x by repetitive addition.

1. That's my new value there. And again, | go back
through the loop. That is not equal to 0. Well, the

there's my new value of jtersLeft. And again, | go
back to the top of the loop. At this point, 0 being not
equal to 0 is False. Terrible way of saying it, but that
test is no longer True. It's False. In which case, | will
skip to the end of this loop, and print out that x * x, or

Figure 2 (reproduced for convenience): VideoDoc author interface, showing a 6.00.1x edX
lecture on iteration. Titles and the text transcript are editable text areas. The toolbar at the
top of the screen allows for styling text, viewing text additions and deletions as compared to
the input transcript, and changing section boundaries by splitting and merging sections.

34

3.2.1 Section Boundaries

If an instructor is not satisfied with the default sections produced for a VideoDoc,

they can use the split and merge buttons in the editing toolbar (Figure 9).

Split section Merge text up Merge text down Merge section up Merge section down

Figure 9: Buttons for changing section boundaries in the editing toolbar

Some operations require the user to put their cursor down in the text transcript to
indicate a new boundary point or to range select the text to be moved. Below we

describe how each button functions.

* Split Section: The sentences before the cursor or range selection remain in
the current section, and the sentences after the cursor or in the range
selection move to a new section created immediately below the current
section. The current section keeps its title and the new section is named

“untitled”.

* Merge Text Up: The sentences before the cursor or in the range selection
move to the end of the previous section. Both sections keep their current

titles.

* Merge Text Down: The sentences after the cursor or in the range selection
move down to the beginning of the next section. Both sections keep their

current titles.

35

e Merge Section Up: All sentences in the current section move up to the end of
the previous section, and the current section is deleted. The merged section’s
new title is a concatenation of the two sections’ titles: “[top section

title]/[bottom section title]”.

* Merge Section Down: All sentences in the current section move down to the
beginning of the next section, and the current section is deleted. The merged
section’s new title is a concatenation of the two sections’ titles: “[top section

title]/[bottom section title]”.

Split Section, Merge Text Up, and Merge Text Down require that the user make a
selection in the transcript textbox. Otherwise the buttons are disabled and cannot be
clicked. The user can either place a single cursor to indicate the new boundary point
or range select the sentences to be moved. The range selection made should make
sense in the context of the button pressed, however. For example, for Merge Text
Up, the range selection should start from the beginning of the section’s text. [t would
not make sense for the range selection to select only the last two sentences of the
section, for instance. If a user were to select the last two sentences of the section,
VideoDoc would handle this as if all of the section’s text were range selected, moving
all of the text up to the previous section. Note that when a user places their cursor in
the middle of a sentence, the entire sentence is included in the set of sentences

moved.

If all of the text in a section is determined to be moved for Merge Text Up or Merge
Text Down, the operation is considered to be a degenerate case and is handled as a
Merge Section Up or Merge Section Down, respectively. The two sections are just

merged and no section is left behind.

36

To use the Merge Section Up and Merge Section Down buttons, the user does not
need to make a text selection. The operations are performed with regard to the

currently selected section (i.e., the section with a blue border around it).

When merges and splits occur, a section’s representative frame is updated to be the
final video frame of the section. Note that the interface currently does not support
merging or splitting user-defined thumbnails. A user needs to manually edit a JSON

file to merge or split thumbnails.

To help users learn how the merge and split buttons work, upon hovering over a
button a tooltip explanation is shown and the text that would be moved upon
clicking the button is range selected (Figure 10a). The range selection may be most
helpful when a user places only a single cursor in the textbox or if they incorrectly
range select text, for example selecting the last two sentences of a section for Merge
Text Up. If the user correctly range selects sentences then the text to be moved is
already range selected before hovering over the merge and split buttons. We also
use range selection after Merge Text Up or Merge Text Down is pressed to show the
user which sentences were moved (Figure 10b). This is another way of teaching

users how these buttons work and also reminds them of which text they just moved.

After Merge Section Up or Merge Section Down is pressed we range select the
merged title to allow the user to quickly change the title (Figure 11b), since likely
the merged title is not the final title they want for the section. Range selecting the
title also teaches the user that the two sections’ titles have been merged and
suggests that they should change the title. Similarly, the title is range selected after

Split Section is pressed.

37

u X x &

untitled lecture

untitled section 1
untitled section 2
untitled section 3
untitled section 4
untitled section 5
untitled section 6
untitled section 7
untitled section 8

| Transcript:

Current text | Original transcript |

test is no longer True. It's False. In which case, | will

skip to the end of this loop, and print out that x * x, or

if you like, 3 * 3, is equal to 9.

Split section

Merge text up Merge text down Merge section up Merge section down

Move text to previous section

untitled section 5

Cool. A little slow, but it does what | want. Notice |
have reused this code an arbitrary number

times. And in fact, if | were to change x to be
something else, | will reuse that piece of code a
different number of times. There's my iteration that |
really want. You can also see some properties of an
iterative loop. First of all, we need to set an iteration
variable outside of the loop. In this case, it's x and
itersLeft. Actually, the one | really care about here is
i | also need to test that variable to
determine when I'm done. There's the use of
itersLeft inside of the test. Now, it could be a simple
test, it could be a more compound test, but that's
basically what | need to test. And finally, | need to be
changing that variable inside of the loop, right

there. If | didn't, then that test value would never
change, which means | would never stop the

loop. But there's a property | need. When | set up an
iterative loop, | need to say what's the variable I'm
setting outside, how am | testing it, and am | making
sure to change it somehow inside of the loop in order
to ensure that | get the pieces that | want.

Stepping through this code

x=4)

ans =0

itersLeft = x

while (itersLeft 1= 0)
ﬂS-= NS + X
ersLeft = itersLeft —
f(x) +' ="+ str(ans))

0

Q9 [>)

Figure 10a: The cursor was placed immediately after the sentence “There’s my iteration that
I really want” in section 5. Upon hovering over the Merge Text Up button in the toolbar, the
text that would be moved by clicking this button is shown range selected.

u

X, X2 &

untitled lecture

untitied section 1
untitied section 2
untitled section 3
untitled section 4
untitied section 5
untitled section 6
untitied section 7
untitled section 8

| Transcript: Current text | Original transcript |

together, and rebind that to ans. | then take itersLeft
subtract one from it, and rebind that to iter
and I've incremented

1. That's my new value there. And again, | go back
through the loop. That is not equal to 0. Well, the

there's my new value of it . And again, | go
back to the top of the loop. At this point, 0 being not
equal to 0 is False. Terrible way of saying it, but that
test is no longer True. It's False. In which case, | will
skip to the end of this loop, and print out that x * x, or
if you like, 3 * 3, is equal to 9.

Cool. A little slow, but it does what | want. Notice |
have reused this code an arbitrary number

times. And in fact, if | were to change x to be
something else, | will reuse that piece of code a
different number of times. There's my iteration that |
really want.

Split section

Merge text up Merge text down Merge section up Merge section down

- = - -

' + str(ans)) [%

untitled section 5

Iteration

Figure 10b: After clicking Merge Text Up in Figure 10a, the range selected text in section 5 is
moved up to the end of the previous section and remains range selected to indicate which

text moved.

38

Bilrzfluflxlx|lé

untitled lecture

« untitied section 1
« untitled section 2
« untitled section 3
« untitled section 4
+ untitled section 5
untitied section 6
« untitied section 7
untitled section 8

| Transcript:

Current text = Original transcript | Split section

untitled section 7

On simple branching structures, we've already said
that programs like that are constant time, that is, we
execute each instruction at most, once. With looping
structures, notice that things are different. Now, the
program is going to take an amount of time that
depends on values of variables as well as the amount
of code or the number of instructions inside the loop,
because it's going to depend how many times we
walk through the loop, and that depends on the
variable.

Merge text up Merge text down Merge section up Merge section down

Iterative code

* Branching structures (conditionals) let us jump
to different pieces of code based on a test
— Programs are constant time

* Looping structures (e.g., while) let us repeat
pieces of code until a condition is satisfied

— Programs now take time that depends on values
of variables, as well as length of program

untitled section 8

Nonetheless, these loops are going to be really
valuable, and we're going to turn to that next.

Iterative code

* Branching structures (conditionals) let us jump
to different pieces of code based on a test

Figure 11a: Sections 7 and 8, where section 8 is currently selected.

BlliJullxxl¢

untitled lecture

« untitled section 1
« untitled section 2
« untitled section 3
« untitled section 4
« untitled section 5
« untitled section 6
« untitled section 7/untitled section
8

| Transcript:

Current text | Original transcript | Split section

Merge text up
pieces of code until a condition is satisfied

— Programs now take time that depends on values
of variables, as well as length of program

Merge text down Merge section up Merge section down

N\
untlt.led section 7/untitled Iterative code
section 8
On simple branching structures, we've already said H H H
that programs like that are constant time, that is, we * BranCh|ng StrUCtures (Condltlonals) Iet us Jump
execute each instruction at most, once. With looping to dlffel'ent pieces of code based on a test
structures, notice that things are different. Now, the
program is going to take an amount of time that - PrOgramS are constant time
depends on values of variables as well as the amount
of code or the number of instructions inside the loop, H H
e e e o o mam o * Looping structures (e.g., while) let us repeat
il through the loop, and tat depends on the pieces of code until a condition is satisfied

) — Programs now take time that depends on values
Nonetheless, these loops are going to be really R
valuable, and we're going to turn to that next. of Varlables, as well as length of program

V

Figure 11b: After clicking Merge Section Up in Figure 11a, sections 7 and 8 are merged, and
the merged title is range selected to allow quick editing.

39

As mentioned earlier, the user can edit a VideoDoc while playing it, and this includes

changing section boundaries. After the user clicks one of the merge or split buttons,

the lecture pauses for only a split second while the sections are modified and then

begins playing again.

We considered other options for changing section boundaries besides the merge

and split buttons in the editing toolbar. We list these options and reasons for not

pursuing them:

Put the Merge Section Up and Merge Section Down buttons at the top and
bottom of each section, respectively. We could not think of a way to similarly
place the Split Section, Merge Text Up, and Merge Text Down buttons inline
with the sections that made sense, so we decided to put all buttons in the

toolbar.

Remove the Merge Section Up and Merge Section Down buttons since they are
degenerate cases of Merge Text Up and Merge Text Down, respectively, and can
be executed by selecting all text and pressing a Merge Text button. We decided
to still include Merge Section Up and Merge Section Down in case merging
full sections was a common use case. It may become tedious to select all of a

section’s text to use the Merge Text buttons.

Change section boundaries by cutting sentences from one section and pasting
them into the adjacent section rather than using merge and split buttons. We
decided to use buttons rather than copying and pasting text because we
thought using buttons would be less work for the user. Also, we were
concerned a user would cut text from one section and then forget to paste it
or forget the correct place to paste it. However, as we note in the Evaluation
chapter of this thesis, a few participants in the user study actually did try

copying and pasting text to change section boundaries.

40

3.2.2 Titles

A user can easily edit the lecture title or a section title by clicking in the appropriate
title textbox and typing the new title. After a section title is typed and the textbox
loses focus the corresponding title in the table of contents is updated. The user can
make the textbox lose focus by pressing the Enter or Tab button on the keyboard or
clicking elsewhere on the screen. By not updating the table of contents title until the
textbox loses focus, we allow the user to see the old section title while typing a new

title, providing some element of safety in case they wish to revert to the old title.

3.2.3 Text Styling

A user can bold, italicize, and underline text as they would in a typical text editor.
They can range select text and then press the appropriate button in the toolbar
(Figure 12). Alternatively they can use native keyboard shortcuts, such as Ctrl-b for
bold. Also as in typical text editors a user can put down a single cursor, select
desired styles, and then start typing new text to automatically be typed with the
selected styles. A user may want to add bold, italics, or underline to emphasize
certain text in the transcript, such as keywords or key points, or to differentiate

math symbols or programming variables.

B I U X3 X? &

Figure 12: Styling buttons in the editing toolbar

A user can make text subscript or superscript by pressing the appropriate button in
the toolbar. This feature would be helpful when fixing math formatting in the

transcript.

41

A user can add hyperlinks to text by range selecting the text and clicking the link
button in the toolbar. This brings up a modal (Figure 13) that reminds the user of
which text they selected and allows them to enter a URL. Once the user clicks the
Save Changes button the hyperlink will appear on the selected text. The user can
then click on the hyperlink to view a popover with a few options (Figure 14).
Clicking on the Access Link will open the destination in a new tab. Clicking on Edit
Link will bring up the hyperlink modal again, and clicking on Remove Link will
immediately remove the hyperlink. Note that clicking on the text hyperlink in the
VideoDoc student interface shows no popover and immediately opens the
destination. An instructor may want to use hyperlinks in their lecture to direct
students to the definition of a word or to direct students to other relevant course

material.

Insert hyperlink

Selected text: iteration
Hyperlink URL:

http://en.wikipedia.org/wiki/Iteration

Figure 13: Modal for inserting a hyperlink

42

7

untitled section 2

That notion of iteration is going to be incredibly

sembliimbnlo memad casm) PRSIV A N L PN T . qome

Edit hyperlink The basic
. lat we have

Access link: it to an

http://en.wikipedia.org/wiki/lteration
Edit link | Remove link

gre, we start
return either
'True or False. Ifit's True, we're going to go down

and execute some set of instructions, the body of the

Figure 14: Clicking on the hyperlinked text reveals a popover with options for accessing,
editing, and removing the hyperlink.

Also as in most text editors, the toolbar styling buttons indicate whether the current
text selection has a given style. The bold, italics, underline, subscript, and
superscript buttons appear pressed in when the current text selection has those
styles (Figure 15). For most text selections all the text has the same styling, so the
buttons to be pressed in is obvious. However, when there is only a single cursor or
when different parts of the selected text have different styles, it is not obvious which
buttons should be pressed in. It also is not obvious in other text editors, as there
appears to be no standard across text editors for choosing which buttons are
pressed in. In VideoDoc whether a given text selection has a given style is dictated
by whether the DOM interprets the text selection as having that style, and we
explain this more in the Implementation chapter. Practically, if the selection is only a
single cursor, then the character before the cursor determines the style, and if the
selection is a range selection, then the first character of the selection determines the
style. Showing pressed in and non-pressed in buttons helps users realize whether
pressing the button would toggle the style on or off. Pressing a non-pressed in
button adds the style to the entire selection and pressing a pressed in button

removes the style from the entire selection.

43

That notion of iteration is going to be incredibly
valuable, and we're going to talk about some
constructs to help us make that happen. The basic

Figure 15a: Bold text is selected.

B I U X X @

Figure 15b: The text selection in Figure 15a causes the bold button in the editing toolbar to
be pressed in.

3.2.4 Text Editing

The VideoDoc author interface also allows for editing the raw text of the transcript.
Likely an instructor will not want to make many changes to the raw text since the
text displayed should follow along with the instructor’s spoken words. However, an
instructor may want to fix transcript typos, remove filler words, correct equation
typing (e.g., change “5 squared” to 52), or add parentheticals. The instructor can edit
text as they would in a typical text editor. To navigate to different lines and
characters, the user can either click with their mouse or use the arrow keys of the
keyboard. The yellow sentence highlighting will follow the cursor. Note that the
space between any two sentences is always white, not yellow. The space is not
considered part of either sentence. Putting the cursor immediately after a sentence’s
punctuation and before the white space will make that sentence yellow. Moving the
cursor one character to the right to be after the white space and immediately before
the next sentence will make that next sentence yellow. When a user types, the text

will be added to the sentence that is currently yellow.

44

3.2.5 Original Transcript With Edits

An instructor can view the specific edits they have made to the original text
transcript by clicking the Original Transcript button in the toolbar (Figure 16). The
original transcript will be shown with added text highlighted green and deleted text
highlighted red with a strikethrough (Figure 17).

Transcript:| Current text | Original transcript

Figure 16: The author interface initially shows the current state of the text, but the user can
click on the Original Transcript button to show the original transcript with edits
highlighted.

do a by just successively adding x to itself x times,
which is of course what x -sguared actually does. |
add x copies together. Notice what we've got. We're
going to set up some value of x. I'm goingtodo a

Figure 17: Text additions and deletions as compared to the original transcript. Additions are
shown in green and deletions are shown in red with a strikethrough.

The transcript is still shown in textboxes, so a user can continue making edits in this
Original Transcript mode. Naturally, new text added is highlighted green and
original transcript text deleted is highlighted red. A user can undo changes to the
original transcript by “deleting” the appropriate text. Pressing backspace or forward
delete on a green text selection permanently removes that text from the transcript
since it was not part of the original transcript. Pressing backspace or forward delete
on a red text selection removes the red highlighting and adds that text back to the

current transcript since the text was part of the original transcript. Undo-ing text

45

added to the original transcript by deleting the green text seems highly intuitive, but
there does not seem to be a highly intuitive way of undo-ing text removed from the
original transcript. We considered right-clicking on the red text to select Undo
Removal from a local floating menu but were concerned this would be difficult to
discover. We considered showing an Undo Removal popover option upon hovering
over red text but thought users might find it annoying. We also considered having an
Undo Removal button in the toolbar that only is enabled when the current text
selection is red text. However, after informally testing this Undo Removal toolbar
button with a couple users we found that they did not discover this button. Instead
they pressed backspace in order to remove the red highlighting and add the text
back to the current transcript. Therefore ultimately we chose to offer only

backspacing or forward deleting red text.

Note that in the Original Transcript mode users can still see styling they added in

the Current Text mode and they can also add new styling.

Also note that the Original Transcript mode only shows text changes and not
changes in a section’s text resulting from a change in section boundaries. We do not
need to show changes in section boundaries compared to the original non-edited
VideoDoc because the instructor did not choose those original boundaries and they
have no significance to the instructor. It is important to show text changes because

the original text is the lecturer’s spoken words.

Clicking the Current Text button will bring the user back to the current text state

with new changes included.

46

4 Implementation

The VideoDoc interface is displayed in an HTML5 web document and is run with a
Node, Handlebars, and JSON file infrastructure. First a default section JSON file that
represents the contents of each section is created from a time-annotated text
transcript and a labeling of talking-head and content parts of the lecture video. This
default section JSON file, or one that has already been edited, can then be fed in to
either the student or author interface where appropriate data is displayed via
Handlebars templates. User events are handled with JavaScript event handlers,
videos are played using YouTube video players [21], and playback transitions, such
as moving to the next sentence or section, are monitored with JavaScript timers. In
the author interface edits are sent to the Node backend where they are written to
the section JSON file and then relevant data is sent back to the frontend for
appropriate updates to be made. Below we describe each of these aspects of the

implementation in more detail.

4.1 Section JSON File Format

The section JSON file contains the lecture’s title, total length, a list of section objects,
and a list of sentence objects. An example section JSON file is shown in Figure 18.
Note that for the entire section JSON file times are expressed in milliseconds rather

than seconds.

47

"lecture title": "Selection Sort",
"total length": 469623,
"sections": [..., {
"id": 33,
"thumbnails": [],
"first frame time": 174440,
"last frame time": 250920,
"end time": 250920,
"name": " Selection sort code"
"chunks": [{
"index": 29,
"first frame time": 174440,
"last frame time": 243995,
"end time": 244015,

"video id": "OlIs56hud4EU",
"person": false,
"content": true,

"prevContentId": 9

"index": 11,

"first frame time": 244015,
"last frame time": 250920,
"end time": 250920,

"video id": "OlIs56hud4EU",
"person": true,
"content": false,

"prevContentId": 29
1y

"paragraphs": [{
"id": 306,
"paragraph": true,
"items": [{
"index": 37,

"start time": 174440,
"end time": 175840,

"current text": [{
"content": "So you can see that here.
"bold": false,
"italics": false,
"underline": false,
"subscript": false,
"superscript": false,

"hyperlink": null
boowo]

Yoo]
I
"sentences": [..., {
"index": 37,
"start time": 174440,
"end time": 175840,
"original text": "So you can see that here."

boovnl]

Figure 18: Excerpt of a section JSON file

48

Each section object contains the section’s title, text with styling and formatting
information, video talking-head and content chunks, and thumbnail information.
Each of these attributes is explained in more detail below. Note that each section
contains a discrete number of sentences. A sentence cannot straddle adjacent

sections. Section start and end times are strictly defined by the sentences it contains.

Text is organized by paragraph and stored in the paragraphs list. Each object in
the paragraphs listis either a line break ("paragraph": false)oratrue
paragraph ("paragraph": true). Each paragraph object contains a list of
sentences in the items attribute. Each sentence has a start time, an end time, and a
list of sentence pieces in the current text attribute. Each sentence piece
contains its text and whether the text is bolded, italicized, underlined, subscript,
superscript, or contains a hyperlink. Generally current text contains one
sentence piece if the entire sentence has the same styling and contains multiple
sentence pieces to indicate different styling through the sentence. For example, a
sentence with one word in the middle bolded and the rest not styled would contain
3 sentence pieces, as shown in Figure 19. All style attributes have either t rue or

false values except for hyperlink whichisnull or the URL string.

49

right thing? And | can do that by identifying what
we'll call a loop invariant, something we've seen
before. And the loop invariant basically says here's a

Figure 19a: Only “loop invariant” is bolded and the rest of its containing sentence is not
styled.

"current text": [{
"content": "And I can do that by identifying what we'll call a ",
"bold": false,
"italics": false,
"underline": false,
"subscript": false,
"superscript": false,

"hyperlink": null

boo A
"content": "loop invariant",
"bold": true,
"italics": false,
"underline": false,
"subscript": false,
"superscript": false,
"hyperlink": null

boo A
"content": ", something we’ve seen before.",
"bold": false,
"italics": false,
"underline": false,
"subscript": false,
"superscript": false,
"hyperlink": null

H]

Figure 19b: JSON representing the sentence in Figure 19a. Note that only the second object,
representing “loop invariant”, is bold. The text before and after “loop invariant” has no
styling.

A section’s time is divided into chunks that are labeled as either talking-head or
content, as can be seen in a section’s chunks list (Figure 20). These labels are used
to indicate whether video footage should be shown in the talking-head viewport or
the section’s content viewport at a certain time. Moreover, chunks are used to

indicate transitions between talking-head and content footage, and adjacent chunks

50

in a given section will have different labels. A chunk has 3 time attributes.

first frame time isthe time at which a chunk begins and is the time at which
the chunk’s first frame is first shown. last frame time is the time at which the
chunk’s last frame is first shown. end _time is the time at which the chunk ends
and is equivalent to the first frame time of the next chunk. A particular frame
lasts a certain number of milliseconds and will vary between videos and possibly
within a video. The frame that begins at 1last frame time will be shown until
immediately before end_time. We want to keep track of the 1ast frame time
for a chunk because this is when we take a screenshot of the final frame of a chunk,
as discussed later. We cannot take a screenshot at end time because this will be

the next chunk.

"chunks": [{
"index": 29,
"first frame time": 174440,
"last frame time": 243995,
"end time": 244015,

"video id": "OlIs56hu4EU",
"person": false,
"content": true,

"prevContentId": 9

oo Ao
"index": 11,
"first frame time": 244015,
"last frame time": 250920,
"end time": 250920,

"video id": "OlIs56hu4EU",
"person": true,
"content": false,

"prevContentId": 29
H]

Figure 20: Chunks from Figure 18, reproduced for convenience

A section object may also contain representative frame thumbnail information in the

thumbnails attribute, but it is not required. If no thumbnails are specified then

51

the chosen representative frame for a section will be its final frame, and this is often
the case for technical lectures with slides or handwritten notes. The format for
thumbnail information is shown in Figure 21a. A thumbnail is specified by the video
frame t ime at which the screenshot is taken, the selected window of the video
frame, the location of the thumbnail in the section content area, and a thumbnail
shrink factor. The video frame window is defined by the window’s width, height,
and top-left corner offset with respect to the frame’s dimensions (Figure 21b). The
thumbnail location in the section content area is defined by the thumbnail’s top-left
corner offset with respect to the top-left corner of the content area (Figure 21c). The
thumbnail shrink factor is defined with respect to the thumbnail’s original size in
the content area during play mode. For example, a full video frame thumbnail with a
shrink factor 1.0 would occupy the entire section content area, and a full video
frame thumbnail with a shrink factor of 0.5 would occupy half the height and half

the width of the section content area.

"thumbnails": [..., {
"index": 3,
"time": 25000,
"frameXOffset": 0.1,
"frameYOffset": 0.0,
"frameWidthFraction": 0.6,
"frameHeightFraction": 1.0,
"thumbXLocation": 0.15,
"thumbYLocation": 0.5,
"shrinkFactor": 0.4

booonl]

Figure 21a:]SON representing the bottom-left thumbnail of the Introductions section in
Figure 7 (reproduced on page 54).

52

frameWidthFraction = 0.6

}

frameHeightFraction = 0.

-

frameXOffset = 0.1

Figure 21b: Here the thumbnail specified in Figure 21a and shown in Figure 7 is seen clearly
through the window and the rest of the video frame is shown faded. Horizontally, the
window begins 10% from the left of the video frame and is 60% of the width of the frame.
Vertically, the window begins at the top of the video frame and is 80% of the height of the
frame.

Introductions
Andrew: Hi. My name's Andrew Toeman. I'm 72.
Jack: I'm Jack Rosenthal. I'm almost 77.

Evelyn: My name is Evelyn Van Hille Sousana and |
am 62 years old.

Frank: My name is Frank Elekes. I'm 68 years old.

Armand: I'm Armand Cymbalista. I'm 81, and I've
been with the Wolfpack since 1979.

\ 7

Figure 21c: Here the thumbnail specified in Figure 21a is shown in its native VideoDoc
lecture (Figure 7). The other thumbnails for the section are not shown, in order to reduce
clutter. The dotted rectangle shows the content area’s border. The thumbnail appears 15%
from the left border and 50% from the top border.

53

4 '
Introductions
Wolfpack Runners
Andrew: Hi. My name's Andrew Toeman. I'm 72.
« Introductions
+ History of the Wolfpack Jack: I'm Jack Rosenthal. I'm almost 77.
+ Keeps us healthy
+ Stretching Evelyn: My name is Evelyn Van Hille Sousana and |
+ Running am 62 years old.
« Injuries
+ Many benefits Frank: My name is Frank Elekes. I'm 68 years old.
Armana: I'm Armand Cymbalista. I'm 81, and I've
been with the Wolfpack since 1979.
\ J
History of the Wolfpack
Andrew: Wolf Burnett formed it about 50 years ago,
and at that time there were very few runners. But
over the years, | could say several thousand people
have gone through the wolf pack. We run regularly »
0:00/3:03 Tuesday night, Thursday night, and Sunday morning ‘
all season, all year, even in this weather outside {1

tonight. Oh, it's a beautiful evening. Look at this.

Figure 7 (reproduced for convenience): An edX Body101x lecture shown in the VideoDoc
student interface. Multiple representative video frames are shown in each section. The first
section shows interviewed individuals, and these thumbnails are cropped video frames. The
second section shows pictures describing the history of the Wolfpack, and these thumbnails
are full video frames.

In addition to a list of section objects, the section JSON file also contains a separate
list of sentence objects (see bottom of Figure 18). The contained sentences are the
sentences from the original text transcript and are only used in the author interface
for showing the differences between the current text and the original transcript

with green and red text highlighting.

4.2 Generating a Section JSON File

We generate a default section JSON file using a time-annotated text transcript and a
talking-head/content labeling. During implementation we tested VideoDoc with edX
lecture videos and used the text transcript JSON files provided on the edX lecture
pages. Therefore, we built the section JSON generator with that text transcript

format in mind. Figure 22 gives an example of the format.

54

"start": [
1450,
4890,
9250,
10900,
1,
"end": [
4890,
9250,
10900,
12130,
1,
"text™: [
"Eric Grimson: We’ve just shown that if we have a sorted list,
we can search",
"it much more efficiently than just linear searching, and
that’s great.",
"But wait a minute.",
"How do I get a sorted list?",

Figure 22: An excerpt from edX’s transcript for the 6.00.1x selection sort lecture.

The talking-head/content labels are also provided as a JSON file (Figure 23). The file
features the video duration, the video YouTube ID, and a list of segments, where
each segment is a talking-head or content label for a time range of the video.
Segments are meant to represent distinct visual pieces of a lecture. In addition to
adjacent talking-head and content footage being two different segments, adjacent
slides might also be different segments. Note that segment start and end times are
given in milliseconds and only the overall video duration “length” attribute is given
in seconds. We primarily obtained labeling JSON files from a computer vision parser
that specifically labels people and content in educational lecture videos [22]. The
labeling JSON files can also be created manually, and this is what we did for

VideoDocs used in the user study in order to ensure labels were 100% correct.

55

"length": 469,
"segments": [{

"id": O,

"content": O,

"person": 1,

"start time": O,

"end time": 27500
b Ao

"id": 1,

"content": 1,

"person": O,

"start time": 28150,

"end time": 65580
b Ao

"id": 2,

"content": O,

"person": 1,

"start time": 65600,

"end time": 89700
boowel]

Figure 23: Talking-head and content labels for a lecture video

As we create a default section JSON file, we use 2 heuristics:
1. Try to put each segment in its own section.

2. Make sure each section has at least 3 sentences.

Also note that default sections are given the title “untitled[section id number]”.

We decided to ensure each section has at least 3 sentences because with some
lecture styles, in particular lecture halls where the lecturer or camera moves
frequently, the computer vision parser created many short segments, each a
sentence or shorter. Since a VideoDoc section is supposed to be a topic or an
example in a lecture, rarely if ever would a section contain only one sentence. We do
not want an instructor using the author interface to be overwhelmed by a large
number of default sections and have to tediously merge many of these sections

together because they are impractically short.

56

We chose to put approximately one segment in each section since segments
represent distinct visual pieces in a lecture, for instance different slides. One
segment per section seemed like a likely way to create sections of different material
and reasonable durations. Techniques such as machine learning, natural language
processing, and crowdsourcing for creating better topically distinct sections and
titling them were out of scope of this thesis project but are potential areas of future

work.

Running a Node script generates the section JSON file.

4.3 Displaying the Interface

VideoDoc lectures are displayed in the browser by running a Node application that
takes a section JSON file and an mp4 video as input. The application first reads the
section JSON file and writes the data to memory. It then uses the fluent-ffmpeg Node
module [23] to take screenshots of the mp4 video for section thumbnails and for the
final frame of each section chunk. As we later explain in more detail, we use
screenshots of the final frame of section chunks to aid in smooth transitions

between chunks.

When the user navigates the browser to the correct VideoDoc URL, the page is
rendered with Handlebars templates. We use Bootstrap and jQuery Ul to aid in
styling and widgets. Although we use the video mp4 file for taking screenshots, we
present the video in the browser using a YouTube video player. This allows
VideoDoc lectures to easily be viewed remotely and we do not have to worry about

serving the video ourselves.

57

After the page loads, the client-side JavaScript extracts sentence start times, chunk
start times, and a time-ordered list of chunk ID numbers from the DOM. This

information aids in handling user events and playback, as discussed below.

4.4 Playback

When the lecture is playing, the client-side keeps a timer, using JavaScript’s
setInterval, to check every 20 milliseconds for potential status changes in video
attributes, such as reaching the end of a sentence or section. Some state is kept
about each attribute in order to determine if a status change has occurred since the
last check. The table in Figure 24 lists status changes and the corresponding DOM

updates to be made.

Attribute | Status change DOM update

Clock 1 second has passed since the Increment the clock by 1 second
clock display has been updated

Sentence | The current time has passed the | Update to the next sentence and
end time of the current sentence | highlight it

Chunk The current time has passed the | Update to the next chunk,
end time of the current chunk appropriately transitioning
between talking-head and content
Section The current time has passed the | Update to the next section, select it

end time of the current section with the blue border and bolded
table of contents title, and scroll to
it

Figure 24: Playback status changes and DOM updates

The clock, sentence, and section DOM updates are straightforward, but the chunk

DOM update is less obvious. To play a video in VideoDoc, we use only one YouTube

58

video player. We move and resize the player element as the lecture transitions
between talking-head and content chunks and progresses through sections so that
the video plays through the correct viewport. Originally we used one YouTube
player per chunk, with player start and end times set to those of the chunk, and we
listened for player end events to determine when to play the next chunk’s player.
However, the delay between the end event and telling the next player to play was
too great and resulted in noticeably discontinuous audio. We then tried using a
separate, single, invisible YouTube player only for audio, muting the individual
chunk players, in order to ensure continuous audio. However, we found that this
audio was not always synchronized with the chunk player videos. Therefore we
chose to use one YouTube player for the entire lecture in order to ensure continuous
audio that is synchronized with the video. With this one player we do not need to
pause the lecture during chunk transitions. We simply use the frequent

setInterval timer to determine when to move the player.

We now discuss how we perform smooth transitions between talking-head and
content chunks. When transitioning from talking-head to content, we fade the
talking-head video over the course of a second before moving the player to the
content viewport, in order to help prepare the user for the transition. When
transitioning from content to talking-head, we want to make sure the content
viewport does not display any talking-head, even for a split second, so that users are
not distracted or confused. In order to avoid showing talking-head in the content
viewport, once the current time is within 500 milliseconds of the end of the content
chunk, we cover up the video player with a screenshot of the final content frame.
Now when the transition from content to talking-head occurs, the final content
frame will be covering the video so no talking-head will be seen. We experimented
with smaller thresholds than 500 milliseconds but found that the final content
frame was not displayed quickly enough and that the talking-head was still seen for
a split second. 500 milliseconds seemed to work well during testing. Note that we do

not need to perform a similar cover-up over the talking-head video during a

59

transition from talking-head to content because by the time the transition occurs,

the video will have almost completely faded and the transition should not be visible.

4.5 Author Interface

Here we describe implementation details specific to the author interface.

4.5.1 Text Editing and Styling

The transcript textboxes are HTML5 contentEditable elements. When a user
uses keyboard shortcuts, such as Ctrl-b for bold, for styling transcript text, the
styling is automatically applied because of this contentEditable property. When
a user uses the toolbar buttons for styling text, we manually add the styling to the
DOM by using the JavaScript document . execCommand function, which performs
common styling operations and functions the same as using keyboard shortcuts.
Specifically, for bold, italics, underline, subscript, and superscript,

document . execCommand simply toggles whether the current text selection has

the given style.

Whenever the user types in a transcript textbox or edits text styling, we send
updates to the backend Node application to be written to the section JSON file. We
parse the current section’s transcript textbox DOM to determine the new text
content and styling, and we create JSON of a similar format to a section object in the
section JSON file. To parse the transcript, for each sentence we perform a depth-first
traversal of the DOM. The leaf nodes will be text, so when we reach a leaf node, we
check the node’s ancestors’ attributes to determine the text’s styling. Since we rely
on the contentEditable text editor and document .execCommand to perform
styling, we do not know exactly how the DOM will be structured after styling

changes are made. There could be arbitrary layers of complexity that we cannot

60

predict, so we found that using a depth-first traversal approach and checking
ancestors’ attributes worked well. Note that after writing updates to the section
JSON file we do not recreate the transcript DOM using Handlebars templates
because it may be difficult to correctly restore the cursor location in the new DOM
structure. It is necessary for the cursor to be in the correct location because the user
may be making quick and constant edits. The potential advantage of updating the
DOM with Handlebars templates after each edit is that we would then know the
DOM structure and a limited space of potential restructuring changes after the next
edit, which in turn could allow extraction of this single edit. However, our depth-
first traversal parsing algorithm works and we do not need to restore the cursor.
Note that currently we parse the entire section’s text after any text or styling change
because styling could be applied to multiple sentences at a time, though perhaps we

could specifically determine the modified sentences and only parse those.

4.5.2 Indicating Text Styling in the Toolbar

As mentioned in the User Interface chapter, toolbar styling buttons are pressed in
when the current text selection has the given styling. For most text selections the
styling is obvious, but for single cursors on styling boundaries or range selections of
mixed-styled text, it is not always obvious which toolbar buttons should be pressed
in. Since toggling toolbar buttons toggles the text selection’s style, we need to make
sure the representation in the toolbar is consistent with the contentEditable
element’s interpretation of the DOM, which toggles style through

document .execCommand and keyboard shortcuts. contentEditable
determines whether a given text selection has a particular style by looking at its
containing node, so this is also how we determine whether or not toolbar style

buttons should be pressed in.

61

4.5.3 Section Boundary Changes

When the user presses a merge or split button for changing section boundaries, we
send the affected section ID and sentence ID to the backend. Specifically, the
sentence ID is only sent for the Split Section and Merge Text buttons and represents
the first sentence below the new boundary. For instance, for Split Section the
sentence ID would be the ID of the first sentence in the new section. Using the
affected section and sentence IDs, the backend updates its section representation,
partitioning sentences and chunks and creating or deleting sections as necessary.
Next the backend takes final frame screenshots for the affected chunks and then it
sends JSON for the updated sections to the client-side. The client-side then adds,
replaces, and removes appropriate section DOM elements, using Handlebars
templates to create new HTML. The client-side also updates the time-ordered list of
chunk ID numbers that it uses for determining playback order since likely chunks

have been added or deleted.

4.5.4 Determining the Selected Sentence

When the user makes a text selection, we determine which sentence was selected
and should be highlighted. In addition to keeping track of which sentence was
selected, we also determine whether the text selection was entirely before or
entirely after the selected sentence so that we can correctly partition a section’s
sentences when a Split Section or Merge Text button is pressed. For example,
imagine sentence 5 is currently yellow and then Split Section is pressed. Before the
button press, if the cursor was before sentence 5, then sentence 5 would move down
into the new section. If the cursor were instead after sentence 5, then sentence 5
would remain in its current section. Note that we need to determine this
information about the text selection when the selection is made rather than when
the Split Section or Merge Text button is pressed. Once the button is pressed, the

text selection no longer exists.

62

4.5.5 Displaying Transcript Additions and Deletions

In the Original Transcript editor mode, we use Google’s diff-match-patch library
[24] to help determine and then display text additions and deletions. We create
JSON in the backend representing the additions and deletions and then send them to
the client-side. For each transcript sentence we create a plain text string from the
backend’s section JSON by concatenating the sentence pieces in current text.
We then compute the difference between the original sentence text, which we
stored in a separate list of original transcript sentences, and the current text
plain text string using diff-match-patch. The difference algorithm returns a list of
strings, for each indicating whether the string is an addition, a deletion, or

unchanged text. From now on we will call this list the difference strings list.

Since diff-match-patch only indicates plain text differences, we must now determine
ourselves the author-added styling (e.g., bold, italics, hyperlink) for each addition or
unchanged string. Note that deleted text has no author-added styling because the
original transcript had no styling. We do not keep track of styling for original

transcript text that was at one point styled and then later deleted.

We step through the current text list and difference strings list to match text
and create a new text representation that documents both styling and the
addition/deletion/unchanged status for a given piece of plain text. To match text,
we alternate moving pointers through the current text and difference strings
lists as we build up our new sentence representation. For the first difference string
we step through the current text list until we have built up and reproduced the
difference string. We document the styling for this difference string, which could
include multiple current text pieces of varying styles, and we keep a pointer to
the current text piece where we should begin our exploration for the next
difference string. Text of varying styles and difference statuses could possibly only
partially overlap (Figure 25). We account for this in our matching algorithm by

keeping a pointer not just to the appropriate current text piece butalso to the

63

next character index that should be explored within the current text piece’s

plain text.

times, and that's really great. Let's look at an
example. Here's an extremely simple example that
shows that idea, and | want to talk about the syntax

Figure 25: An example of only partially overlapping styles and difference statuses. The
original sentence started “Here’s a simple example”. Here we've added “n extremely” and

» o«

we've bolded only “extremely simple”. “extremely” is both bolded and green, but it is not the
entire bold text or the entire green text.

After creating the new sentence representation documenting both style and
difference status we send this new representation to the client-side where it is

rendered via Handlebars templates and placed into the DOM.

64

5 Evaluation

5.1 Research Questions

We conducted a user study to assess how VideoDoc affects a learner’s watching and
reviewing experience of a lecture video as compared with using a more traditional
video-viewing interface. We also evaluated the usability of the student and author

interfaces. Below are our primary research questions:

RQ1. How does VideoDoc affect a learner’s experience the first time they watch a

particular lecture video?

RQ2. How do learners use VideoDoc to search for an answer to a question?
RQ3. Are the features of VideoDoc’s student interface learnable and useful?
RQ4. Are the features of VideoDoc’s author interface learnable and useful?

We used a single user study to explore the four research questions, by having

participants first use the student interface and second use the author interface.

65

5.2 Participants

We recruited 8 participants by posting a call for participants in the Course 6
Facebook group. Since the lecture videos used in the study contain Python, we
wished to ensure baseline familiarity with Python to avoid difficulty in task
completion due to insufficient background. Therefore we asked interested persons
to indicate their level of experience with Python on a scale from 1 (no experience) to
5 (highly proficient) and accepted individuals who ranked at least 3. Participants
ranged in age from 19 to 23. Four of the participants were female and 4 were male.

Each participant was paid $20 at the end of the hour-long study.

5.3 Student Interface

Through the student interface part of the study we aimed to answer research

questions RQ1, RQ2, and RQ3.

5.3.1 Procedure

To evaluate the watching and reviewing experience with VideoDoc, we conducted a
controlled study, comparing the VideoDoc student interface with the edX video-
viewing interface (Figure 3, reproduced below). The edX interface offers users a
basic video-viewing interface with a scrubbable progress bar and an interactive text

transcript, both features that VideoDoc offers.

66

Courseware Course Info Textbook: Averill Textbook: Readings Discussion Periodic Table Wiki Progress

Overview

Entrance Survey

S8AV2: LEWIS STRUCTURES
Week 1

Help

Week 2

Week 3

TRAWING LEMS STRUCTURES
© Canter” the clement w th lowest AVEE
Q@ com* all valunc.

(S}, Sile hon

Week 4
Covalent Bonding
Learning Sequence

Periodic Trends and Bonding
Learning Sequence

Molecular Orbitals
Learning Sequence

Additional Study Material
Week 4 Problem Set

Homework due Mar 29,2015at @
23:59 UTC

> 2:54/7:02

Week 5

Figure 3 (reproduced for convenience): An edX Introduction to Solid State Chemistry
lecture [14]. To the right of the video appears an interactive text transcript. Directly above
the video appears a ribbon of other lectures and exercises in the Covalent Bonding learning
sequence. At the top of the screenshot are links to other class resources including the
textbook and discussion forum.

Participants viewed two lecture videos, one in edX and one in VideoDoc. We

counterbalanced the video viewing order and the video interface assignment.

For each lecture video, the participant was asked to watch the entire video and was
told that they would be asked a few questions afterward. For each lecture video we
asked the participant to perform 5 tasks: 1 visual search task, 3 problem search

tasks, and 1 play task.
* Avisual search task asks a user to search for a particular visual feature in the

video, such as a slide with a given heading, and emulates a learner searching

for a slide or diagram they remember from a previous watch of the video.

* A problem search task asks a user to navigate to a part of the lecture that

would answer a particular recall question and emulates a learner searching

67

in the video for the answer to a problem set question. Note that for the
problem search task we specifically asked participants to navigate to a
relevant part of the lecture, since some participants may be able to answer
the question from memory or previous knowledge without using the

interface.

* Aplay task asks a user to play the lecture starting from a particular topic and
emulates a learner wanting to watch a specific part of a lecture. The visual
and problem search tasks do not necessarily require the participant to play
the video. The participant may simply point their mouse or finger to the
relevant point on the computer screen. Therefore the play task specifically

allows us to observe how participants play the lecture at a desired point.

For each lecture the tasks are given in the same order for every participant. This
order was determined such that completing any task should not be trivial,
specifically that completing the task should require some navigation through the
lecture. The first task cannot be completed using the state of the video interface
upon finishing watching the lecture, and each following task cannot be completed

using the final state after finishing the previous task.

We modeled parts of our user study after the user study presented by Kim et al. [25]
for evaluating LectureScape, another lecture delivery system. Specifically we
borrowed the idea of giving participants visual search and problem search tasks,
and we borrowed the definitions for these two types of tasks. We also modeled
specific task questions and post-study questions after those used in the

LectureScape user study.

68

5.3.2 Lecture Videos

In this study we used lecture videos from the Fall 2013 6.00.1x Introduction to
Computer Science and Programming edX course [2]. We wanted to use a course
whose videos were abundant with slides because we believe VideoDoc is currently
best suited for content-heavy videos. We also wanted videos that flip between
entirely content and entirely talking-head frames so that we could evaluate the
talking-head viewport in the bottom-left corner and the ability to view content
while the talking-head is shown on screen. Additionally, we wanted to use course
material that participants would be reasonably comfortable with. We did not want a
potential unfamiliarity with course material to make completing tasks difficult.
Since our source of participants was the Course 6 Facebook group, we expected that
most potential participants would have computer science and Python experience

equivalent to 6.00.1x.

We chose 2 videos of similar length, difficulty, and number of slides so that
corresponding tasks in the 2 videos would have similar difficulty and require similar
solutions when solved in the same interface. The lecture videos we chose for the
student interface study were Bisection Search from Lecture 3 - Simple Algorithms
and Selection Sort from Lecture 10 - Memory and Search. Below are details

regarding these lecture videos:

Bisection Search
* Length: 7 minutes, 18 seconds
* Number of slides: 5
* YouTube Video ID: hX1aUXnDwgA

¢ edXlecture: Lecture 3 - Simple Algorithms

Selection Sort
* Length: 7 minutes, 49 seconds

e Number of slides: 5

69

e YouTube Video ID: O1Is56hu4EU

* edXlecture: Lecture 10 - Memory and Search

5.3.3 VideoDoc Preparation

We used the author interface to create well-sectioned and well-titled VideoDocs for
the Bisection Search and Selection Sort lectures. We chose the section boundaries
and section titles ourselves, using the same authoring style for the two lectures.
Since VideoDoc currently does not handle well sections with text exceeding the
browser viewport height, we made sections short enough such that each section’s
text fit entirely within the viewport. The Bisection Search and Selection Sort

VideoDocs are shown in Figures 26 and 27, respectively.

We only minimally styled the text, with italics for variable names, because we
primarily wanted to test how VideoDoc’s navigation and layout features affect a
user’s watching and reviewing experiences. We were afraid that if we used bold
styling, in particular on key phrases, that would be the reason a user answered a
question more easily in VideoDoc than in edX and that we would not be able to

attribute improved performance to navigation and layout features.
Note that for the talking-head/content partitioning input, we manually created the

partitioning, rather than using the computer vision partitioning algorithm, to ensure

that the video was labeled correctly.

70

Bisection Search

Exhaustive search too slow
‘Square root search setup
« Zero-ing in on square root
‘Square root code - setup
‘Square root code - body

« Code in IDLE

Larger examples
Observations

Square root search setup

And it turns out, for a lot of problems, we can do that
using a wonderful idea called bisection search. So
what do we know? Let's go back to the idea of trying
to find the square root. We know that Jx lies
somewhere between 0 and x. We're assuming X is
positive just to make life a little easier for us. That's a
mathematical fact. Now, what we did was we said
let's start with 0. Then, 0 plus a little bit. Then, 0 plus
2 times a little bit, and then 0 times 3 times a little bit,
trying all of those examples, until we got to
something that was close enough to the answer we
wanted. That's exhaustive. Rather than doing that,
suppose instead we say, look, we know that Jx is
somewhere between 0 and x. So let's just pick a
guess right here in the middle. Let's call that g. Let's
just pick the midpoint between 0 and x and try

it. Now, if we're lucky, the answer is close enough
and then we're done. That's unlikely.

Bisection search

* We know that the square root of x lies
between 0 and x, from mathematics

« Rather than exhaustively trying things starting
at 0, suppose instead we pick a number in the
middle of this range

« If we are lucky, this answer is close enough

Zero-ing in on square root

But even if that is not the case, we have a good
situation. Even if we're not close enough, we can
now ask was that guess g too big or too small? Well,
if g2 is bigger than x, then we know that it's too
big. We know that the square root has to lie

Bisection search

« If not close enough, is guess too big or too small?

« If g**2 > x, then know g is too big; but now search

Figure 26: The Bisection Search lecture shown in VideoDoc’s student interface.

Selection Sort

What are the implications of sorting?
Is it worth sorting before searching?
« Amortized cost of sorting
Selection sort overview

Selection sort code

Selection sort summary

« Loop invariant

Proof of correctness

Complexity of selection sort

e R ———

Amortized cost of sorting

Suppose we want to actually search a list more than
once. We want to search it say, let's just say k times
for some value k. Then the question we want to ask
is, is the cost of sorting plus k searches less than the
cost of just k linear searches? And you can already
see it's going to depend on k and it's going to
depend on sort, but one expects that if the sort can
be done efficiently, then it is going to be better to sort
first, and then search. This is what we refer to as
amortizing, or spreading out the cost. We're
sspreading out the cost of sorting over multiple
searches. And doing something may well make this
worthwhile.

So now the question is how efficiently can we

sort? Because if we can do it well, we really may be
better off using binary search. And that takes us
back to where we started, which is to say then we
can reduce a lot of search problems just to a known
solution, which is binary search.

Amortizing costs

* But suppose we want to search a list k times?
* Thenis sorE(L) +k*log(len(L)) < kflg@?

— Depends on k, but Jnizipects that if sort can be
done efficiently, then it is better to sort first

mortizing cost of sorting over multiple searches
may make this worthwhile

— How efficiently can we sort?

Selection sort overview

OK, s let's look at sorting. And we're going to look
at two examples. The first example is shown with a
plece of code. It's called selection sort. And the idea

Selection sort

selSort (L) :

Figure 27: The Selection Sort lecture shown in VideoDoc’s student interface.

71

5.3.4 User Tasks

Below are the tasks we asked participants to complete for each lecture video. They

are annotated here with their task type.

Bisection Search

1.

Can you show me a slide that has the title “Example of square root”? (visual
search task)

Please take me to a point in the lecture that would answer the following
question: At each stage of bisection search by how much do we reduce the
range of values we have to search through? (problem search task)

Please take me to a point in the lecture that would answer the following
question: When does the idea of bisection search work well? (problem search
task)

Please take me to a point in the lecture that would answer the following
question: How many steps of the bisection search method does it take in
order to find the square root of 25 within epsilon = 0.01? (problem search
task)

Can you play the lecture starting from the point where they first introduce

bisection search? (play task)

Selection Sort

1.

Please take me to a point in the lecture that would answer the following
question: Can you explain a procedure for switching the values of 2
variables? (problem search task)

Please take me to a point in the lecture that would answer the following
question: What is the loop invariant in selection sort? (problem search task)
Can you show me a slide that has the title “Sorting Algorithms”? (visual

search task)

72

4. Please take me to a point in the lecture that would answer the following
question: What is the overall complexity of selection sort? (problem search
task)

5. Canyou play the lecture starting from the point where they first discuss

amortizing the cost of sorting? (play task)

5.3.5 Satisfaction and Usability Questions

After a participant watched both lecture videos and completed the tasks, we asked
the participant qualitative questions to gather their thoughts on VideoDoc and to

assess usability. These are the questions we asked:

Overall, how was your experience using VideoDoc?
Overall, how was your experience using edX?

Which features of VideoDoc did you like, and why?

=W Mo

Were there any features of VideoDoc that you disliked, found distracting, or

were confused by?

U

Are there any features you feel were missing from VideoDoc?
6. Which of the following did you find yourself using the most while first
watching the lecture?

a. The text transcript

b. The slide and code video on the right

c. The instructor video in the bottom left corner

7. Do you have any other questions or comments?

73

5.3.6 Results

5.3.6.1 First Time Watching Experience

Overall users had a positive experience watching videos using VideoDoc.

Users liked the text transcript in VideoDoc more than the one in edX. Four out of 8
users said that they found the constantly scrolling text transcript in edX to be
distracting, and they appreciated the less frequent scrolling in VideoDoc. They liked
that in VideoDoc the text remained still and only the yellow highlighting moved to
show the currently spoken text. Some users appreciated that text was highlighted by
sentence rather than by partial sentence as in edX. Users also liked the transcript’s
wider text area as compared to edX, and they liked how text was broken up into
paragraphs. These features helped some users read the text the more easily in

VideoDoc than in edX.

However, a couple of users found the text transcript to be distracting while they
were watching the video. They often found themselves reading the transcript while
the video was playing, sometimes reading ahead, and then had trouble processing
the video slides at the same time. One user also said that they found themselves
somewhat discouraged by seeing the large amount of text ahead of them in the
lecture and that as a result they felt less interested in continuing to view this lecture.
In edX this user hid the text transcript while watching the video to avoid distraction,

and said they would have liked to do something similar in VideoDoc.

Users liked that VideoDoc allowed them to preview a lecture before watching all of
it. They liked that the table of contents gave an overview of the lecture content and
structure. While watching the lecture for the first time, curious users could get an

overview of the upcoming content in the lecture by viewing the table of contents or

by scrolling down the page to view upcoming slides.

74

In general users either said they liked the overall page layout or they made no
comment on the layout. However one user said that the placement of the text
transcript between the talking-head and the content made it hard to switch their
focus back and forth between the talking-head and content while watching the

video. They said they might prefer the text transcript be to the right of the content.

When the lecture first begins playing, users are unaware that the video is split into
talking-head and content pieces and that these pieces are displayed in separate
places on the page. Note that both 6.00.1x videos begin with a talking-head. One
user asked if they could enlarge the video in the bottom-left corner, likely because
they thought the entire duration of the video would be displayed small and in the
corner. During the first transition from talking-head to content, many users are
confused as to why the talking-head has disappeared. Additionally, in the Bisection
Search lecture, before the lecture is played, the first section displays a slide in the
content area, and then when the video starts playing users are confused about why
the slide disappears. The reason the slide disappears is because the lecture video
starts with the talking-head, and while this talking-head is talking, there is no
previous slide to show. The end of the section is a slide, so this is why the section
has a representative slide frame before the lecture is played. After seeing a couple
transitions between talking-head and content users better understand the page
layout. However we should continue to explore other interface behaviors that will
reduce confusion and distraction regarding separate talking-head and content

viewports.

Users did not spend much time looking at the talking-head. Some users said they
enjoyed the feeling of a human presence, even though they did not look at the
talking-head much. Some users were distracted by the talking-head appearing and
then disappearing in the bottom-left corner of the page during transitions between
talking-head and content frames. Other users felt the talking-head was not

necessary but were not distracted by it.

75

One user said they appreciated that even when the talking-head was visible they
could still see the current slide. In the 6.00.1x edX videos if the talking-head is
shown then only the talking-head is shown, so in the edX interface the user is not

able to see the slide the instructor is currently discussing.

One user said that the movement of the blue border from one section to the next
alerted them that a new topic is about to be discussed and helped them stay focused

while watching the lecture.

We asked users whether they used the text transcript, the content video, or the
talking-head video in the bottom-left corner the most while watching the video.
About half of the users said they looked at the content video the most, and about half
said they looked at the text transcript the most. A couple users said they used the
content video and the text transcript equally. Users only looked at the talking-head
minimally. One user who mostly looked at the content video said they looked at the
text transcript if they thought they missed something the instructor said. One user
who mostly looked at the text transcript said they glanced at the content video when
the instructor was writing on the slide. Another user said they “approached it as a
textbook”, where they read the text transcript, and then only used the content video
for viewing diagrams and pictures, since the text in the slides is already in the

transcript.

Five out of 8 users said they wished VideoDoc had the ability to speedup the lecture

pace, a feature that they often use in YouTube and edX.

76

5.3.6.2 Navigation

Users much preferred VideoDoc over edX for answering questions about a lecture.

While completing tasks for a VideoDoc lecture, users navigated the lecture by
clicking on table of contents titles and scrolling through the page. For the visual
search task, half of the users found the desired slide by clicking on table of contents
titles and the other half scrolled through the page. For problem search and play
tasks 6 out of 8 users clicked on table of contents titles for at least one task, and 4

out of 8 users scrolled through the page for at least one task.

If after clicking on a table of contents title the user realized they still had not
reached the desired section, they would usually click on another table of contents
title. It is interesting to note that for some users, when they wanted to navigate to an
adjacent section, they chose to click on the adjacent table of contents title rather
than scroll the page. We suspect that since these users were already looking at the
table of contents to guide their search, it was easier to click on the appropriate title
rather than make the correct scroll gesture. However, there were some users who
chose to scroll the page when they realized the desired content was in an adjacent

section.

Only one user tried scrubbing the slider progress bar to navigate the lecture, and

only did so for one task.

Somewhat surprisingly only one user used the Ctrl-f “find” keyboard shortcut for
searching for a particular word. This user used the keyboard shortcut for each task
in edX, but they did not use the keyboard shortcut for any tasks in VideoDoc and
instead scrolled through the page. Note that the user interacted with edX first and
VideoDoc second. This user commented that they found the text layout and scrolling

in VideoDoc to be more pleasant than in edX, so it seems they used the “find”

77

keyboard shortcut in edX because reading the text transcript and scrolling were too

unpleasant.

Upon interviewing users, it was clear that they found the table of contents very
helpful for completing tasks. When answering questions about the lecture, users
could use the table of contents to remind themselves of the order of topics in the
lecture and then subsequently could determine where in the VideoDoc to navigate
to. The edX video interface provides no summary of the video or additional
information of topic locations, so users must use their memory of the lecture
structure and tediously scrub the slider or scroll through the text transcript to find a
desired topic. In VideoDoc users also liked that they could click on table of contents

titles to easily jump around the lecture.

Most users realized they could click on a text transcript sentence to navigate to that

sentence in the lecture.

One user would have like the blue section border and bold table of contents title to
follow them while they were scrolling through the page, such that the section
currently in view would be the one with a blue border and a bold table of contents

title.

5.3.6.3 Other Observations
Here we discuss user comments that are not directly related to the first time

watching experience or navigation.

One user said they liked how they could see a slide and then could see next to it the

spoken text that discussed that slide.

78

One user said they liked that the VideoDoc page provides a summary of the lecture
and that they could use it to study for a test instead of re-watching the lecture video

or reading the text transcript.

One user was confused about why the discussion of a particular slide was spread out
over 2 sections. When we created the Bisection Search VideoDoc lecture, we broke
the square root code slide into 2 sections to reduce the amount of text per section
and also to break the discussion down into 2 main components: the variable
initialization and the square root procedure. The user expected the square root code

slide to be contained within one section.

5.4 Author Interface

Through the author interface part of the user study we aimed to answer research

question RQ4: Are the features of VideoDoc’s author interface learnable and useful?

5.4.1 Procedure

We conducted the author interface study after introducing participants to VideoDoc
through the student interface study. To evaluate the author interface of VideoDoc,
we presented each participant with a raw, non-edited VideoDoc and asked them to
edit it as if they were an instructor for the class. We explained that creating a
VideoDoc is a semi-automated process, requiring as input the lecture video, a time-
annotated text transcript, and a talking-head/content partitioning. We explained
that with this input, a basic VideoDoc with likely non-ideal section breaks, no

section titles, no text styling, and potential transcript typos, can be created. We
explained that in order to create a nicely titled and sectioned VideoDoc like we
showed them earlier in the student interface study, an instructor must manually edit

the VideoDoc, and this was their task.

79

We gave participants about 15 minutes to edit a 5-8 minute long video, coaching

them when they got stuck and prompting them to share their thoughts.

5.4.2 Lecture Videos

We again used lecture videos from the 6.00.1x course since users were already
familiar with this video style from the student interface study, and they now should
have a good idea of what a completed 6.00.1x VideoDoc should look like. We used 4
different lecture videos, with 2 users per video. We are not performing a controlled
study for author interfaces, so there are no requirements on which videos we show
participants. We wanted some variety in the course material presented in VideoDoc
in order to increase the number of potential interaction scenarios in which we could

observe a user.

We chose some of the shorter 6.00.1x lecture videos since 15 minutes is not much
time for users to edit a VideoDoc, and longer lecture videos may overwhelm or

discourage users. These are lecture videos we chose:

Programming Languages
* Length: 5 minutes, 13 seconds
* YouTube Video ID: BvooljkN]24

* edXlecture: Lecture 2 - Core Elements of Programs

Iteration
* Length: 6 minutes, 43 seconds
e YouTube Video ID: walEOLO9vfil

e edXlecture: Lecture 3 - [teration

80

Functions
* Length: 7 minutes, 49 seconds
* YouTube Video ID: zhKN60gDjk8

e edXlecture: Lecture 4 - Functions

Fibonacci
* Length: 5 minutes, 18 seconds
* YouTube Video ID: e7IErqC25nU

e edXlecture: Lecture 5 - Fibonacci

5.4.3 VideoDoc Preparation

We created raw, non-edited VideoDocs using only the lecture video, a time-
annotated text transcript, and a talking-head/content partitioning. As we did for the
VideoDocs for the student interface study, we manually created the talking-

head/content partitioning to ensure that the video was labeled correctly.

5.4.4 Satisfaction and Usability Questions

After a participant spent about 15 minutes editing in the author interface, we asked
the participant qualitative questions to gather their thoughts on the author interface

of VideoDoc and to assess usability. These are the questions we asked:

1. Overall, how was your experience using the author interface of VideoDoc?

2. Which features of the author interface did you like, and why?

3. Were there any features of the author interface that you disliked, found
distracting, or were confused by?

4. Are there any features you feel were missing from the author interface?

Do you have any other questions or comments?

81

5.4.5 Results

All users were able to make meaningful edits to their VideoDoc lecture. Users had an
easy time creating and changing section titles but had more trouble changing
section boundaries. Some users learned how to change section boundaries
themselves whereas other required coaching. Below are more details on how users

interacted with the author interface.

5.4.5.1 General Editing Approaches

Some users began by getting an overview of the lecture through clicking on table of
contents titles, scrolling through the page, and skimming text. These users said they
wanted to familiarize themselves with the material first, since they personally had

not given the lecture and initially did not know the material it contained.

Users then generally edited the lecture from top to bottom. Some users titled several
sections first before making any section boundary changes. These users tended to
not understand how to make section boundary changes, requiring our guidance to
make splits and merges, and presumably they titled sections first because this was a
task they felt comfortable with. Other users created titles and performed section

boundary changes together as they walked through the lecture.

Seven out of 8 users edited the VideoDoc lecture in pause mode, and 6 of them never
played the video at all. After finishing editing their lectures, we asked a few
participants why they read through the text and did not watch the video. Most of
these participants said they thought reading the text would be faster than watching
the video but then realized watching the video would not have taken that long and
perhaps would have helped them create more accurate section boundaries and
section titles. One user said they preferred reading the text and if they were to edit
another VideoDoc they would not replace reading text with watching the video. This

user said that if they had more time, perhaps they would watch the lecture only

82

after a first editing attempt in order to evaluate the editing. The one user who edited

while playing the lecture still did read the text while watching.

5.4.5.2 Changing Section Boundaries

Four out of 8 users discovered the section merge and split buttons in the toolbar
and used them for changing section boundaries. Three out of 8 users copied text
from one section and pasted it into an adjacent section as they attempted to change
section boundaries. One user tried selecting adjacent sections to be merged as one
might select multiple files in a file directory, by making mouse clicks and pressing

the shift button.

One user said they did not discover the merge and split buttons because they did not
even see the toolbar at the top of the screen. This user said they would have been
more likely to see buttons had they been sitting between or inside the sections.
Some other users said they saw the merge and split buttons but were not confident
in how they worked so decided to execute their alternate plan instead, thinking it

would work.

For these users who did not discover the section merge and split buttons, we
allowed them some time to attempt section boundary changes using their own

approach, and then we guided them toward the merge and split buttons.

In general, once users found the merge and split buttons they were able to use them
correctly. Users had no problem with the Split Section button. However, some users
were confused about the roles of the Merge Text and Merge Section buttons. A few
users used only one of the two button types because they did not understand the
difference between them. To move only some text from a given section to an
adjacent section, a couple of users first clicked Split Section and then clicked Merge

Section because they did not realize Merge Text could perform this operation in one

83

step. A different user tried to use Merge Text for merging entire sections but failed
to do so correctly because they put the cursor down in the middle of the section and

made no range selection, resulting in only some of the text being moved.

After they experimented with the merge and split buttons for some time, we asked
the users who originally employed other methods for changing section boundaries
how they felt about the buttons. In general these users said they now felt reasonably
comfortable with the buttons but thought their initial approaches for changing

section boundaries were more intuitive.

5.4.5.3 Titles for Merged and Split Sections

In general users thought that merging section titles upon merging adjacent sections
made sense. One user commented that merging titles reminded them of the content
of the two original sections and as a result helped them assign a new title covering
the content of both sections. However, users said that if one of the original sections
had not yet been titled by the user (i.e.,, had the default title “untitled#”), then they
would prefer the merged section’s title omit this default title. As a result users
would have less text to delete when re-titling the merged section or they could

simply keep the single title.

Overall users seemed to think titling a new section, created with the Split Section

button, “untitled” made sense.

5.4.5.4 Lecture Slides

When editing the lecture, some users specifically adjusted the section boundaries
such that each slide in the lecture video appeared in exactly one VideoDoc section
and each VideoDoc section contained exactly one slide. They did this even when the

section text became very long.

84

A couple of users said they wanted to get an overview of all the slides in a given
section, perhaps as a banner of screenshots at the bottom of the section, so that they
could more quickly learn about the lecture content and determine places to split the

section.

5.4.5.5 Representative Frames

One user was confused about how the representative frames for each section were
chosen, and another user was confused about why the first section was the only one
to not have a representative frame. As a reminder, the first section would not have a

representative frame if the first section were entirely talking-head.

A couple of users were unsure of what would happen to representative frames upon
merging two sections. They were not sure if the merged section would contain both
representative frames or if one would be deleted. As a result, these users tried
moving just text in an effort to not accidentally lose a representative frame. One user
decided to use the Merge Text button rather than the Merge Section button, thinking
this button would move just text and not representative frames and was therefore a

safer option. The other user tried copying and pasting text manually.

A couple of users pointed out that sometimes a section’s representative frame could
be misleading. A section’s representative frame is by default chosen to be the final
frame of the section. If the slide shown in the final frame only appears for the last
fraction of a second of the section, a user could perceive this representative frame as
misleading because it does not truly represent the overall content of the section. We
choose section boundaries based on sentence start and end times, and it is possible
visual transitions will not perfectly align with section start and end times. This leads

to potentially misleading representative frames. Misleading representative frames

85

made it challenging for users to quickly choose smart places for merging and

splitting sections.

5.4.5.6 Styling Text

A couple of users tried using the styling buttons, such as bold and italics, because
they were curious, but in general users did not try styling the text. We asked some
users why they did not add styling, and they said they did not think it was necessary.
There was only minimal styling in the student interface VideoDocs they saw
previously (i.e., italics for variable names), so perhaps users did not see that

italicized text or they thought styling was not a major feature of VideoDocs.

One user who did try styling selected a sentence with a single cursor click, turning
the sentence yellow, and then clicked on the bold button in the toolbar. They were
surprised to see the sentence not turn bold because they had thought clicking a
styling button would appropriately style the currently yellow-highlighted text.
Instead the styling buttons operate as in a traditional text editor, ignoring the yellow

highlighting.

5.4.5.7 Editing Text

Users did not edit the text transcript, except for one user who deleted the “Eric
Grimson:” speaker identifier at the beginning of the transcript. After they finished
editing their VideoDoc, we asked two users if they thought any text should be
changed and why they did not change any text. One user said they did not realize
they could make text changes. Both users said they did not think it would make
sense to edit the text because then the text would not perfectly correspond to the
lecturer’s spoken words. The users said this lack of correspondence could
potentially confuse users when they are watching the lecture and seeing different

words as they read along with the transcript.

86

5.4.5.8 Other Observations
Three users tried to undo their section merge and split operations using the Ctrl-z

“undo” keyboard shortcut, and said this is a feature they would like to have.

One user tried pressing the spacebar to toggle the play mode, a feature that is
offered in most video player interfaces. However, this action did not toggle the play
mode and instead added a space at the current cursor location. The user quickly
realized that having this feature would not work well with the current text editor

interface, but perhaps we should modify the interface to allow for this.

After they finished editing a section title, most users clicked out of the title textbox
to commit the new title. These users clicked on the area to the right of the textbox,
which is the content, and upon clicking the video began playing. This surprised all of
these users and nearly all found it annoying. One user suggested having a small play
icon over the content area and that only clicking on the small icon would play the
video. Clicking elsewhere on the content area would do nothing, so likely clicking

out of the section title textbox would not start playing the video.

87

6 Discussion and Future Work

We first discuss key user study findings and potential changes that should be made
as a result. Second we discuss other limitations of VideoDoc and ways to address

them.

6.1 User Study

Through the user study we found that users overall enjoyed using the VideoDoc
student interface. Users said the ability to click on table of contents titles and to
scroll through lecture slides made navigating VideoDoc lectures easier than

navigating edX lectures.

Users commented on some features that they found distracting and other features
they thought were missing. Some users were distracted by the talking-head
appearing and disappearing in the corner of the page. A partial solution is to offer
users the ability to hide the talking-head, but this does not help users who do want
to see the talking-head and currently find its transitions distracting. We should
explore other options for presenting the talking-head in VideoDoc that are less-
distracting. Additionally a couple of users found the text transcript to be distracting

while they were watching the lecture because they felt tempted to read along or

88

ahead. We might want to consider an option to hide the text transcript as well. Users
also asked for common video player features including speed-up and full-screen

display.

In the author interface some users did not discover the merge and split buttons for
changing section boundaries without coaching. Instead they tried to copy text from
one section and paste it into another to modify the section boundaries. Some users
also did not understand the difference between the Merge Text and Merge Section
buttons. We should work to improve the discoverability and learnability of changing
section boundaries. We may also consider including multiple ways to change section
boundaries, such as offering the current buttons option and adding the copy/paste
text option. Based on user feedback we should also add the ability to undo and redo

section boundary changes.

6.2 Other Future Work

One limitation of VideoDoc is that lectures cannot be created completely
automatically. Lecturers must fine-tune section boundaries and add section titles,
which could take much time over many lectures. Ideally VideoDocs should be
created with better default section boundaries and default titles to reduce the
lecturer’s workload. We could employ techniques such as machine learning, natural

language processing, and crowdsourcing.

The current implementation only takes one video as input, often a studio-edited
lecture. Ideally VideoDoc should be able to take multiple videos as input, each one
containing only talking-head, only content, or both and each one lasting arbitrary
duration. This would allow authors to input separate talking-head and content

videos and eliminate the need to join them together in one video.

89

We designed VideoDoc primarily for lectures whose focus is slides or tablet notes.
Each section is meant to hold one slide screenshot in the content area. We did
consider other lecture styles but realize that the current interface might not suit
them well. For example, it is challenging to show a traditional lecture hall lecture
video in VideoDoc. The lecturer might block the chalkboard when walking around
and sometimes the camera will change perspective to show the audience. This kind
of footage is not visual content and should not replace chalkboard notes in the
VideoDoc content area, but it might not make sense to put this footage in the
talking-head area either. We also considered green-screen lecture videos where the
instructor appears in front of a green-screen displaying slides next to him or her. We
prototyped separating the instructor and the slides, showing the instructor in the
talking-head viewport and showing only the slides in the content viewport, but we
did not explore this in depth. VideoDoc should also be developed more for
humanities lectures where multiple pictures are shown in quick succession or
where people are interviewed. Earlier we discussed using section thumbnails
instead of one representative frame in these situations, but we should continue
exploring designs and perform user testing. We also found that the current
VideoDoc interface does not work well for videos that frequently flip between two
important pieces of content, for example slides and the IDLE console in the 6.00.1x
course. There is currently only one content viewport in VideoDoc and perhaps we

should have a second content viewport for code or science demos.

Finally, there are two more editing widgets the author interface should offer. The
first is a widget for choosing section thumbnails. Currently thumbnails can only be
specified by manually editing the section JSON file. The second is a widget for
editing the talking-head/content labels of a video in case the input labels are

incorrect.

90

7 Conclusion

We have presented VideoDoc, a lecture video interface that improves a user’s
watching and reviewing experience by breaking a lecture into sections, displaying a
static representation of each section, and providing a clickable table of contents for
these sections. A VideoDoc lecture can be generated automatically from a lecture
video, a time-annotated text transcript, and a labeling of talking-head video frames.
We have also presented an editing interface that allows course instructors to modify
a VideoDoc lecture’s section boundaries, titles, and text. The VideoDoc interface
appears promising for lecture videos with slides or handwritten notes but should be

developed more for lectures of other styles.

91

8 References

[1] Lori Breslow, David E. Pritchard, Jennifer DeBoer, Glenda S. Stump, Andrew D.
Ho, and Daniel T. Seaton. “Studying learning in the worldwide classroom
research into edX's first MOOC”. Research and Practice in Assessment, 2013,
pp. 13-25.

[2] MITx. “6.00.1x Introduction to Computer Science and Programming”. edX, Fall
2013. https://courses.edx.org/courses/MITx/6.00.1x/3T2013 /info/.

[3] René F. Kizilcec, Kathryn Papadopoulos, and Lalida Sritanyaratana. “Showing
Face in Video Instruction: Effects on Information Retention, Visual Attention,
and Affect”. CHI, 2014, pp. 2095-2102.

[4] Philip]. Guo, Juho Kim, and Rob Rubin. “How Video Production Affects Student
Engagement: An Empirical Study of MOOC Videos”. Learning at Scale, 2014,
pp. 41-50.

[5] Juho Kim, Philip J. Guo, Daniel T. Seaton, Piotr Mitros, Krzysztof Z. Gajos, and
Robert C. Miller. “Understanding In-Video Dropouts and Interaction Peaks in
Online Lecture Videos”. Learning at Scale, 2014, pp. 31-40.

[6] Juho Kim, Shang-Wen (Daniel) Li, Carrie J. Cai, Krzysztof Z. Gajos, and Robert C.
Miller. “Leveraging Video Interaction Data and Content Analysis to Improve
Video Learning”. CHI Workshop on Learning Innovations at Scale, 2014.

[7] Francis C. Li, Anoop Gupta, Elizabeth Sanocki, Li-wei He, and Yong Rui.
“Browsing digital video”. CHI, 2000, pp. 169-176.

[8] Toni-Jan K. P. Monserrat, Shengdong Zhao, Kevin McGee, and Anshul V. Pandey.
“NoteVideo: Facilitating Navigation of Blackboard-style Lecture Videos”. CHI,
2013, pp. 1139-1148.

[9] Gregory D. Abowd, Lonnie D. Harvel, Jason A. Brotherton. “Building a Digital
Library of Captured Educational Experiences”. Kyoto International Conference
on Digital Libraries, 2000, pp. 395-402.

92

[10] Bradley N. Miller and David L. Ranum. “Beyond PDF and ePub: toward an
interactive textbook”. ITiCSE, 2012, pp. 150-155.

[11] edX. http://www.edx.org/.
[12] Coursera. http://www.coursera.org/.
[13] Udacity. http://www.udacity.com/.

[14] MITx. “3.091x Introduction to Solid State Chemistry”. edX, Spring 2015.
https://courses.edx.org/courses/course-v1:MITx+3.091x_4+1T2015/info.

[15] Columbia University in the City of New York. “Natural Language Processing”.
Coursera, Spring 2013. https://www.coursera.org/course/nlangp/.

[16] “Applied Cryptography”. Udacity. https://www.udacity.com/course/applied-
cryptography--cs387/.

[17] Khan Academy. http://www.khanacademy.org/.

[18] “Separable equations”. Khan Academy.
https://www.khanacademy.org/math/differential-equations/first-order-
differential-equations/separable-equations/v/separable-differential-
equations-introduction/.

[19] Bret Victor. “Media for Thinking the Unthinkable”.
http://worrydream.com/MediaForThinkingTheUnthinkable/.

[20] Amy Pavel, Colorado Reed, Bjorn Hartmann, Maneesh Agrawala. “Video digests:
a browsable, skimmable format for informational lecture videos”. CHI, 2014,
pp.- 573-582.

[21] “YouTube IFrame Player API”.
https://developers.google.com/youtube/iframe_api_reference/.

[22] Michele Pratusevich. “EdVidParse: Detecting People and Content”. M.Eng.
Thesis, Massachusetts Institute of Technology, 2015.

[23] node-fluent-ffmpeg. https://github.com/fluent-ffmpeg/node-fluent-ffmpeg/

[24] Google Diff Match and Patch libraries. https://code.google.com/p/google-dift-
match-patch/.

[25] Juho Kim, Philip J. Guo, Carrie]. Cai, Shang-Wen (Daniel) Li, Krzysztof Z. Gajos,

and Robert C. Miller. “Data-Driven Interaction Techniques for Improving
Navigation of Educational Videos”. UIST, 2014, pp. 563-572.

93

