
Toward Providing Live Feedback in Web Automation IDEs
Rebecca Krosnick

Computer Science and Engineering
University of Michigan
Ann Arbor, MI, USA

rkros@umich.edu

Steve Oney
School of Information
University of Michigan
Ann Arbor, MI, USA

soney@umich.edu

INTRODUCTION
For professional and personal purposes, people repetitively
perform tedious tasks on the web, e.g., paying a monthly
bill, ordering household supplies, scraping data for a research
project, uploading files for a class. One approach to reducing
the burden of these repetitive tasks is using web automation
macros. Web automation macros allow a user to perform a web
task at the click of a button, optionally providing user input.
The macro then automatically navigates to the appropriate
website page and performs actions such as clicking buttons
and entering text input, saving the user time and energy.

Macros are commonly created by hand-writing them in code
(e.g., Selenium [7], CasperJS [1]), combining Internet of
Things trigger-action building blocks (e.g., iOS Shortcuts [9],
IFTTT [3]), or recording a user’s demonstration of actions
on a web page (e.g., CoScripter [13, 12], Selenium IDE [8],
iMacros [4]). In all cases the resulting macro representation
presented to users is a script of some sort - program code [1], a
list of commands [8], sloppy programming [13, 12], or block-
based programming [11, 9, 3]. A script representation, in
particular code, enables expert users to arbitrarily customize
their macro. However, macro scripts can be difficult for users
to understand and edit, whether they are a colleague viewing
the macro for the first time, or the macro creator trying to
edit their macro months after it was first created. A major
barrier to understanding macro scripts is that they lack user
interface (UI) context. Users cannot look at a macro script and
understand exactly what UI elements are being interacted with
and what effect commands have on the UI.

To explore how we might expand macro representations to
include visual context, we built VizMac, a tool that lets users
record their actions on a web page to generate a macro script
and see their recording as an animation. Users can inspect
the animation to see the expected UI before and after states
corresponding to a given line of code, and can see the UI
elements corresponding to UI selectors in the code visually
highlighted. These features help provide an understanding of
the code that has been generated.

We conducted a user study where we asked 8 participants to
create macros using VizMac, and an environment that does
not provide visual context (Selenium IDE) as a comparison
condition, by recording their actions and then making appro-
priate edits. Participants saw the value of having UI context
alongside the original recorded code, but only a few heav-
ily used the feature. Instead, a couple participants wished to
see the UI animations leveraged as previews of the actions
their in-progress code would perform. This could help users
understand immediately whether their edited code works as
desired.

Based on results from the user study, we propose design goals
and discuss design challenges for providing users live feedback
while they create web macros:

1. Provide live animation previews as code is updated

2. Provide live animation previews for multiple user inputs

3. Identify functional errors and provide hints to the user

4. Help the user identify semantic errors

VIZMAC TOOL
We built VizMac, a tool that helps programmers understand
and edit web macros by linking macro starter code to UI anima-
tions of web actions. To create a macro, the user first records
their web actions and then VizMac automatically generates
a corresponding macro script and an animation visualizing
the actions taken on the web page. The UI animations are
linked to the generated code in two ways: 1) for a given line
of code, the user can see the UI’s state before and after the
corresponding web action, and 2) for a given CSS selector
in the code, the user can see the corresponding UI element
highlighted. The user can then edit the script as desired, using
the animation to help understand how the original generated
code works. Below, we illustrate VizMac’s features and how
it can be used through a sample scenario. Then, we describe
VizMac’s implementation.

Sample Scenario
Sasha is a programmer who would like to create web macros
to automate frequent and tedious web tasks for her and her
family. One frequent task is placing weekday meal orders
on GrubHub for her busy family while they work and learn
from home during the COVID-19 pandemic. This task is a
good candidate for automation because Sasha’s family has
a few favorite restaurants they order from, and each family
member has their own favorite food item. A macro could



Figure 1. The VizMac user interface. VizMac enables users to record their actions on a website (A) and generate a corresponding macro script (C, D).
An animation of the recording is also presented (E). To understand what code does, the user can click on a line in either code editor to see the CSS
selector (H) and its corresponding UI element in the animation (K) highlighted in orange. Clicking on a line in the static code editor (D) will specifically
highlight and loop through the UI snapshots in the animation corresponding to this action. To make any edits to the generated script, the user can make
changes in the editable code editor (C).

enable her family to complete this task by simply selecting
a delivery date and time and the restaurant they would like
to order from and then clicking “Go”. For the purpose of
illustrating VizMac’s visual context features, we show how
Sasha builds an initial macro to order her family’s favorite
meal at one particular restaurant (i.e., Shake Shack), but Sasha
could do additional work to generalize the macro to order from
different restaurants.

Recording actions
Sasha starts creating her macro by opening VizMac and navi-
gating to the GrubHub website (Figure 1A). Next, she starts
recording her actions for placing an order by clicking the
‘Record A Demonstration’ button (Figure 1B). On the Grub-
Hub website she then enters their home address, selects the
delivery date and time, navigates to the Shake Shack page
and adds her family’s favorite items to the cart, and finally
clicks the ‘Checkout’ button to reach the final confirmation
page. (Note that she does not actually record placing the order.
The macro user will manually click the ’Place Order’ button
themselves.)

Macro script is generated
She clicks the ‘Stop Recording’ button and VizMac generates
macro code and an animation. An editable and runnable ver-
sion of the generated macro script appears in Figure 1C. This

is the script Sasha will edit to create her generalized macro.
Also, a static, non-editable version of the script appears in
Figure 1D. This version serves as a reminder of the original
code, and offers per-line links to the animation.

Animation is generated
An animation (Figure 1E) of Sasha’s recorded web actions is
also rendered at this time. The animation contains a sequence
of snapshots corresponding to the website’s intermediate UI
states over the course of the recording. The animation auto-
matically plays, advancing through the set of snapshots and
looping back around. The progress bar (Figure 1F) above the
animation indicates with a bright blue segment which snapshot
is currently shown. Sasha can inspect an individual snapshot
of the animation by hovering over segments of the progress
bar.

Running the macro script
Now that the script is generated, Sasha wants to try it out and
make sure it works, so she presses the ‘Run Macro’ button
(Figure 1G). VizMac then runs the code in the embedded
browser at a human-observable speed. Sasha watches and
confirms that the actions she recorded are indeed correctly
replayed.



Understanding what each line of code does
Currently the script will simply replay the actions Sasha
recorded, using the same delivery date and time each time
it is run. Sasha plans to edit the script to let the user input dif-
ferent dates and times, but first she wants to understand exactly
how the current script works. She does this by clicking on dif-
ferent lines of code in the static code editor (Figure 1D). When
she clicks on a given line, the animation will highlight the cor-
responding snapshots by looping only through the snapshots
corresponding to that line of code, i.e., the web page snapshot
immediately before the action is performed, snapshots while
the action is being performed (e.g., typing multiple characters
into a textfield), and a snapshot immediately after the action
was performed. Seeing the snapshots corresponding to each
line helps her understand which lines of code she should edit
in order to generalize date and time entry. For example, she
sees that she should edit the code corresponding to line 14
(Figure 1H) in order to support setting a different delivery date,
because the corresponding snapshots show date selection on
the GrubHub website.

Understanding which UI element each CSS selector refers to
Now that she knows which line of code to edit in order to
generalize date entry, Sasha needs to determine what changes
to make to that line of code. She looks at the line and suspects
that she needs to edit the CSS selector ‘#date-picker-
21-9-2020’ (Figure 1J) because this selector contains the
date she recorded, and instead she wants the script to click
the selector corresponding to a user-provided input. She con-
firms that ‘#date-picker-21-9-2020’ indeed corre-
sponds to the calendar date element she selected by clicking
on ‘#date-picker-21-9-2020’ in the code. ‘#date-
picker-21-9-2020’ is now highlighted in orange in the
code, and the corresponding UI element, the date ‘21’ (Figure
1K), highlighted in the animation. This selector highlighting
feature is available both for the editable macro script and the
non-editable generated script.

Allowing and integrating user input
Now that Sasha knows which part of code to edit in order
to generalize date entry, she now needs to enable user input.
She does this by going to the form area and selecting a date
field from the menu (Figure 1L) for the user to input their
desired delivery date into. Once she adds the date field (Fig-
ure 2A), VizMac automatically inserts new variables yyyy-
Field2, mmField2, and ddField2 (Figure 2B) into the
macro script, representing year, month, and day substrings of
the date the user inputted. Sasha then updates the ‘#date-
picker-21-9-2020’ selector string to replace ‘21-9-
2020’ with the above variables, making the new selec-
tor string ‘#date-picker-’ + ddField2 + ‘-’ +
mmField2 + ‘-’ + yyyyField2 (Figure 3A). Sasha
also adds a textfield whose variable she inserts in line 34
(Figure 3B) for the delivery time.

Running the script, encountering an error, and correcting it
To test out her script, Sasha enters test date and time values
into the form and then clicks ‘Run Macro’. Unfortunately
when running, an error occurs and Sasha is shown the

Figure 2. The user can create input fields for their macro parameters,
e.g., a date (A). VizMac then automatically adds corresponding variables
to the script providing access to the input field values (B).

Figure 3. An error is shown when a particular CSS selector does not
exist on the page.

error message ‘waiting for selector “#date-
picker-23-09-2020 > .text-muted” failed’.
She realizes that the date elements in the DOM actually do
not include a leading zero for single-digit days and months
(e.g., ‘9’ and not ‘09’ for September), but that the selector
who wrote does include leading zeros. She fixes this mistake
by writing some JavaScript to trim the leading zeros from
the ddField2 and mmField2 variables. Then she runs the
macro again and sees that it runs as expected, successfully
setting the user-specified date and time and adding the Shake
Shack items to the cart.

Implementation
VizMac is an Electron [2] application. The embedded web
page is contained with an instrumented Electron webview.
When the user records their web actions on the web page,
the webview listens for DOM events such as keydown,
mousedown, mouseup, click, select, input, and
more. When an event is captured, event metadata are saved
as well as a snapshot of the DOM at this point, taken using
rrweb-snapshot [6]. A contiguous set of semantically-related
events are grouped together into an action, for example adja-
cent keydown events typing a string into a textfield.

Once the user stops recording, VizMac converts each recorded
action into JavaScript code that leverages the Puppeteer au-
tomation library [5]. VizMac has high-level wrapper functions
for several common UI actions, e.g., type, click, select,
hitEnter. When the user runs their macro, this code is run
on a Puppeteer instance attached to the Electron webview.
VizMac renders each rrweb snapshot within its own iframe,



visually advancing through iframes by hiding and showing
them appropriately.

The cross-referencing between code and snapshots that occurs
by clicking lines in the non-editable script version is entirely
deterministic. Because the code cannot be edited by the user
and is simply the original generated code, VizMac knows
which action a given line of code corresponds to and therefore
knows which snapshots correspond to that line of code.

Finally, we use formBuilder [10] to render and control and
user input form area (Figure 1L).

Currently VizMac provides partial support for most websites,
enabling the user to record their actions and generating a
corresponding script and animation, but there are limitations.
For some websites rrweb-snapshot is not able to fetch all
page resources (e.g., images) to display in the UI snapshots.
Additionally, the script VizMac generates does not always
work, for example it might not capture all interaction events
(e.g., interactions within an iframe). Additional engineering
work is needed to address these current limitations.

USER STUDY
We conducted a small user study to seek initial feedback on
VizMac, see what benefits it may offer over a baseline tool
that does not provide visual context, and learn what challenges
users experience when creating web automation scripts. We
chose Selenium IDE [8] as our baseline because it supports
generating a script from recorded user actions, like VizMac,
but does not provide visual context.

Study Design
There were 8 participants, all experienced with programming
in JavaScript and using CSS selectors. Each participant used
each of the two tools (VizMac, Selenium IDE) for one task
each, with order, task, and tool counterbalanced. Task A was
to create a macro that sets the delivery location, date, and time
for a GrubHub order (similar to the Sample Scenario), and task
B was to create a macro that performs a flight search query on
the Southwest website (i.e., queries for given cities and flight
dates). Participants were given a 5 minute tutorial of each tool,
and 30 minutes to work on each study task.

Results

Usage Patterns and Benefits
Many participants completed tasks with VizMac and Selenium
IDE using similar strategies: running their macro numerous
times as they made edits, and creating new recordings to try
interacting with the page differently if their current script was
not working.

4 of 8 participants did incorporate the animation,
code/snapshot cross-referencing, and selector highlighting
features into their workflow, using them to gain understanding
of the code and debug. Code/snapshot cross-referencing
seemed helpful for determining which lines of code to edit, as
well as in identifying unnecessary lines of code that could be
deleted (i.e., extra, unnecessary actions the user performed on
the page).

In both VizMac and Selenium IDE participants had a ten-
dency to delete lines of generated code that they thought were
not necessary but in reality were (e.g., both a ‘click’ and
‘type’ command are generated for entering a date on the
Southwest website, but many participants thought they only
needed to keep one). With Selenium IDE, participants had
to create a new recording to recover lines of code that they
had deleted, but with VizMac, participants could reference the
animation and linked editor to identify and recover the deleted
code.

Participants also appreciated the highlighting of selectors’
DOM elements in the UI - “The fact that I could click on
a line and then at the bottom see that element being high-
lighted, and then when I go to the code that you can’t modify
and click that line again, you can see sort of where that ele-
ment is being involved, in the rest of the demonstration. It
was really really really helpful because I didn’t have to use the
Chrome browser tools to figure out what element should I be
looking at” (P8).

Although not all participants used the animation and selector
highlighting features, most expressed that they could be useful,
especially for more complex tasks than those given in the
study.

Challenges
There were a few challenges that participants experienced with
both VizMac and Selenium IDE:

1. Generated code is not always correct. It seems that some
UI events do not get captured correctly by VizMac and
Selenium IDE (e.g., clicking on an item in the Grubhub
location suggestions list), so users were surprised and frus-
trated when they immediately played the unedited code and
saw that certain actions were not performed. Participants
were also confused that the animation was not semantically
aligned with the code in this case, because the animation
does contain snapshots for all of the expected actions (some
of which may not be represented in code).

2. CSS selectors users wrote were sometimes incorrect.
When participants tried integrating user input into their
script, they usually found the right line of code to edit,
but sometimes edited that line incorrectly when it involved
modifying a CSS selector. For example, generalizing the
GrubHub script required plugging day, month, and year
strings into the correct CSS selector format, but some partic-
ipants accidentally swapped day and month in the ‘#date-
picker-[day]-[month]-[year]’ format.

3. Unexpected page state changes cause script to break.
One participant saw the GrubHub page state change dur-
ing the course of their task, which resulted in their script
unexpectedly failing after originally working. During their
recording, a default delivery date existed, which meant the
user had to click the default date in order to see the calendar
widget. However, later in the task this default date somehow
was cleared from the page state, resulting in the calendar
widget appearing automatically and the ‘click’ oper-
ation failing (because the default date element no longer
existed).



4. Script works for some user input but not others. During
the early stages of generalizing their script, participants usu-
ally tested with just one set of user input until it worked.
However, when they later tested with different input, the
script sometimes broke, e.g., selecting a date in the current
or next month on the Southwest website works fine, but se-
lecting a date more than a month in the future did not work;
for some participant implementations the date element they
wanted to click was not visible on the page because the
month had not been advanced. To make these scripts work,
participants had to add or replace automation commands.
If these participants had known early on that their script
would not work for all valid dates, they could have more
efficiently and strategically generalized their script.

In the first three cases, the user must first identify the source of
the error before making any attempt to fix it. However, due to
the lack of an immediate feedback loop, it can be challenging
for users to identify the source of an error. Participants often
make multiple code edits between macro runs, making it non-
trivial to identify which of these edits caused the error once
they do run the macro. Additionally, for the fourth case, the
user must manually and incrementally test their macro with
different inputs, which might impact their efficiency of cre-
ating a generalized script. We believe that incorporating live
feedback into web automation tools would be helpful so users
can efficiently and effectively identify when and where their
script has broken. In fact, one participant identified on their
own that a live feedback loop would be helpful, suggesting
that the animation continuously update to reflect the real-time
edits they make to the script.

LIVE FEEDBACK DESIGN GOALS AND CHALLENGES
Based on the challenges study participants faced, we propose
design goals and discuss design challenges in providing live
feedback in web automation tools.

Live previews as code is updated. As the user edits their
script, an animation or other visual should continuously pro-
vide a live preview of the actions the current script would
perform on the web page. Additionally, a preview should be
shown for the value of variables and expressions in the code
(e.g., CSS selectors that embed input variables). The current
orange highlighting feature cross-referencing CSS selectors
and UI elements should also be extended to dynamic CSS
selectors and the code’s live preview animation. If there is a
functional runtime error (e.g., an element selector not present),
the preview should show the final web page snapshot before
the error occurred and indicate which line of code the error
occurred on. Live previews will help users identify errors
immediately after they occur.

Live previews for multiple sets of user input. As the user
edits their script, they should be shown live previews not just
for one set of input, but for multiple sets, in order to help
them develop robust code earlier in the creation process. For
example, for a script that helps book a flight on the Southwest
website, live previews should be generated for multiple flight
dates, not just one. This could have helped participants realize
earlier on that their Southwest script works for dates in the
current and next months, but not yet for dates two months in

the future. With this knowledge, they could have modified
their script logic and commands earlier on.

An important question is what inputs should be considered.
To start with, the tool could create previews for all inputs the
user has tried already. However, it is possible the user has
changed their input specifications and that earlier inputs are
no longer valid (e.g., the program used to expect times on the
24 hour clock, but now expects them on the 12 hour clock
with a.m. and p.m.). Additionally, the tool could devise its
own new inputs using heuristics (e.g., for a date field choose
random dates, only dates in the future, or only dates that it
can find on the web page). However, some machine-generated
inputs are bound to be invalid (e.g., on the Southwest website
one can only book flights seven months in advance). For
both stale user-provided input and invalid machine-generated
input, the user should have the ability to exclude these from
future live previews. Potentially the user could also provide a
specification of valid input values per field.

Identify functional errors and provide hints. In addition to
sharing error messages, ideally the tool should also provide
the user explanations or hints as to why the error occurred. For
example, imagine the user has just generalized a date picker
CSS selector using variables but made a mistake, resulting in
an invalid CSS selector. Potentially the tool could show the
user the invalid concrete CSS selector their script just tried
using (e.g., ‘#date-picker-1-Sep-2020’) alongside
previously used valid CSS selectors (e.g., ‘#date-picker-
1-9-2020’).

Help user identify semantic errors. Sometimes the script
will run to completion but will not perform the actions as the
user intended. Because this does not cause a runtime error,
even if we show the user live previews illustrating the semantic
error, they might not look closely enough to detect it. One
possible approach to identifying semantic errors is helping
scaffold a test suite for the user. Perhaps for several repre-
sentative user inputs the user could record the desired actions,
and then the tool could use the final snapshot as the ground
truth for that input. This could be challenging though, because
likely two DOM snapshots that visually look the same are not
entirely identical. The user might need to provide annotations
for which particular DOM elements should be identical. Ad-
ditionally, a test suite that compares DOM snapshots might
not be effective for macros whose final outcome changes over
time (e.g., querying for stock data).

OTHER FUTURE WORK
Beyond live feedback, there is other work to do to improve the
usability of web automation tools. Macros that book a flight
or place a food order inherently perform a stateful operation.
However, when the user is still creating and generalizing their
macro, they do not want to book a flight or place a food order
each time they test the macro. Approaches should be explored
for enabling users to safely build and test macros that perform
stateful operations.

Generalizing a macro script is non-trivial, especially when
the generalized script involves control flow logic or complex
element selector rules. Future work should explore how to



help users more easily generalize, e.g., via programming by
demonstration or specifying generalization rules through end-
user style widgets.

Finally, it would be exciting to explore whether web automa-
tion creation tools can be designed for non-programmers,
given the animation representation of macros we have in Viz-
Mac.

CONCLUSION
As a first step to making web macro representations more
visual, we built VizMac, a tool that provides an animation of
a recorded macro and provides cross-referencing features to
identify what a given line of code does, and what UI element a
given CSS selector corresponds to. We conducted a user study
of VizMac where we found that although the animation fea-
tures were helpful, participants still had trouble understanding
the source of errors. As a result, we believe that incorporat-
ing live feedback into web automation tools will be helpful
in more effectively and efficiently identifying the source of
errors. We propose design goals and discuss design challenges
in making this possible.

REFERENCES
[1] CasperJS. https://www.casperjs.org/. Accessed:

2020-06-08.

[2] Electron. https://www.electronjs.org/. Accessed:
2020-09-18.

[3] IFTTT. https://ifttt.com/. Accessed: 2020-06-08.

[4] iMacros. https://imacros.net/. Accessed: 2020-06-08.

[5] Puppeteer. https://pptr.dev/. Accessed: 2020-09-18.

[6] rrweb-snapshot.
https://github.com/rrweb-io/rrweb-snapshot. Accessed:
2020-09-18.

[7] Selenium. https://www.selenium.dev/. Accessed:
2020-09-11.

[8] Selenium IDE. https://www.selenium.dev/selenium-ide/.
Accessed: 2020-06-08.

[9] Shortcuts.
https://apps.apple.com/us/app/shortcuts/id915249334.
Accessed: 2020-06-08.

[10] 2020. formBuilder. https://formbuilder.online/
Accessed: 2020-09-18.

[11] Sarah E Chasins, Maria Mueller, and Rastislav Bodik.
2018. Rousillon: Scraping Distributed Hierarchical Web
Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology.
963–975.

[12] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa
Lau. 2008. CoScripter: automating & sharing how-to
knowledge in the enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. 1719–1728.

[13] Greg Little, Tessa A Lau, Allen Cypher, James Lin,
Eben M Haber, and Eser Kandogan. 2007. Koala:
capture, share, automate, personalize business processes
on the web. In Proceedings of the SIGCHI conference on
Human factors in computing systems. 943–946.

https://www.casperjs.org/
https://www.electronjs.org/
https://ifttt.com/
https://imacros.net/
https://pptr.dev/
https://github.com/rrweb-io/rrweb-snapshot
https://www.selenium.dev/
https://www.selenium.dev/selenium-ide/
https://apps.apple.com/us/app/shortcuts/id915249334
https://formbuilder.online/

	Introduction
	VizMac Tool
	Sample Scenario
	Recording actions
	Macro script is generated
	Animation is generated
	Running the macro script
	Understanding what each line of code does
	Understanding which UI element each CSS selector refers to
	Allowing and integrating user input
	Running the script, encountering an error, and correcting it

	Implementation

	User Study
	Study Design
	Results
	Usage Patterns and Benefits
	Challenges


	Live Feedback Design Goals and Challenges
	Other Future Work
	Conclusion
	References 

