Designing Tools for Intuitive Creation,
Generalization, and Maintenance of Web Macros

Rebecca Krosnick
Computer Science and Engineering — University of Michigan, Ann Arbor
rkros@umich.edu

I. BACKGROUND AND COMPLETED WORK

Web automation tools enable users to write or record macros
to be replayed in the future, to reduce the burden of manually
performing tedious and repetitive web tasks (e.g., paying
a bill, ordering supplies, or scraping data). However, the
representation of such macros is typically text-based program
scripts, which lack context about semantics and web page Uls,
making them difficult to understand, generalize, and repair.

I have begun designing a new representation of macros
that goes beyond just code to provide a concise semantic
description of each macro step. The macro is summarized as a
“barebones web page” (see Figure 1-A) that illustrates through
the most basic, unstyled Ul elements the inputs and outputs
expected. The idea is that the user can take a quick glance at
this barebones page and understand what input they need to
provide, and what output they can expect. They can then enter
input via these Ul elements (e.g., text fields, dropdown menus,
radio buttons). Additionally, a sequence of Ul animations
(Figure 1-B) accompanies the barebones page to illustrate the
UI state and macro actions corresponding to each section of
the barebones page. Finally, there is a code editor (Figure 1-C)
available for users to refine the macro logic. I have built an
initial version of this tool (see Figure 1) that lets users record
their actions on a website of their choosing, manually create
the barebones page, modify the automatically-generated code
to reference these barebones elements, and view automatically-
generated Ul animations.

Southwests

Fig. 1. A macro that performs a flight query: A) the barebones UI elements,
B) an animation of the recorded macro, and C) the macro’s code

II. FUTURE WORK

One piece of upcoming work involves making the creation
and integration of this barebones page simpler, for example
inferring or suggesting likely barebones elements based on
the user’s recorded actions and updating the macro code

accordingly to reference these elements for input. This might
also involve designing a library of helper functions to help
users more intuitively program semantic actions, for example
to “click the element whose value equals (month)” without
needing to write code logic to appropriately query the DOM.

Another important line of future work is making the gener-
alization of macros more intuitive. Actions recorded from one
user demonstration of desired macro behavior likely represent
only some subset of user input and scenarios. Additional
branching and logic is needed to support other user input
and scenarios. For example, selecting a date in the current
month from a calendar widget likely involves only two clicks
(opening the widget, and selecting the date), whereas selecting
a date for several months down the line also requires clicking
the “next month” button multiple times. I am considering
a couple different approaches to help users generalize their
macros: 1) tools to help them uncover where their macro is
failing and 2) the ability to create multiple demonstrations
(i.e., with different input values and workflows), review the
generated code for each, and appropriately combine snippets
with conditional and looping logic. These tools and more
would likely be helpful for macro repair as well, e.g., for when
a website’s DOM structure or UI has changed.

Finally, generalizing macros to work across websites, in
other words ‘“semantic macros”, could be an exciting new
direction. Tasks such as paying a bill are semantically similar
across websites even though user workflows and website
implementations differ. A joint representation of semantically
similar actions could make it easier for users to understand,
maintain, and adapt macros.

III. DOCTORAL SYMPOSIUM

During the symposium I am most interested in hearing
thoughts on what parts of my system are appropriate to
automate and which are better left to the user. Currently my
plans for the system primarily rely on the user to manually
create and integrate the barebones page, and generalize the
macro. It would save the user time if barebones pages could
automatically be created and integrated, but I am not sure
what semantic understanding is possible for the machine.
Additionally, it could be great if the machine could automat-
ically synthesize generalized macro code from multiple user
demonstrations, but my background in program synthesis is
limited; what is possible with current state of the art program
synthesis, and what are the input requirements?



