
ScrapeViz: Hierarchical Representations for Web
Scraping Macros

Rebecca Krosnick*

Computer Science and Engineering
University of Michigan
Ann Arbor, MI, USA

rkros@umich.edu

Steve Oney
School of Information
University of Michigan
Ann Arbor, MI, USA

soney@umich.edu

Abstract—Programming-by-demonstration (PBD) makes it
possible to create web scraping macros without writing code.
However, it can still be challenging for users to understand
the exact scraping behavior that is inferred and to verify that
the scraped data is correct, especially when scraping occurs
across multiple pages. We present ScrapeViz, a new PBD tool
for authoring and visualizing hierarchical web scraping macros.
ScrapeViz’s key novelty is in providing a visual representation of
web scraping macros—the sequences of pages visited, generalized
scraping behavior across similar pages, and data provenance.
We conducted a lab study with 12 participants comparing
ScrapeViz to the existing web scraping tool Rousillon and saw
that participants found ScrapeViz helpful for understanding
high-level scraping behavior, tracing the source of scraped data,
identifying anomalies, and validating macros while authoring.

Index Terms—web scraping, visual representation, automation,
programming-by-demonstration

I. INTRODUCTION

User interface (UI) automation macros can save users time
and effort by automatically performing digital tasks. Some
automation is readily available through virtual assistants or
pre-programmed macros (e.g., in iOS Shortcuts [1]). However,
for long-tail needs, users need to create custom macros,
traditionally by writing code that mimics a user’s mouse and
keyboard actions. Writing this macro code can be prohibitively
challenging, even for experienced programmers [2].

Prior work has leveraged programming-by-demonstration
(PBD) [3], [4] to allow users (including non-programmers) to
create macros without writing code. With PBD, users provide a
few concrete demonstrations of the desired program behavior,
and then the system infers a generalized program. Although
PBD has made it easier for people to create automation
and scraping macros [5]–[16], it comes with several chal-
lenges [17], many the consequence of users not understanding
how PBD-generated programs work. More modern web au-
tomation tools driven by Large Language Models (LLMs) can
similarly be inscrutable and difficult to understand [18].

We present ScrapeViz, a new PBD tool for creating web
scraping macros, with a focus on helping users understand

This work is supported by NSF Award 2007857.
*The author is currently affiliated with Postman, Inc. This research was

done when she was a doctoral student at the University of Michigan.

macros’ behavior. ScrapeViz is designed for scraping dis-
tributed hierarchical data [5], which involves parent-child
relationships (hierarchical) across multiple pages (distributed).
Users navigate the web as they normally would, using familiar
actions such as clicks to locate and select the data they want to
extract, and ScrapeViz generalizes such actions across similar
UI elements and across similar website pages.

The novelty of ScrapeViz is in the tools it offers for under-
standing web scraping behavior across multiple website pages.
Prior systems also allow users to create nested-loop [5]–[8] or
parameter-based [9], [12], [13], [16] automation macros. How-
ever, there are key limitations to how these systems represent
macro behavior to users—either they provide no representation
(requiring users to run the macro to understand its behavior),
a limited preview of behavior on the next input, or a natural
language description of macro steps that is separated from the
execution context. ScrapeViz aims to address these limitations
through a novel storyboard-like visualization, as Figure 1
shows. This visualization provides a high-level overview of
the macro that represents key information for understanding
its behavior: the pages visited, how actions generalize across
semantically similar pages, relationships between pages, and
the data scraped from each page (highlighted in context). As
we found in a within-subjects lab study comparing ScrapeViz
and Rousillon [5], ScrapeViz’s visualization can make web
scraping macros easier to understand and debug.

II. RELATED WORK

ScrapeViz builds on prior work in web scraping tools, PBD,
and visualizations for understanding automation.

A. Web scraping

Web scraping is the process of extracting data from
websites. Traditional web scraping tools such as Beautiful
Soup [19] and Selenium [20] require users to write code. Sev-
eral tools have sought to make web scraping more accessible
to a wider audience through no-code or low-code approaches.
Marmite [21] offers users a visual data flow interface for
scraping and a spreadsheet interface for viewing scraped
results, but does not support tasks that involve hierarchical data
or multiple pages. Sifter [22] can extract data across multiple
pages but is limited to pagination-based navigation and does

1300

2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1943-6106/24/$31.00 ©2024 IEEE
DOI 10.1109/VL/HCC60511.2024.00040

Fig. 1. An illustration of ScrapeViz’s final state after the user has completed the IMDb scraping task in section IV. ScrapeViz gives users a programming
by demonstration (PBD) authoring interface and interactive storyboard-like visual representations of their web scraping macro. A user begins with a single
website viewport (D) and provides demonstrations (C and A for movie titles, K and M for actor names, S for birthdate) of the scraping and navigation actions
they want to perform – ScrapeViz adds colored borders to indicate selected elements, opens new viewports for website pages navigated to, and generalizes
these actions across UI elements and pages (using the PBD algorithm described below). During this process, ScrapeViz builds up a hierarchy of pages visited
either manually or by PBD generalization – a top-level IMDb page containing a list of movies (D); in column L, a movie page for each of the movies in the
top-level list; and in column R, an actor page for each actor in the first movie, “Everything Everywhere All at Once”. ScrapeViz uses color-coding to indicate
scraping generalizations (e.g., orange for movie titles (B), purple for actor names (J)) and to indicate which UI elements when clicked lead to which website
pages (e.g., orange-bordered movie titles (B) when clicked open the movie pages (L)). Users can navigate and inspect pages more closely by clicking directly
on a small viewport, browsing sibling pages (P), or by clicking on a cell in the output table (H) to be taken to its source page and location.

not support hierarchical data. In contrast, ScrapeViz supports
web scraping for hierarchical data and across multiple pages.

Large Language Models (LLMs) can also assist with web
scraping tasks by either writing scraping code or identifying
relevant elements in web content. However, LLMs can be
opaque in their scraping process, produce results that are
plausible but incorrect, and be impractically difficult to debug
and fix [18]. We focus on programming-by-demonstration
approaches, which can be easier to predict and understand.

B. Programming by demonstration

Programming by demonstration (PBD) enables users to
create computer programs without writing code. Users instead
demonstrate how the program should behave in a small set of
scenarios, and the system then infers a generalized program.
Prior work has explored PBD for creating programs for
personal task automation [9]–[16] and web scraping [5]–[8].

ScrapeViz leverages PBD approaches similar to prior PBD
web scraping systems [5]–[8] which also enable distributed
hierarchical scraping. In Rousillon [5], users provide one
example for each kind of data they want to scrape for the
system to generalize from; in WebRobot [6] and ScrapeViz,
users provide two examples. However, unlike these systems,

ScrapeViz also provides a visual representation that gives a
complete overview of macro behavior in context.

C. Understanding macros

To understand how a macro behaves, a user can manually
run their macro on different inputs, but this can be cumber-
some. Some PBD systems [6]–[8], [16] give macro creators a
preview of how the macro will run on the next input, which
helps them understand behavior as they build it. Rousillon [5]
uses color coding to highlight the corresponding UI elements
on a given page, but only on a single page and not across
multiple pages, and only during authoring and not afterward.
A key limitation of these approaches is that the user only sees
the macro run on a small set of inputs—they do not get an
overview of how the macro works broadly and as a result may
miss cases where the macro does not behave as desired.

MIWA [8] provides an overview of macro behavior through
a step-by-step natural language description of actions, visually
highlighting corresponding UI elements on the website page
for each action, and proactively pointing out potential anoma-
lies. However, users cannot see an overview of pages visited,
cannot see visual correspondence highlighting across multiple
pages, and cannot easily determine the page and location that

2301

data in the output table came from. Instead, ScrapeViz aims to
help users get an overview of macro behavior across different
page contexts through a visual representation of pages visited
and interactive output table for checking data sources.

III. DESIGN

ScrapeViz has the following key design features:
• Authoring

– Programming-by-demonstration. Authors provide
two examples for each navigation or scraping action
they want to perform. The system then infers the rest
of the UI elements to perform that action on, within
and across website pages.

– Live feedback. As users author, they are given imme-
diate feedback of actions performed, pages visited,
specific data scraped, and generalizations.

• Visual representation.
– A storyboard-like visual of action sequences and

the hierarchy of resulting website pages, presented
through multiple live viewports. Parallel website
pages are grouped together to signify their semantic
similarity and scraping generalizations across them.

– Color-coding of UI elements identified as parallel
based on user demonstrations.

– Interactivity that enables users to zoom in on any
given website page to inspect or add actions.

• Interactive output table where users click on a cell and
are automatically taken to its source page and location.

IV. SAMPLE USAGE SCENARIO

A. Authoring

Susan is analyzing the distribution of actor ages in popular
movies and needs to collect data from the IMDb website1.
For each movie, she needs to collect its name, its actors’
names, and the birthdate for each actor2. Susan decides to
use ScrapeViz to create a scraping macro to collect this data.

ScrapeViz starts by showing just a top-level IMDb page
(Fig 1-D) which includes a list of movie titles, each a
link leading to the individual movie’s page. Susan starts by
demonstrating collecting data for one movie and one of
its actors. She does this by clicking the first movie title on
the page, “Everything Everywhere All at Once” (EEAAO)
(Fig 1-C), which scrapes the movie’s title and navigates to the
movie’s page. Instead of opening the movie page in the current
viewport, ScrapeViz leaves the current viewport intact at the
top-level page (Fig 1-D) and creates a new smaller viewport
(Fig 1-N) next to it to load the movie page in. This allows
Susan to keep track of the pages she has visited and revisit
them later to make edits or additions. Susan clicks on the
smaller viewport to expand it and see the movie page more
clearly; this then shrinks the original viewport containing the

1https://web.archive.org/web/20230404103018/https://www.imdb.com/
search/title/?count=100&groups=oscar best picture winners&sort=year,
desc&ref =nv ch osc

2IMDb example inspired by Rousillon [5]

list of movies. She then clicks the first actor name link on the
EEAAO movie page, Michelle Yeoh (Fig 1-K), which scrapes
her name and navigates to her page. Finally, she scrapes the
birthdate “August 6, 1962” (Fig 1-S) on Michelle Yeoh’s page.

At each step of Susan’s demonstration, the interface builds
up a storyboard-like visualization illustrating the sequence
of pages navigated to, places a border around selected UI
elements illustrating data scraping and clicking actions per-
formed, and places scraped text into the output table (Fig 1-
H). The visualization uses color-coding to indicate element
interactions that lead to new UIs. Here, for example, the
same color orange border is used to convey that clicking the
“Everything Everywhere All at Once” text (Fig 1-C) causes
the browser to navigate to page 2 (Fig 1-N).

Next, Susan wants to replicate these extraction steps for the
rest of the actors in the cast. To tell ScrapeViz to generalize
in this way, she simply needs to click on a second actor
name, e.g., “Stephanie Hsu” (Figure 1-M). The system then
infers that Susan wants to perform the same kind of actions
demonstrated for Michelle Yeoh for other actors on the page,
illustrated through an updated visualization: a purple border
around each actor name on the EEAAO page (Fig 1-N), a new
small viewport for each actor page that is visited upon clicking
an actor name (Fig 1-R), a blue border around the birthdate on
each actor page (Fig 1-Q), and scraped actor names (Fig 1-E)
and birthdates (Fig 1-F) added to the output table.

Next, Susan similarly wants to specify that all of the action
sequences performed for the EEAAO movie should also be
performed for each of the other movies on the page. She
does this by clicking “CODA” (Fig 1-A) to give a second
movie example, which again results in an updated macro and
visualization—orange borders around the movie titles on the
top-level page (Fig 1-B) indicate that they will be scraped and
clicked like EEAAO, and the resulting movie pages visited are
shown in viewports in the middle column (Fig 1-L). The way
that actor names were scraped and clicked for the EEAAO
movie page will automatically be generalized to the other
movie pages, too, as evidenced by the purple borders around
actor names on all of the movie pages in the middle column
(Fig 1-J). Finally, the way actor birthdates were scraped for
EEAAO will automatically be generalized to the rest of the
movies and will be performed once those actor pages are
rendered. To avoid excess cognitive load, we only show actor
pages for the currently selected movie (signified with a thick
black border, Fig 1-N) and we only show at most seven actor
pages at a time. To view other pages in a group, the user can
click to select a different parent viewport or navigate through
sibling pages using left and right arrow buttons (Fig 1-P). To
collect a particular datum that has not been rendered yet, they
can click on its “Collect” button (Fig 1-G) in the output table,
which will bring the viewport containing the expected data into
view and also bring all of its ancestor viewports into view.

After browsing through the website pages and inspecting the
output table, Susan feels confident that the macro is scraping
the data she wants. ScrapeViz has allowed Susan to author
nested-loop scraping logic, and across multiple pages—for

3302

each movie, scrape its name and click on it to reach its list
of actors; for each actor, scrape their name and click on it to
reach their birthdate and scrape their birthdate text.

B. Consuming

Imagine Susan shares her macro with a colleague. Scrape-
Viz’s visual representation would allow the colleague to get an
overview of the macro’s behavior without needing to watch a
long and linear execution of the macro, where it may be harder
to keep track of which pages were visited and which data was
scraped. If she wants to understand exactly what certain data
in the table mean and where they came from, she can click
on a cell and ScrapeViz will bring its source page into view
and specifically scroll to and highlight the data on the page.

V. IMPLEMENTATION

A. Inference

ScrapeViz leverages website structure-based inference
methods similar to those in ParamMacros [9]. ScrapeViz is
based on two kinds of generalization:

Generalizing across two example UI elements. When
the user clicks or scrapes a new UI element, we check
if it may generalize with any UI element the user has
previously clicked or scraped. We use the approach from
ParamMacros that leverages structural patterns in the web-
site DOM [23] to search for a generalized XPath formula
that matches all specified UI elements (e.g., the newly
scraped “Stephanie Hsu” and the previously scraped “Michelle
Yeoh” from Figure 1). This formula must have the form
/prefix/index/suffix, namely, the only difference be-
tween the two elements’ XPaths being the index of a sin-
gle node. If a generalized XPath of this form is found,
we then use that formula to enumerate the other matching
elements on the page. For example, the index-based XPath for
“Michelle Yeoh” is /html/.../div[1]/div[2]/a and
for “Stephanie Hsu” is /html/.../div[2]/div[2]/a,
so a generalized XPath that matches both of them is
/html/.../div[index]/div[2]/a.

Generalizing across pages. We also generalize actions
across pages. For example, after the user has generalized the
macro to scrape all movie titles from the top-level page (Fig 1-
B) and open viewports for each movie page (Fig 1-L), Scrape-
Viz now generalizes to replicate all actions from the original
“Everything Everywhere All at Once” page to each of the other
movie pages in column L – namely, to scrape all the actor
names. ScrapeViz simply applies the same generalized actor
XPath formula /html/.../div[index]/div[2]/a to
each of these other movie pages.

B. Interface

ScrapeViz is implemented as an Electron desktop app [24].
This supports a key requirement—the ability to embed mul-
tiple live website viewports at a time. We specifically use
Electron’s WebView component [25], which is a wrapper
around Chromium and enables rendering any target website.

VI. STUDY DESIGN

We conducted a within-subjects lab study to evaluate the
usability and usefulness of ScrapeViz.

A. Participants

We recruited 12 participants (6 men, 6 women; aged 22–52,
median 28.5) with varying levels of programming experience:
one participant with none, three with less than 1 year, two with
1–2 years, four with 2–5 years, and two with 5–10 years. We
compensated participants with a $40 USD Amazon gift card.

B. Protocol

1) Rousillon: We compared ScrapeViz to Rousillon [5],
another PBD tool which similarly enables distributed hi-
erarchical web scraping but with differences, e.g., visually
illustrates generalization only within a single page and not
across multiple pages, only conveys program representation
after the user has explicitly ended their demonstration, shows
only one website page at a time, does not link output table to
source pages.

2) Reading: Participants completed one reading task using
ScrapeViz and one using Rousillon. For each tool, we pre-
sented participants with a seven minute tutorial video.

Task websites: We chose macros that mostly worked but
also exhibited edge cases, to require users to carefully inspect
the macros and websites to identify these anomalies.

• WTA tennis3: A macro that scrapes players’ last names
from a top-level page containing a table of player data.
The macro also visits each individual player’s page and
scrapes their age and their coach’s last name.

• Wayfair furniture4: A macro that scrapes furniture prod-
ucts’ names from a top-level catalog page. The macro also
visits each individual furniture product’s page and scrapes
a list of “variations” (e.g., fabrics, colors, orientations).

Task instructions: We asked participants to describe what
data were scraped, what anomalies they saw (if any), and why
they believed these anomalies occurred.

3) Authoring: Participants completed one authoring task
using ScrapeViz and one using Rousillon. First, we had partic-
ipants complete a brief tutorial task to ensure familiarity with
the scraping interaction, demonstration, and generalization.

Task websites and instructions: We asked participants to
scrape the following data:

• Google Scholar5: researcher names, the titles of their
papers, the text of the paper’s PDF/HTML link. This data
was spread across three levels of pages.

• Yelp6: restaurant names, their hours for today, a list of
their most popular dishes. This data was spread across
two levels of pages.

3https://web.archive.org/web/20231012210012/https://www.wtatennis.com/
stats

4https://web.archive.org/web/20220324013917/https://www.wayfair.com/
furniture/sb0/sectionals-c413893.html

5https://web.archive.org/web/20230324030019/https://scholar.google.com/
citations?view op=view org&hl=en&org=8515235176732148308

6https://web.archive.org/web/20230429225251/https://www.yelp.com/
search?find desc=Pizza&find loc=New+York%2C+NY

4303

VII. RESULTS

Participants appreciated ScrapeViz’s visual and interactive
nature, enabling them to get an overview of macro behavior,
quickly understand the source of scraped data and anomalies,
and verify in-progress authoring.

A. Reading
1) Understanding what data is scraped: Presenting multi-

ple website pages with scraped elements highlighted helped
users discover the pattern of what was being scraped – “from
a number of examples I can see...okay, this is the last name
of the tennis player, this is their age” (P3). This also helped
participants understand the high-level actions performed and
the hierarchy of pages visited – “It was helpful to see how
[pages are] grouped together so I can say that this is what I’m
iterating through in the first layer... and so on” (P6).

2) Identifying source of data and anomalies: Participants
found clicking on cells in ScrapeViz’s interactive table highly
useful – “clicking on the value actually takes you to...where
that particular data point came from. I think that’s great, just
being able to investigate, especially if you see something
wonky like we did with actually both cases when there were
errors” (P9). In contrast, participants noted that with Rousillon,
in order to inspect potential anomalies, they had to align the
output table with website content and manually navigate.

3) Navigation: ScrapeViz helped participants keep better
track of pages as they navigated – “[Rousillon] was opening
up a new tab in the browser or you were having to navigate
to each page individually, you kind of lost that initial context,
whereas I felt like [with ScrapeViz], you still retained some
of that context... I could see the path that I was taking through
the webpages a little bit more clearly” (P5).

B. Authoring
Rousillon presents scraping results only after the user has

stopped recording demonstrations and then run the generated
macro. ScrapeViz actually starts scraping and generalizing
immediately as the user provides demonstrations. Many par-
ticipants found this real-time scraping helpful because it gave
them feedback that they were giving the correct number of
examples and that their generalization worked as intended –
“If I want to get all the authors’ name and after I select the
second one, [ScrapeViz will] highlight all the other authors for
me. So I’m pretty sure I did the right thing, but for [Rousillon],
because I cannot get visual feedback after I select the first one,
so I would be a little bit worried that I did something wrong”
(P11).

C. ScrapeViz – multiple website pages
Many participants did comment that the current interface

can at times feel overwhelming with too many website pages,
and instead suggested showing fewer parallel sibling pages at
once and hiding the rest. Some participants also commented
on how small the non-active website pages are and how it can
be hard to see all of the relevant content; future work should
explore how to highlight the most relevant content for users
within these small viewports.

D. Threats to validity
ScrapeViz and Rousillon presented anomalies differently for

the reading task websites we chose – ScrapeViz presented N/A
for missing values; Rousillon either included incorrect values
or skipped rows completely. In part due to this, participants
found it easier to identify anomalies in ScrapeViz. However,
our interviews with participants still highlight other more
meaningful differences between the tools, as described above.

VIII. DISCUSSION AND FUTURE WORK

A. More advanced AI
ScrapeViz uses heuristics for identifying parallel UI ele-

ments (i.e., XPath formulas) and when to show a page in the
current viewport versus a new one (i.e., a new viewport only
for a new URL). It will be important to explore approaches for
more robustly understanding UI element and page similarities,
e.g., using language or vision [26] based machine learning for
comparing the textual content, structure, or appearance of UIs.

Recent large language model (LLM) powered tools (e.g.,
MultiOn [27], Adept [28]) seek to support users in automating
web tasks through natural language alone, but are prone to
hallucinations. A visual macro representation like ScrapeViz
may help users verify automation produced by such agents,
especially if acting on multiple elements or across pages.

B. Visualizing intermediate within-page actions
ScrapeViz only works meaningfully for click actions that

navigate to new page URLs. Clicks that perform stateful op-
erations (e.g., deleting an item) or navigate within page (e.g.,
opening a pane) will all be performed within a single viewport,
resulting in the viewport effectively only showing the final
page state (and not intermediate ones). Future work should
consider how to visualize such in-page action sequences (e.g.,
storyboard graphic, GIF) and when to show them (e.g., for all
items on a page or only one at a time) to avoid information
overload and adhere to space constraints. Future work should
also explore ways for users to preview generalized stateful
operations before they are performed (since erroneously per-
formed stateful operations can be detrimental).

C. Checking for correctness across numerous webpages
Future work may explore helping users more quickly un-

cover patterns across pages, without needing to check all
sibling pages in a group. One approach may be to cluster pages
by visual or DOM similarity or scraping results similarity.

IX. CONCLUSION

We present ScrapeViz, a new programming by demonstra-
tion tool for authoring and understanding distributed hier-
archical web scraping macros. ScrapeViz provides users a
storyboard-like visual representation of their macro, illustrat-
ing the sequences of pages visited, UI elements scraped, and
generalizations across elements and pages, and links this to an
interactive output table. Through a lab study we saw ScrapeViz
helped participants get an overview of macro behavior, quickly
understand the source of scraped data and anomalies, and
verify in-progress authoring.

5304

ACKNOWLEDGMENTS

We thank our study participants for their time and effort,
and our anonymous reviewers for their feedback which has
helped improve the paper. Thank you also to Fei Wu who
helped provide usability feedback.

REFERENCES

[1] “Shortcuts user guide,” https://support.apple.com/guide/shortcuts/
welcome/ios, accessed: 2022-06-06.

[2] R. Krosnick and S. Oney, “Understanding the challenges and needs of
programmers writing web automation scripts,” in 2021 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2021, pp. 1–9.

[3] A. Cypher and D. C. Halbert, Watch what I do: programming by
demonstration. MIT press, 1993.

[4] H. Lieberman, Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

[5] S. E. Chasins, M. Mueller, and R. Bodik, “Rousillon: Scraping dis-
tributed hierarchical web data,” in Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology, 2018, pp. 963–
975.

[6] R. Dong, Z. Huang, I. I. Lam, Y. Chen, and X. Wang, “Webrobot:
Web robotic process automation using interactive programming-by-
demonstration,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2022.

[7] K. Pu, R. Fu, R. Dong, X. Wang, Y. Chen, and T. Grossman, “Semanti-
con: Specifying content-based semantic conditions for web automation
programs,” in Proceedings of the 35th Annual ACM Symposium on User
Interface Software and Technology, 2022, pp. 1–16.

[8] W. Chen, X. Liu, J. Zhang, I. I. Lam, Z. Huang, R. Dong, X. Wang,
and T. Zhang, “Miwa: Mixed-initiative web automation for better user
control and confidence,” in Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, 2023.

[9] R. Krosnick and S. Oney, “Parammacros: Creating ui automation lever-
aging end-user natural language parameterization,” in 2022 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 2022, pp. 1–10.

[10] G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E. Kandogan,
“Koala: capture, share, automate, personalize business processes on the
web,” in Proceedings of the SIGCHI conference on Human factors in
computing systems, 2007, pp. 943–946.

[11] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “Coscripter: automat-
ing & sharing how-to knowledge in the enterprise,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, 2008,
pp. 1719–1728.

[12] T. J.-J. Li, A. Azaria, and B. A. Myers, “Sugilite: creating multimodal
smartphone automation by demonstration,” in Proceedings of the 2017
CHI conference on human factors in computing systems, 2017, pp. 6038–
6049.

[13] T. J.-J. Li, I. Labutov, X. N. Li, X. Zhang, W. Shi, W. Ding, T. M.
Mitchell, and B. A. Myers, “Appinite: A multi-modal interface for
specifying data descriptions in programming by demonstration using
natural language instructions,” in 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 2018,
pp. 105–114.

[14] T. J.-J. Li, M. Radensky, J. Jia, K. Singarajah, T. M. Mitchell, and
B. A. Myers, “Pumice: A multi-modal agent that learns concepts and
conditionals from natural language and demonstrations,” in Proceedings
of the 32nd annual ACM symposium on user interface software and
technology, 2019, pp. 577–589.

[15] L. Pan, C. Yu, J. Li, T. Huang, X. Bi, and Y. Shi, “Automatically
generating and improving voice command interface from operation
sequences on smartphones,” in CHI Conference on Human Factors in
Computing Systems, 2022, pp. 1–21.

[16] K. Pu, J. Yang, A. Yuan, M. Ma, R. Dong, X. Wang, Y. Chen, and
T. Grossman, “Dilogics: Creating web automation programs with diverse
logics,” in Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology, 2023.

[17] T. Lau, “Why programming-by-demonstration systems fail: Lessons
learned for usable ai,” AI Magazine, vol. 30, no. 4, pp. 65–65, 2009.

[18] R. Krosnick and S. Oney, “Promises and pitfalls of using
llms for scraping web uis,” in Workshop.(April 2023). https://doi.
org/10.1145/nnnnnnn. nnnnnnn, 2023.

[19] “Beautiful soup,” https://www.crummy.com/software/BeautifulSoup/,
accessed: 2022-06-05.

[20] “Selenium,” https://www.selenium.dev/, accessed: 2020-09-11.
[21] J. Wong and J. I. Hong, “Making mashups with marmite: towards

end-user programming for the web,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 2007, pp. 1435–
1444.

[22] D. F. Huynh, R. C. Miller, and D. R. Karger, “Enabling web browsers to
augment web sites’ filtering and sorting functionalities,” in Proceedings
of the 19th annual ACM symposium on User interface software and
technology, 2006, pp. 125–134.

[23] “Document object model (dom),” https://developer.mozilla.org/en-US/
docs/Web/API/Document Object Model/, accessed: 2021-06-29.

[24] “Electron,” https://www.electronjs.org/, accessed: 2020-09-18.
[25] “Web embeds,” https://www.electronjs.org/docs/latest/tutorial/

web-embeds, accessed: 2023-10-21.
[26] S. Feiz, J. Wu, X. Zhang, A. Swearngin, T. Barik, and J. Nichols,

“Understanding screen relationships from screenshots of smartphone
applications,” in 27th International Conference on Intelligent User
Interfaces, 2022, pp. 447–458.

[27] “Multion - your personal ai agent,” https://www.multion.ai/, accessed:
2023-10-22.

[28] “Adept - useful general intelligence,” https://www.adept.ai/, accessed:
2023-10-22.

6305

