
Promises and Pitfalls of Using LLMs for Scraping Web UIs
Rebecca Krosnick
rkros@umich.edu

University of Michigan, Computer Science & Engineering
Ann Arbor, Michigan, USA

Steve Oney
soney@umich.edu

University of Michigan, School of Information
Ann Arbor, Michigan, USA

ABSTRACT
ChatGPT and other publicly available large language models (LLMs)
put AI into the hands of everyday computer users, offering the
possibility of automating computer tasks. One candidate task is web
scraping. We informally experimented with ChatGPT to explore
the potential promises and pitfalls of using it for scraping data from
web user interfaces. We share our observations and considerations
for future human-LLM web scraping systems.

CCS CONCEPTS
•Human-centered computing→Natural language interfaces;
Empirical studies in HCI ; • Information systems → Data extrac-
tion and integration; • Computing methodologies → Machine
learning.

KEYWORDS
large language models, ChatGPT, web scraping, natural language
interfaces

ACM Reference Format:
Rebecca Krosnick and Steve Oney. 2023. Promises and Pitfalls of Using LLMs
for Scraping Web UIs. In CHI ’23 Workshop: The Future of Computational
Approaches for Understanding and Adapting User Interfaces, April 23, 2023,
Hamburg, Germany. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The recent release of the large language model (LLM) ChatGPT [1]
has put generative AI in the hands of everyday computer users.
Users simply need to type a natural language request and ChatGPT
generates often plausible-looking responses – offering the possibil-
ity to automate computer tasks. However, ChatGPT is known to pro-
duce incorrect answers while sounding very confident, which can
be quite dangerous if left unchecked. Current popular automation
use cases for ChatGPT include writing emails, correcting grammar,
writing code, and formatting data. Given its text and often formulaic
nature, another use case that may benefit from ChatGPT is scrap-
ing data from website user interfaces (UIs), e.g., scraping contact
information from a directory, scraping rental listings. People have
started exploring how LLMs like ChatGPT can power interactions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’23 Workshop, April 23, 2023, Hamburg, Germany
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

with website UIs [6, 9, 10], but it is not yet well understood their
capabilities and how well they can match user intent.

We informally experimented with ChatGPT on a variety of web-
sites to explore its potential promise and pitfalls for web scraping.
From our observations, we believe that ChatGPT can often produce
the right results when tasked with scraping raw data, but some-
times will mistakenly exclude certain data or “hallucinate” answers.
For second order operations that involve reasoning or math over
the raw data, ChatGPT will most often be wrong. As a result, we
postulate that future human-LLM web scraping systems need to
provide users effective tools for validating LLM responses.

2 PRIORWORK
To programmatically scrape data from web UIs, traditionally peo-
ple write web scraping scripts using libraries like Selenium [8],
Cypress [3], or Puppeteer [7] to mimic users’ interactions with
UI elements. However, this requires a certain degree of effort and
programming expertise, and it can even still be tricky for peo-
ple with programming expertise to identify correct element selec-
tion logic [14]. To make web scraping more accessible to general
users, prior work has explored automated ways of creating web
scrapers. Program synthesis and HCI researchers have designed
programming-by-demonstration (PBD) approaches [12, 19], where
the user interacts with website pages to demonstrate examples of
the data they want to scrape, and then the system infers the rest
of the data to scrape [11, 13, 22], often by inferring patterns in the
DOM [4]. Related work has leveraged similar PBD approaches for
automating tasks on smartphones [16–18, 20] and answering ques-
tions about website content [15]. Web browser extension stores also
showcase numerous open source web scraping extensions, which
often take a demonstration-based approach or proactively try to
search for data. Such research systems and browser extensions can
be powerful but each have their own limitations, and typically claim
to support only a specific scope of scraping tasks well. Another
challenge with these tools is their lack of availability to the public
or low discoverability.

Web scraping may be a good candidate task for LLMs, since one
way of looking at web scraping is as a text extraction task, and
LLMs are good at generating text. LLMs such as ChatGPT have the
potential to address the above two challenges with web scraping
specific tools: 1) ChatGPT is currently (at the time of this writing)
readily available to the public and widely known, and 2) given their
generative nature may be able to produce a web scraping answer
for a broader set of scenarios, albeit possibly at a lower quality than
their domain-specific counterparts.

People have started exploring using language models for inter-
preting and interacting with website UIs. SemanticOn [21] lever-
ages natural language input and language models to enable users
to specify semantic conditions to refine web scraping programs

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CHI ’23 Workshop, April 23, 2023, Hamburg, Germany Krosnick and Oney

generated by WebRobot [13]. Recent prototypes [6, 9, 10] have
leveraged GPT-3 [5] and ChatGPT for a related task – web automa-
tion. The user provides a natural language description of their task
and these prototypes then programmatically interact with website
UIs to complete the task. These tools are promising but it is not
yet well understood their capabilities and how well they can match
user intent.

3 METHODS
During the week of February 20, 2023, we informally experimented
with ChatGPT (Model: Legacy (GPT-3.5)) on several websites to get
a sense of its web scraping abilities and the kinds of mistakes it
makes. Table 1 shows most of the websites we tried, and samples
of the many prompt variations we tried. We chose some websites
that were higher profile (e.g., IMDb and NBA) and whose content
ChatGPT was likely trained on, and some that were lower profile
(e.g., a local tennis tournament, a school district, a local restaurant
chain).

We usually provided ChatGPT all the information it needed in a
single prompt, i.e., a data scraping request and thewebsite context. To
embed thewebsite in the ChatGPT prompt, we tried two approaches:
embedding the page’s raw text (e.g., captured using the JavaScript
command document.querySelector("body").innerText) or em-
bedding the page’s HTML (note that due to ChatGPT’s token limit
we could embed only a portion of the website HTML). We some-
times asked ChatGPT to regenerate its response so we could see
multiple possibilities. Sometimes we also gave ChatGPT follow-up
requests if there was a mistake in its response.

We also briefly experimented with giving ChatGPT HTML and
asking it to write code for scraping.

4 POTENTIAL PROMISE
For many pages, ChatGPT often scraped the exact right data, es-
pecially when given the website’s text rather than HTML. For
example, when given the website’s text and asked to scrape, it was
usually able to return the correct list of NBA players and corre-
sponding heights and countries of origin (Table 1, website #2); actor
and character names (Table 1, website #1); university event talk
titles, dates, speakers, and locations (Table 1, website #3); volunteer
roles available (Table 1, website #4); and menu items and prices
(Table 1, website #7). Occasionally it would sometimes leave out
an entry (e.g., missing an actor name), and sometimes this was
resolved by asking ChatGPT to regenerate its response.

Given a portion of the website’s HTML and asked to scrape,
ChatGPT sometimes returned the full/correct answer for the given
HTML (e.g., NBA players, heights, countries; volunteer roles; restau-
rant menu items) but for others often truncated and only returned
a few items, or hallucinated certain results (see pitfalls below).

When given the website’s HTML and asked to write code for
scraping, ChatGPT seemed to mostly generate correct code logic
and CSS selectors [2] if the elements to be scraped have salient
selectors – e.g., when we asked ChatGPT to scrape player names
from the NBA website, it generated the following correct Python
code and CSS classes for first and last names:
first_name = player_row.select_one('.RosterRow_playerFirstName__NYm50').text
last_name = player_row.select_one('.RosterRow_playerName__G28lg p:nth-of-type(2)').text

5 POTENTIAL PITFALLS
5.1 Asking ChatGPT to scrape and return an

answer
There were a few kinds of mistakes we saw ChatGPT make. Some-
times it produced nearly the correct output data except it would
be missing a small number of entries. For example, when we gave
ChatGPT the text of the CODA movie page (Table 1, website #1)
and asked it to show the actors listed, it returned 17 correct actors
but was missing an 18th (Molly Beth Thomas). We then prompted
it saying “you’re missing one” and it added an 18th actor, whose
name was completely hallucinated (Emely Grisanty). Sometimes
asking ChatGPT to regenerate its response did result in the missing
name then correctly being included.

ChatGPT seemed to make more mistakes when we gave it the
page’s HTML rather than text. ChatGPT would frequently prema-
turely end its scraping. For example, we gave ChatGPT HTML for
a portion of the VL/HCC conference program (Table 1, website
#6) and asked it to return a list of paper links; it returned the first
four paper links in the HTML (all correct), but the HTML actually
contained 8 in total. It is unclear why results often get cutoff when
ChatGPT is asked to scrape from HTML.

In one especially interesting case where we gave ChatGPT the
HTML for the CODAmovie page, it returned 11 actor and character
pairs, only 3 of which were correct. ChatGPT hallucinated some
character names, some of which matched patterns in real character
names (e.g., “Gina” Rossi –> not a real character, but other charac-
ters in the movie have the same last name “Rossi”; Ms. “Han” –>
not a real character, but another character in the movie has the
same title,“Ms.” Simon). ChatGPT also included some incorrect actor
names, e.g., C.J. Jones and Lauren Ridloff, who are deaf actors but
not in CODA, which is a movie about a deaf family and whose
cast contains deaf actors. Perhaps these hallucinations are due to
embeddings ChatGPT has learned.

Even though it seems ChatGPT may be more accurate in scrap-
ing tasks when given page text rather than HTML, HTML may
be needed for certain kinds of scraping and automation tasks –
when desired data is embedded in the HTML and not included as
regular text on the page (e.g., links, or data in widgets like drop-
down menus), and when the page needs to be navigated to uncover
desired data (e.g., clicking on buttons and links, typing into text
fields).

Beyond just scraping raw data on the page, we sometimes also
asked ChatGPT to filter those results. ChatGPT was wrong nearly
every time, regardless of whether the prompt contained page text or
HTML. For example, when we asked ChatGPT to show all players
shorter than 6 foot 5 (Table 1, website #2), when we gave it HTML
it returned only players who are exactly 6 foot 5, and when we gave
it text it returned some players shorter than 6 foot 5 but missed
several others. When we asked ChatGPT to show all menu items
on the Serafina menu (Table 1, website #7) under $25, it was almost
correct but missed one item. As ChatGPT users have been reporting,
ChatGPT seems to make a lot of mistakes on reasoning or math
tasks.

Promises and Pitfalls of Using LLMs for Scraping Web UIs CHI ’23 Workshop, April 23, 2023, Hamburg, Germany

Website URL Sample Prompts
1 IMDb movie pages E.g., CODA: https:

//www.imdb.com/title/
tt10366460/?ref_=adv_li_tt

Here’s a website, show me a
list of the actors. [Website
HTML or raw text]

2 NBA players https:
//www.nba.com/players

Here’s a website, show me a
list of the players and their
heights. Then show me all
players shorter than 6-5.
[Website HTML or raw text]

3 University events https://cse.engin.umich.edu/
events/

Here’s a website. For each
event, extract its name, date,
location, and speaker.
[Website HTML or raw text]

4 Volunteer page for a tennis
tournament

https://www.citiopentennis.
com/volunteers/

Here’s a website. Show me
the different volunteer roles.
[Website HTML or raw text]

5 County school system https://ww2.
montgomeryschoolsmd.org/
departments/
sharedaccountability/
glance/index.aspx

Here’s a website. Show me a
list of the high schools.
[Website HTML or raw text]

6 Conference program https://conf.researchr.org/
program/vlhcc-
2022/program-vlhcc-2022/

Here’s a website. Extract a
list of the paper links.
[Website HTML or raw text]

7 Small restaurant chain menu https:
//www.serafinarestaurant.
com/upper-west-77th-
menus/#upper-west-pasta

Here’s a website. Show me the
items and their prices. Then
show me items under $25.
[Website HTML or raw text]

Table 1: Some of the websites and prompts we tried.

5.2 Asking ChatGPT to write code for scraping
This needs to be explored further, but we observed ChatGPT make
mistakes in the code it generated when the items to be scraped
did not have salient CSS classes or attributes. For example, the
Citi Open tennis tournament (Table 1, website #4) website has
minimal styling, so ChatGPT did not have meaningful CSS classes
to latch on to. Instead, ChatGPT used a very generic selector p and
then chained find and find_next_sibling method calls to parse
the DOM to find desired elements; however, this then resulted in
a runtime error when an intermediate find_next_sibling call
evaluated to None, because the ChatGPT-generated code did not
protect against edge cases. This is just an example of the kinds of
challenges ChatGPT may have in generating web scraping code. It
seems there are general LLM code generation challenges. It should
also be further explored how accurate and robust CSS selectors and
element selection logic LLMs can generate.

6 FUTURE OF HUMAN-AI WEB SCRAPING
SYSTEMS

ChatGPT has some promise right out of the box for web scraping,
but it has many dangers as well. Given how often ChatGPT can be
right or close to right for web scraping, people may not check its
results closely and instead just trust it. Any future LLM-powered
web scraping tool needs to provide users tools to check its work, e.g.,

by contextualizing results visually with the web page, by providing
links to sources. Future work may also explore ways to leverage
LLMs more effectively for web scraping, perhaps by combining
demonstration, web UI specific models, and LLM-based approaches.

7 ACKNOWLEDGMENTS
This work is supported by NSF Award 2007857.

REFERENCES
[1] [n. d.]. ChatGPT: Optimizing Language Models for Dialogue. https://openai.com/

blog/chatgpt/. Accessed: 2023-02-23.
[2] [n. d.]. CSS selectors. https://developer.mozilla.org/en-US/docs/Learn/CSS/

Building_blocks/Selectors. Accessed: 2021-03-19.
[3] [n. d.]. Cypress. https://www.cypress.io/. Accessed: 2021-03-19.
[4] [n. d.]. Document Object Model (DOM). https://developer.mozilla.org/en-US/

docs/Web/API/Document_Object_Model/. Accessed: 2021-06-29.
[5] [n. d.]. GPT-3 Powers the Next Generation of Apps. https://openai.com/blog/gpt-

3-apps/. Accessed: 2023-02-23.
[6] [n. d.]. natbot. https://github.com/nat/natbot. Accessed: 2023-02-23.
[7] [n. d.]. Puppeteer. https://pptr.dev/. Accessed: 2020-09-18.
[8] [n. d.]. Selenium. https://www.selenium.dev/. Accessed: 2020-09-11.
[9] [n. d.]. weblm. https://github.com/aidangomez/weblm. Accessed: 2023-02-23.
[10] [n. d.]. Theworld’s first AIWeb Co-Pilot powered by ChatGPT. https://multion.ai/.

Accessed: 2023-02-23.
[11] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-

ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 963–975.

[12] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming
by demonstration. MIT press.

https://www.imdb.com/title/tt10366460/?ref_=adv_li_tt
https://www.imdb.com/title/tt10366460/?ref_=adv_li_tt
https://www.imdb.com/title/tt10366460/?ref_=adv_li_tt
https://www.nba.com/players
https://www.nba.com/players
https://cse.engin.umich.edu/events/
https://cse.engin.umich.edu/events/
https://www.citiopentennis.com/volunteers/
https://www.citiopentennis.com/volunteers/
https://ww2.montgomeryschoolsmd.org/departments/sharedaccountability/glance/index.aspx
https://ww2.montgomeryschoolsmd.org/departments/sharedaccountability/glance/index.aspx
https://ww2.montgomeryschoolsmd.org/departments/sharedaccountability/glance/index.aspx
https://ww2.montgomeryschoolsmd.org/departments/sharedaccountability/glance/index.aspx
https://ww2.montgomeryschoolsmd.org/departments/sharedaccountability/glance/index.aspx
https://conf.researchr.org/program/vlhcc-2022/program-vlhcc-2022/
https://conf.researchr.org/program/vlhcc-2022/program-vlhcc-2022/
https://conf.researchr.org/program/vlhcc-2022/program-vlhcc-2022/
https://www.serafinarestaurant.com/upper-west-77th-menus/#upper-west-pasta
https://www.serafinarestaurant.com/upper-west-77th-menus/#upper-west-pasta
https://www.serafinarestaurant.com/upper-west-77th-menus/#upper-west-pasta
https://www.serafinarestaurant.com/upper-west-77th-menus/#upper-west-pasta
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors
https://www.cypress.io/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/
https://openai.com/blog/gpt-3-apps/
https://openai.com/blog/gpt-3-apps/
https://github.com/nat/natbot
https://pptr.dev/
https://www.selenium.dev/
https://github.com/aidangomez/weblm
https://multion.ai/

CHI ’23 Workshop, April 23, 2023, Hamburg, Germany Krosnick and Oney

[13] Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang. 2022.
WebRobot: Web Robotic Process Automation using Interactive Programming-by-
Demonstration. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation.

[14] Rebecca Krosnick and Steve Oney. 2021. Understanding the Challenges and Needs
of Programmers Writing Web Automation Scripts. In 2021 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 1–9.

[15] Rebecca Krosnick and Steve Oney. 2022. ParamMacros: Creating UI Automation
Leveraging End-User Natural Language Parameterization. In 2022 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
1–10.

[16] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[17] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi,
Wanling Ding, TomMMitchell, and Brad AMyers. 2018. Appinite: A multi-modal
interface for specifying data descriptions in programming by demonstration using
natural language instructions. In 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 105–114.

[18] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, TomMMitchell,
and Brad A Myers. 2019. Pumice: A multi-modal agent that learns concepts and
conditionals from natural language and demonstrations. In Proceedings of the
32nd annual ACM symposium on user interface software and technology. 577–589.

[19] Henry Lieberman. 2001. Your wish is my command: Programming by example.
Morgan Kaufmann.

[20] Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi.
2022. Automatically Generating and Improving Voice Command Interface from
Operation Sequences on Smartphones. In CHI Conference on Human Factors in
Computing Systems. 1–21.

[21] Kevin Pu, Rainey Fu, Rui Dong, Xinyu Wang, Yan Chen, and Tovi Grossman.
2022. SemanticOn: Specifying Content-Based Semantic Conditions for Web
Automation Programs. In Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology. 1–16.

[22] Mohammad Raza and Sumit Gulwani. 2020. Web data extraction using hybrid
program synthesis: A combination of top-down and bottom-up inference. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 1967–1978.

	Abstract
	1 Introduction
	2 Prior Work
	3 Methods
	4 Potential Promise
	5 Potential Pitfalls
	5.1 Asking ChatGPT to scrape and return an answer
	5.2 Asking ChatGPT to write code for scraping

	6 Future of Human-AI Web Scraping Systems
	7 Acknowledgments
	References

