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Abstract. One problem with the constraint-based approaches to syn-
thesis that have become popular over the last few years is that they only
scale to relatively small routines, on the order of a few dozen lines of
code. This paper presents a mechanism for modular reasoning that al-
lows us to break larger synthesis problems into small manageable pieces.
The approach builds on previous work in the verification community of
using high-level specifications and partially interpreted functions (we call
them models) in place of more complex pieces of code in order to make
the analysis modular.
The main contribution of this paper is to show how to combine these
techniques with the counterexample guided synthesis approaches used
to efficiently solve synthesis problems. Specifically, we show two new
algorithms; one to efficiently synthesize functions that use models, and
another one to synthesize functions while ensuring that the behavior
of the resulting function will be in the set of behaviors allowed by the
model. We have implemented our approach on top of the open-source
Sketch synthesis system, and we demonstrate its effectiveness on several
Sketch benchmark problems.

1 Introduction

Over the last few years, constraint-based approaches to synthesis based on
sketches or templates have become quite popular [9, 17, 24, 26, 27]. In these ap-
proaches, the user specifies her intent with a template of the desired solution
leaving parts of the code unspecified (a sketch), and the synthesizer finds the
unknown code fragments such that the completed template conforms to a given
set of behavioral constraints (the spec). One problem with such approaches, how-
ever, is that they only scale to relatively simple routines, on the order of a few
dozen lines of code. Scaling such methods to more complex programs requires a
mechanism for modular reasoning.

The idea of modular reasoning has been quite successful and is widely used
today in verification of software and hardware, where pre and post-conditions
are commonly used to model complex functions (e.g. MAGIC [5],DAFNY [12]),
and where uninterpreted or partially interpreted functions play an important
role in abstracting away complex functional units [3, 4]. These assume-guarantee
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reasoning based approaches perform compositional verification by breaking down
the verification task of a system into smaller tasks that involve verification of
individual components, which enables the verification tools to then compose the
proofs to verify the whole system [16, 28].

In this paper, we present a mechanism of modular reasoning for synthesizing
complex sketches, where we use function models to specify the behavior of con-
stituent function components. A function model consists of three components:
pre-processing code that canonicalizes the input, an uninterpreted function that
models the function behavior, and a post-condition that specifies the desired
properties of a function. A model can also have a pre-condition that specifies
which parameters are legal for the function. However, we place two restriction
on models: 1) they cannot have any unknown code fragment (holes) and 2) they
cannot post-process the output of the uninterpreted function before returning
it. These function models are more general than pre and post-conditions with-
out uninterpreted functions, but are less general than pre and post-conditions
with quantifiers. This intermediate generality of function models provides us the
expressiveness to specify many complex functions and at the same time allows
us to efficiently use them for synthesis.

The function models in sketches introduce two new synthesis problems: 1)
synthesis with models and 2) synthesis for adherence. The synthesis with models
problem requires us to solve for unknown control parameters such that for any
uninterpreted function that satisfies the model’s post-condition, the specification
of main function should also hold. This problem in principle can be solved by
the traditional Cegis [22] algorithm but Cegis performs poorly in practice.
We present a new algorithm Cegis+ that combines the Cegis algorithm with
an approach that selectively uses existential quantification for some inputs [9]
for efficiently solving this problem. The sketch will use the function model in
place of a more complex function that itself may have unknowns. Therefore,
we also need to solve a second synthesis problem: synthesis for adherence, which
ensures that this more complex function is synthesized in a way that matches the
behavior promised by the model. This synthesis problem introduces a standard
doubly quantified constraint but with an existentially quantified function to
find a function that satisfies the model post-condition on all valid inputs and
has an equivalent input-output relationship with the original function. To solve
this problem, we present an approach to eliminate the existentially quantified
function by taking advantage of the specific form of the constraint and do not
require additional function templates unlike previous approaches [22, 31].

We have implemented the algorithms in the Sketch synthesis system [23]
and present the evaluation of the algorithm on several benchmark problems. We
show that function models enable synthesis of several complex benchmarks, and
our algorithm outperforms both Cegis and previously published algorithms.

Specifically, the paper makes the following contributions:

– We show that the existing approaches to counterexample guided synthesis
break down in the presence of models and present a new algorithm that can
efficiently synthesize functions that use models.



– We present a new way to encode the problem of synthesizing a function that
behaves according to a model without the need for existentially quantified
functions.

– We present the evaluation of our algorithm on several benchmark problems
and show how it enables solving of complex sketches.

2 Motivating Examples

We use two running examples to motivate the need of function models: integer
square root and big integer multiplication. They represent different kinds of
models, namely fully specified models and partially specified models, which will
expose different aspects of our algorithm.

2.1 Example 1: Square root for primality testing

For the first example, consider the sketch of an algorithm for primality testing
shown in Figure 1(a). The sketch requires the synthesizer to discover many of
the details of a fast primality testing algorithm that computes much smaller
number of divisibility checks than

√
p for every input p. Most importantly for

our purposes, the sketch calls a sqrt function to compute the integer square root.
This sqrt function is also sketched—not shown in the figure—so the synthesizer
would normally have to derive the details of the primality test and of the sqrt

function simultaneously. The correctness of the resulting implementation will be
established by comparing the result to that of a linear time primality test, one
that simply tries to divide p against all integers less than p. Sketch uses bounded
reasoning when deriving the details; in the case of this example, it will only
consider values of p with up to 8 bits. The sketch uses the optimize function to
ensure that the bound bnd is minimized for any value of p. The linexp construct
is not a function but a generator that must be replaced by the synthesizer with
a linear expression over its arguments and the minrepeat construct repeats its
argument statement minimum number of times (with different holes) such that
the sketch becomes satisfiable.

Instead of solving for the primality test and the square root simultaneously,
we can write a model of the sqrt function to express its main properties. In
general, a model calls an uninterpreted function and then asserts some properties
of the return value(s), which corresponds to the post-conditions of the modeled
function. The model allows us to break the problem into two sub-problems: 1)
we need to solve the main sketch using the model in place of the more complex
square root function, 2) we need to solve for the details of the square root
function under the constraint that it behaves according to the model. Note that
in addition to establishing the post-conditions, the model also expresses the fact
that when called twice with the same input, msqrt will produce the same value.
For this example the property is not very important because the function sqrt is
only invoked once. The post-condition fully constrains the output for any input,
so the model is said to be fully specified.



harness void fastPrimalityCheck(int p){

// all primes are of form 6k±1 except 2,3

bit isPrime = false;

if(p>??){

isPrime = true;

// repeat minimally with different holes

// check divisibility by 2 or 3

minrepeat{if(p%?? == 0) isPrime = false;}

// minimize loop bound: l1(
√
l2(p))/n

int bnd = linexp(sqrt(linexp(p))) / ??;

optimize(bnd,p);

for(int i=??; i < bnd; ++i){

minrepeat{

if(p % linexp(i) == 0) isPrime = false;}

}

}

assert isPrime==checkPrimalityLinear(p);

}

int msqrt(int i) models sqrt{

int rv = sqrtuf(i);

if(i<=0){

assert rv == 0;

}else{

assert rv*rv <= i;

assert (rv+1)*(rv+1)>i;

}

return rv;

}

(a) (b)

Fig. 1. (a) A sketch harness using the sqrt function to find the fast primality check
algorithm(en.wikipedia.org/wiki/Primality_test) that requires much lesser than √p
divisibility checks, (b) a model for the sqrt function encoding the square root property.

2.2 Example 2: Big integer multiplication

Models don’t have to be fully specified; in many cases, only a handful of proper-
ties of a function are relevant to synthesize a piece of code. As an example, con-
sider an application that requires big-integer multiplication; Section 5 describes
a couple of such functions we have explored, one of which is taking derivatives of
polynomials with big-integer coefficients. For all of these experiments, we were
interested in synthesizing implementations that used the Karatsuba algorithm
for big-integer multiplication, whose details we also wanted to synthesize as was
done in [23].

Without models, solving the sketch requires reasoning about the main func-
tion and the big integer multiplication in tandem. However, to reason about
the polynomial derivative function, we only need to know that multiplication is
commutative, and the zero property of multiplication (a number times zero is
equal to zero). We describe those properties in the model in Figure 2(b). Just like
with sqrt, the model breaks the problem into two independent sub-problems,
but there are important differences between the msqrtmodel and the mmulmodel.
The mmul model is under-specified, so there may be many functions that satisfy
it. This means that when synthesizing karatsuba, the constraint that the solu-
tion is represented by the model must be combined with additional constraints
that ensure that it is indeed implementing big-integer multiplication. Also, the
model uses min and max to canonicalize the input so that mmul(a,b) will call the



harness void main(int[n] x1, int[n] x2){
...

t = mul(x1, x2);
}

int[n] mul(int[n] x1, int[n] x2){
// karatsuba algorithm

...

}

int[n] mmul(int[n] x1, int[n] x2)
models mul{

int[n] xa = min(x1, x2);
int[n] xb = max(x1, x2);
int[n] rv = muluf(xa, xb);

if(x1 == 0 || x2==0){
assert rv == 0;

}

return rv;

}

(a) (b)

Fig. 2. (a) A sketch harness using the mul function that uses the karatsuba algorithm
for multiplying two integers represented by integer arrays, and (b) a model for the mul

function encoding the commutativity and zero properties.

uninterpreted function with the same arguments as mmul(b,a) and therefore the
model will be commutative.

Both the multiplication and the square root model use the same basic mech-
anisms, but as we will see they interact very differently with the counterexample
guided inductive synthesis algorithm Cegis. One of the challenges addressed by
our work is to define new general algorithms that work efficiently for both fully
specified and partially specified models with combinations of interpreted and
uninterpreted functions.

3 Problem Definition

A sketch is a function with missing code fragments marked by placeholders;
however, all sketches can be represented as parametrized functions Sk[c](in) or
simply Sk(c, in), where the parameter c controls the choice of code fragments
to use in place of the unknowns. The role of synthesizer is therefore to find a
value of c such that for all inputs in ∈ E in a given input space E, the assertions
in the sketch will be satisfied. In some cases, we may also want to assert that
the sketch is functionally equivalent to a separately provided specification. This
definition comes from [25], and using this definition as a starting point, we can
formalize our support for function models.

Figure 3(a) shows a canonical representation of the models supported by
our system. A modelM is defined to be a 3-tupleM ≡ (α, fu, Pmodel), where α
denotes the canonicalization function that canonicalizes the input to the model
before passing it to the uninterpreted function, fu denotes an uninterpreted func-
tion whose output rv is the output of the model, and Pmodel(rv, inmodel) denotes
a predicate that establishes properties of the return value with respect to the
input. The predicate Pmodel encodes the function’s post-condition. We assume
that models do not have explicit preconditions as they can be added using ad-
ditional if statements inside the Pmodel predicate, and they do not add much to
the formalism.



FModel(inmodel) models forig{
/* canonicalization function */

x = α(inmodel);
/* uninterpreted function */

rv = fu(x);
/* post-condition */

assert Pmodel(rv, inmodel);

return rv;

}

harness void Main(in){

c1 = ??; // unknown control

/* arbitrary computation */

t1 = h(in, c);

/* original function call */

t2 = forig(t1);
/* sketch assertion */

assert Pmain(t2, in, c);

}

forig(in){
c2 = ??;

· · ·
}

(a) (b)

Fig. 3. (a) A simple canonical model for a function forig, and (b) a sketch function
Main using the function forig.

Example 1. For the sqrt function model in Figure 1, the uninterpreted function
fu is sqrtuf, the canonicalization function is the identity function α(i) = i, and
the predicate is Pmodel ≡ (i ≤ 0→ rv = 0)∧ (i > 0→ rv2 ≤ i∧ (rv+1)2 > i). For
the big integer multiplication model in Figure 2, the uninterpreted function fu
is muluf, the canonicalization function is α(x1, x2) = (min(x1, x2), max(x1, x2)),
and the predicate is Pmodel ≡ (x1 = 0 ∨ x2 = 0)→ rv = 0.

We now formalize the problem in terms of a stylized sketch shown in Fig-
ure 3(b) which uses a function forig for which a model will be provided. In general,
sketches can have a large number of unknowns, but in our stylized function, we
use the variable c to represent the set of unknown values that the synthesizer
must discover. The function h(in, c) represents an arbitrary computation on the
inputs to the main function to generate the inputs to the model. The unknown
values may flow to the forig function, but as far as that function is concerned,
they are just another input. The function forig itself may have additional un-
knowns, but the model cannot. In the constraint formulas, we will use forig(in, c)
to denote the fact that the unknown values in forig will also be discovered by
the synthesizer. The correctness of the overall function is represented by a set of
assertions which can be represented by a predicate Pmain(t2, in, c), which can be
expanded to Pmain(forig(h(in, c), c), in, c). Without loss of generality, we assume
that the main function includes a single call to forig, but our actual implementa-
tion supports multiple calls to forig. Also, in real sketches, the assertions can be
scattered throughout the function, but this stylized sketch function will illustrate
all the key issues in supporting models.

Now, to compute the value of unknown parameter c from the sketch, we need
to solve the following two constraints.

1. Correctness of main under the model (Correctness constraint)

∃c1∀in∀fu Pmodel(rv, inmodel)→ Pmain(rv, in, c1) (1)



where inmodel ≡ h(in, c1) and rv ≡ fu(α(inmodel)). The constraint establishes
that we want to find unknowns c1 to complete the sketch such that for any
function fu, if the function satisfies the assertions in the model, on a given
input, then the assertions inside main will also be satisfied.

2. Adherence of the original function to the model (Adherence constraint)

∃c2∃fu∀x Pmodel(fu(α(x)), x) ∧ fu(α(x)) = forig(x, c2) (2)

The constraint establishes that there exists a function fu that satisfies the
assertions on all valid inputs (α(x)), and that has an equivalent input-output
relationship with the original function forig.

As the following theorem explains, finding c1 and c2 that satisfy the two con-
straints above is equivalent to finding a solution to the original sketch problem.

Theorem 1. If both Correctness constraint (Eq. 1) and Adherence constraint
(Eq. 2) are satisfied, then

∃c1, c2.∀in.Pmain(forig(h(in, c1), c2), in, c1)

Proof. Since the Adherence constraint (Eq. 2) is satisfied, we can use the second
conjunct fu(α(x)) = forig(x, c2) to substitute fu(α(x)) with forig(x, c2) in the
first conjunct of Eq. 2 to obtain

∃c2∀x Pmodel(forig(x, c2), x) (3)

Since the Correctness constraint (Eq. 1) holds for all fu, it should hold for the
fu in the solution of the Adherence constraint, and therefore fu(α(inmodel)) can
be substituted with forig(inmodel, c2) in Eq. 1 to obtain:

∃c1, c2∀in Pmodel(forig(inmodel, c2), inmodel)→ Pmain(forig(inmodel, c2), in, c1) (4)

In the above constraint (Eq. 4), we know the left hand side of implication
holds from Eq. 3, therefore the right hand side of implication should also hold,
i.e. ∃c1, c2∀in Pmain(forig(inmodel, c2), in, c1) holds where inmodel ≡ h(in, c1).

4 Solving Correctness and Adherence Constraints

In previous work [22], we have used a counterexample guided inductive syn-
thesis (Cegis) approach to solve the doubly quantified constraints that arise
in synthesis. Given a constraint of the form ∃c. ∀in. Q(in, c), Cegis solves an
inductive synthesis problem of the form ∃c. Q(in0, c) ∧ Q(in1, c) · · · ∧ Q(ink, c),
where {in0 · · · , ink} is a small set of representative inputs. If the equation above
is unsatisfiable, the original equation will be unsatisfiable as well. If the equation
provides a solution, we can check that solution by solving the following equation
∃in ¬Q(in, c). The algorithm, shown in Figure 4, consists of two phases: synthesis
phase and verification phase. The algorithm first starts with a random assign-
ment of inputs in0 and solves for the constraint ∃c Q(in0, c). If no solution exists,



then it reports that the sketch can not be synthesized. Otherwise, it passes on the
solution c to the verification phase to check if the solution works for all inputs us-
ing the constraint ∃in ¬Q(in, c). If the verifier can’t find a counterexample input,
then the sketch Sk(c) is returned as the desired solution. Otherwise, the verifier
finds a counterexample input in1 which is then added to the synthesis phase. The
synthesis phase now solves for the constraint ∃c Q(in0, c) ∧ Q(in1, c). This loop
between the synthesis and verification phases continues until either the synthesis
or the verification constraint becomes unsatisfiable. The algorithm returns “no
solution” when the synthesis constraint becomes unsatisfiable whereas it returns
the sketch solution when the verification constraint becomes unsatisfiable.

Synthesis Phase Verification Phase

∃ 𝑖𝑛 ¬ 𝑄(𝑖𝑛, 𝑐)

{𝑖𝑛𝑖}

𝑆𝑘(𝑐)
𝑖𝑛0 𝑐

∃𝑐 𝑄 𝑖𝑛0, 𝑐 ∧ ⋯
∧ 𝑄 𝑖𝑛𝑘 , 𝑐

NO

YES

Fig. 4. The CounterExample Guided Inductive Synthesis Algorithm (Cegis).

4.1 Limitations of Cegis for the Correctness constraint

We can apply the same Cegis approach to solve the Correctness constraint in
Eq. 1, but as several authors [9, 31] have pointed out, the Cegis algorithm tends
to perform poorly when there are strong assumptions in the sketch that depend
on the values of the unknown control parameters. The problem is that when the
verifier finds a counterexample, it is relatively easy for the inductive synthesizer
to avoid the problem by changing the assumptions rather than by correcting the
problem. To illustrate this issue, consider the example in Figure 5.

harness void main(in){

int j = in + c1;
int t = msqrt(j*j);

assert t == in + c2;
}

Fig. 5. A simple msqrt example.

The example is artificial, but it illustrates
an effect that happens in the primality check
example as well. The example has two un-
known integer values, c1 and c2, and one can
easily see that as long as c1 and c2 are equal,
the program will be correct. In this case, a
counterexample from the verifier would in-
clude the value of in, as well as a function sqrtuf. Now, suppose that the Cegis
algorithm starts with an initial guess of c1 = 3 and c2 = 6. The verifier can
immediately produce the following counterexample: in = 2, sqrtuf = (25 →
5, else → 7). The function sqrtuf in the counterexample evaluates to 5 when
the input is 25, and to 7 otherwise. In this case, the strong sketch assumption
(the model assertion) t∗t ≤ (in+c1)∗(in+c1)∧(t+1)∗(t+1) > (in+c1)∗(in+c1)
depends on the value of the control parameter c1. The problem now is that for



any value of c1 6= 3, the sqrtuf function in the counterexample will fail the model
assertions. Say the synthesizer picked a value c1 = 4, then the model assertion
Pmodel ≡ 7 ∗ 7 ≤ (2 + 4) ∗ (2 + 4) becomes false. The synthesizer can easily pick
a value for c1 6= 3 that makes the model assertions Pmodel false, and therefore
vacuously satisfy the correctness condition Pmodel → Pmain. Therefore, the Cegis
loop needs to perform O(2n) iterations before converging to the desired solution,
where n is bound on the number of bits in the input integer in.

A previously proposed solution to this problem has been to identify that
some inputs are actually dependent on other inputs, and should therefore not
be a part of the counterexample, but instead the values of the dependent inputs
should be existentially quantified [9]; i.e. they should be chosen angelically to use
the terminology of [?,?]. In this case, for example, that approach would suggest
that the sqrtuf function should not be part of the counterexample, since it is
fully determined by the assertions in the model and the values of in and c1.
Following this approach, the inductive synthesis problem would then be

∃c, fu0
, · · · , fuk

. Q(c, in0, fu0
) ∧ · · · ∧ Q(c, ink, fuk

) (5)

where Q(c, in, fu) ≡ Pmodel(fu(α(h(in, c))), h(in, c)) ∧ Pmain(fu(α(h(in, c))), in, c).
Note that here we have replaced the implication in the correctness constraint
with the conjunction, enforcing that the angelically selected fui

values always
satisfy the model assertions Pmodel. The function fu is no longer part of the
counterexample, since it is fully defined by the assertions from the values of
input in and unknown control c. This approach has an implicit assumption that
there exist functions fui that satisfies Pmodel for corresponding inputs.

However, a big problem with this approach is that it may fail to converge in
some cases. This happens in cases when the predicates in the model do not fully
constrain the function, or they constrain it fully on only some of the inputs. For
example, this is the case with the big integer multiplication example, where the
predicate only constrains the function when one of the inputs is zero. Consider
the scenario where for a given value of unknown ci and an input ini, there are two
functions fu and f ′u that both satisfy the model assertions Pmodel, but only fu sat-
isfies the main assertions Pmain, i.e. Q(ci, ini, fu) is satisfiable whereas Q(ci, ini, f ′u)
is unsatisfiable. Since the synthesizer is solving the existential (angelic) problem
in Eq. 5, it will satisfy the equation by selecting the function fu for ini and
ci. However, the verifier needs to ensure that the completed sketch satisfies the
correctness predicate for all functions fu, and it will produce a counterexample
(ini, f

′
u) for the given control value ci. Since the synthesizer ignores the function

f ′u of the counterexample and only considers the input ini, this algorithm as a
result goes into an infinite loop and does not converge.

4.2 Our algorithm Cegis+

Our algorithm Cegis+ combines the benefits of the angelic approach while also
ensuring that it converges in all cases. For the inductive synthesis phase, we use
the following constraint:



Definition 1 (Inductive synthesis constraint).

let y = h(ini, c), x = α(y) in

∃c, fu0
, · · · , fuk

∧
(ini,fcexui

)

let t = ite(Pmodel(f
cex
ui

(x), y), fcexui
(x), fui

(x)) in

Pmodel(t, y) ∧ Pmain(t, ini, c)

where ite(c, a, b) is the standard if-then-else function such that ite(true, a, b) =
a and ite(false, a, b) = b. The functions fcexui

are obtained from the verifier
counterexamples, and the functions fui

are determined angelically.

The key idea behind this approach is that if the function from the counterex-
ample satisfies the model assertions in the synthesis phase, then the synthesis
constraint will use the counterexample function in the model. This will often
be the case when the assertions in the model are under-constrained (weak), as
is the case in the big integer multiplication example. On the other hand, if the
assertions in the model are strong, as is the case with the square root model,
the counterexample function will be ignored, and instead the synthesizer will use
one of the angelically determined functions. The verification phase still solves
the same correctness constraint in Eq. 1. The soundness of our algorithm follows
from the soundness of the Cegis and angelic algorithms. We now show that
Cegis+ algorithm always converges.

Theorem 2. Assuming there exists a function fu that satisfies the model as-
sertions for all inputs, the Cegis+ algorithm is guaranteed to converge to the
solution of correctness constraint in Eq. 1.

Proof. Since all sketches are solved with a bounded size on inputs, the set of
possible counterexamples (in, fcexu ) ∈ IN ×FU is bounded where input in and
function fcexu take values from the finite sets IN and FU respectively. In each
iteration of the Cegis+ algorithm a new counterexample (in, fcexu ) is added. The
only case for the algorithm to iterate forever is when the inductive synthesizer can
produce a c that fails for one of the previously found counterexamples (ini, fcexui

)
(i.e. it ignores the fcexui

value and selects the angelic value fui instead) and the
verifier generates the counterexample (ini, fcexui

). This can’t happen, because our
synthesis constraint only ignores the counterexample function when the model
assertion Pmodel(f

cex
ui

(x), y) becomes false and therefore (ini, f
cex
ui

) cannot be a
valid counterexample as the implication Pmodel → Pmain will be true vacuously.

4.3 Solving the Adherence Constraint

Once we know that the main function is correct under the model, we need to
show that the original function actually matches the behavior promised by the
model. The adherence of model to the original function can be established by
the following constraint:

∃c ∃fu ∀x. Pmodel(fu(α(x)), x) ∧ fu(α(x)) = forig(x, c) (6)



This constraint looks similar to the standard doubly quantified constraint
usually solved by Cegis, but one crucial difference is that it contains an exis-
tentially quantified function. The Z3 SMT solver [31] uses two main approaches
to get rid of these kinds of uninterpreted functions; one is to treat assignments
of the form ∀x.f(x) = t[x] as macros and rewrite all occurrences of f(x) to t[x]
in the formula. We can use this technique to eliminate fu from the first part of
the equation above, but the equality fu(α(x)) = forig(x, c) cannot in general be
treated as a macro because of the presence of α. Another approach used by Z3
and inspired by Sketch is to ask the user to provide a template for fu that allows
it to do existential quantification exclusively over values instead of over func-
tions. However, in our case we can do a lot better than that by taking advantage
of the specific form of the constraints and the fact that we do not actually care
about what fu is; we only care to know that it exists.

We can efficiently solve the Adherence constraint in Eq. 6 by instead solving
the following equivalent constraint:

∃c∀x Pmodel(forig(x, c), x) ∧ ∀x1, x2 α(x1) = α(x2)→ forig(x1, c) = forig(x2, c)
(7)

The constraint states that the original function should satisfy the model con-
straints for all input values x, and if two inputs x1 and x2 cannot be distinguished
by the canonicalization function α then the original function forig should also
produce the same outputs on the two inputs. This equation does not involve
any uninterpreted functions of any kind, and can be solved efficiently by the
standard Cegis algorithm because the left hand side of the implication does not
depend on the unknown values c.

Theorem 3. The constraint in Eq. 7 is equivalent to the Adherence constraint
in Eq. 6.

Proof. It is easy to see that the Adherence constraint (Eq. 6) implies the con-
straint in Eq. 7. If forig does not satisfy the assertions in the model, then it can
not be equal to fu(α(x)). Also, if there are two inputs that cannot be distin-
guished by α, but for which forig produces different outputs, then it would not
be possible to find an fu such that fu(α(x)) equals forig.

The converse is a little trickier. We have to show that if Eq. 7 is satisfied,
then the Adherence constraint will be satisfied as well. The key is to show that
for a given value of c if ∀x1, x2. α(x1) = α(x2)→ forig(x1, c) = forig(x2, c), then
∃fu∀x fu(α(x)) = forig(x, c). Let fu(t) be a function computed as follows:

fu(t) =

{
forig(x1, c) if ∃x1. α(x1) = t
0 Otherwise

Now, we have to show that such an fu is well defined and satisfies ∀xfu(α(x)) =
forig(x, c). Consider two values x1 and x2 such that α(x1) = α(x2) = t, then
α(x1) = α(x2) → forig(x1, c) = forig(x2, c) gives us forig(x1, c) = forig(x2, c). So
the function fu(t) returns the same value for both x1 and x2 and is therefore
well defined. The function fu satisfies the constraint ∀xfu(α(x)) = forig(x, c) by
definition.



A final point to note is that if a function forig satisfies the Adherence con-
straint for a given model, then it must be true that there exists an fu such that
the model satisfies its assertions for all inputs, which was one of the assumptions
of the algorithm to solve the Correctness constraint.

5 Evaluation

We now present the evaluation of our algorithms on a set of Sketch benchmark
problems. All these benchmark problems consists of sketches that use complex
functions such as integer square root, big integer multiplication, sorting (ar-
ray, topological) etc. In our evaluation, we run each benchmark problem for 20
runs and we present the median values for the running times and the number
of iterations of the synthesis-verification loop. The experiments were run (for
parallelization) on virtual machines with physical cores using Intel Xeon L5640
2.27GHz processors, each virtual machine comprising of 4 virtual CPUs (2 phys-
ical cores) and 16 GB of RAM.

5.1 Implementation and Benchmarks

We have implemented our algorithms for solving the Correctness and Adherence
constraints on top of the open-source Sketch solver. Our benchmark problems
can be found on the Sketch server1. A brief description of the set of sketch
benchmarks that we use for our evaluation is given below.

– calc-toposort: A function for evaluating a Boolean DAG using topological
sort function. A more detailed case study is presented in Section 6 for this
benchmark.

– bsearch-sort: A binary search algorithm to find an element in an array that
uses the sort function.

– gcd-n-nums: An algorithm to compute the gcd of n numbers that uses the
gcd function.

– lcm-n-nums: An algorithm to compute the lcm of n numbers that uses the
lcm function.

– matrix-exp: An algorithm to compute matrix exponentiation using the ma-
trix multiplication function.

– polyderiv-mult: An algorithm to compute the derivative of a polynomial
whose coefficients are represented using big integer representation and that
uses karatsuba multiplication.

– polyeval-mult-exp: An algorithm to compute the value of a polynomial on a
given value that uses the karatsuba multiplication and exponentiation func-
tions.

– power-root-sqrt: An algorithm to compute the 2kth integer root of a number
using the integer square root function.

– primality-sqrt: An algorithm to check if a number is prime that uses the
integer square root function.

1 http://sketch1.csail.mit.edu/Dropbox/models/experiments/



Experimental Setup All our benchmarks include a larger main function sketch
which calls another function forig which we would like to model and perform
modular synthesis efficiently. In most of the cases, the inner function forig is a
sketch which comes with an imperative specification f-spec and a declarative
model f-model. We perform our experiments based on the strength of the models:

1. If f-model enforces strong constraints (fully specifying the function, e.g. the
sqrt model) then we use f-model to synthesize both main and forig. We
compare this with synthesis of forig with the imperative f-spec and then
using f-spec or the synthesized forig function to synthesize main.

2. If f-model enforces weak constraints (partially specifying the function e.g.
the mult model) then we will have to fallback to synthesizing forig using
f-spec in any case. So, we don’t show the time for this synthesis process
and simply compare the median times for synthesis of main using f-model,
f-spec or synthesized forig.

5.2 Scaling Sketch solving using Models

We first show the need of using function models for solving large complex
sketches. The last columns in Table 1 and Table 2 show the time required by the
Sketch solver to synthesize the main function using the synthesized code for
inner function forig, which involves solving two sketch harnesses. As we can see
from the tables, most of these sketches either timeout because of overshooting
the memory limits or by going over the timeout limit, which we set to 15 min-
utes for all the benchmark runs except the calc-toposort benchmark for which
we use a 5 hour limit. We observed that even when we let these sketches run
for a longer time, they often run out of memory and do not terminate. Other
alternative options to solve such complex sketch problems is to synthesize the
function forig using its imperative specification f-spec, and then synthesize the
harness function using f-spec. The middle column(s) in Table 1 and Table 2
(f-spec) report the time taken to synthesize the main function using f-spec. We
observe that this cleaner separation allows some of the harness functions to be
synthesized, but it typically takes a very long time. Some of these benchmarks do
not terminate when we use more complex functions, e.g. when we use merge sort
(instead of bubble sort) for the sorting function. The first columns in Table 1 and
Table 2 (Using f-model) show the results of using function models for solving
main or both of these sketches. We observe a big improvement in synthesis times
of sketches for cases in which they depend on only some partial property of forig
and in cases where the models are exponentially succinct. For example, for the
matrix-exp benchmark, the sketch harness only needs to know the exponentia-
tion property of multiplication. For some benchmarks such as primality-sqrt,
the synthesis times are quite similar to the synthesis time of the second approach
because in this case the function model expresses the complete property of the
sqrt function, and the constraints generated by the model are almost equal in
size to the constraints generated by the linear square root search. We note that
in all the benchmarks, the model based solving is always faster than the chained



synthesis (Synthesizing main using synthesized forig) and in most cases, it is also
better than or as good as using the imperative specification f-spec.

Benchmark
Solving Time (in s) for Synthesis of main

Using f-model Using f-spec Using synthesized forig
main forig Adh. Total main forig Total main forig Total

calc-toposort 246.5 - 1974.6* 2221 × - × × - ×
gcd-n-nums 2.4 7.1 0.4 9.9 8.4 11.7 20 1.7 11.7 13.4
lcm-n-nums 1.5 17.2 0.4 19.2 × 30.2 × × 30.2 ×

power-root-sqrt 1.04 93.7 0.3 95.1 × 57 × × 57 ×
primality-sqrt 438.1 64.9 0.3 503.4 302.9 37.8 340.7 × 37.8 ×

Table 1. The sketch solving times for three approaches in the presence of a strong
model: i) using models (f-model) ii) using imperative specification f-spec, and iii)
Synthesis of forig using f-spec and main using synthesized forig. The × values in the
table entries denote timeout (> 15 mins), *timeout for calc-toposort set to 5 hours.

Benchmark Solving Time (in s) for Synthesis of main using
f-model + Adherence f-spec synthesized forig

bsearch-sort 8.45 0.87 9.32 29.2 83.265
matrix-exp 17.14 64.2 81.34 × ×

polyderiv-mult 5.61 0.9 6.51 12.601 ×
polyeval-mult-exp 2.6 0.9 3.5 8.657 10.644

Table 2. The sketch solving times for three approaches in the presence of a weak
model: i) using models (f-model) with adherence check, ii) using imperative specifica-
tion f-spec, and iii) synthesis of main using synthesized forig. The × values in the table
entries denote time-out (> 15 mins).

5.3 Comparison with CEGIS and Angelic Synthesis

In this experiment, we compare the performance of our Cegis+ algorithm with
that of Cegis and the angelic synthesis algorithm on two metrics: 1) the solv-
ing time and 2) the number of synthesis-verification iterations. We expect the
Angelic algorithm to perform poorly on benchmarks where the function models
are under-constrained and similarly we expect the Cegis algorithm to perform
poorly on benchmarks that are over-constrained. Figure 6 shows the logarithmic
graph of running times of the three algorithms on our benchmarks. As expected,
we see two benchmarks where the Angelic algorithm times out (set to 15 min-
utes) whereas the Cegis algorithm times out on two different benchmarks. The
Cegis+ algorithm solves each of the problem within 440 seconds each and in
general has a faster or comparable performance on problems where other algo-
rithms don’t timeout. Figure 7 shows the logarithmic graph of the number of
synthesis-verification iterations performed by each one of the algorithms on the
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Fig. 6. The solving times of the three algorithms: Cegis+, Angelic, and Cegis on the
benchmark problems.

benchmark problems. The Cegis+ algorithm performs lesser number of iterations
than the Cegis algorithm for all benchmarks and performs lesser iterations than
the Angelic algorithm on all but two benchmarks.
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6 Case Study: Boolean DAG Calculator

We present a case study of using function models for synthesizing a calculator
that interprets a circuit representing a Boolean DAG (directed acyclic graph).
As shown in Figure 8, the interpreter has two main components: a calculator
and a parser, with auxiliary functions like cmain that just calls calc and parse,
and test that is the test harness.



int[n] mtopo(int n, int[2][n] parent)
models toposort {

int[n] sorted = topo_uf(n, parent);
for (int i=0; i<n; i++) {
int u = sorted[i];

// node id in sorted must be valid
assert u>=0 && u<n;
for (int j=0; j<=i; j++) {
int v = sorted[j];

// sorted contains no duplicated node ids
if (i<j) { assert u != v; }

// if u occurs after v, u cannot be v’s parent
assert u != parent[v][0] && u != parent[v][1];

}
}

}

bit[n] calc(int n, int[2][n] parent, int[n] opr) {
int[n] sorted = toposort(n, parent);
bit[n] result;

for (int i=0; i<n; i++) {
int u = sorted[i];
minrepeat { if (opr[u] == ??) {
result[u] = {| ?? | !result[parent[u][0]] |
result[parent[u][0]] || result[parent[u][1]]|
result[parent[u][0]] && result[parent[u][1]]|};

} }
}
return result;
}

int NOT = 2, OR = 3, AND = 4;

void parse(int n, int[3][n] input,
ref int[2][n] parent, ref int[n] opr){

// input is an array of 3-tuples
// of the form {Operator,Src1,Src2}.
// parse converts it to separate parent
// and opr, and sets unused parent[u][j]
// to -1. parse is also synthesized, using
// minrepeat, holes, and unknown choices.
}

bit[n] cmain(int n, int[3][n] input){
int[2][n] parent;
int[n] opr;
parse(n, input, parent, opr);
return calc(n, parent, opr);

}

harness void test(int n, int[3][n] input){
// test for execution safety
cmain(n, input);

// test for functional correctness
assert cmain(5,{{1},{0},{AND,1,3},
{OR,0,4},{NOT,1}}) == {1,0,0,1,1};

// a few more test cases, omitted here
}

Fig. 8. The sketch for the Boolean DAG calculator.

The calc function takes as input a DAG that defines a Boolean circuit, and
calculates the value of every Boolean node: the DAG is represented in an internal
representation consisting of an array opr that defines the Boolean operator at
each node (we encode the CONST 0 and 1, NOT, OR, and AND operators using
integer values), and an array parent that denotes the source operands of each
node’s operator, i.e. parent[u][j] stores the node id of node u’s j-th operand.
We assume at most 2 operands for each operator for simplicity and in the case
where a node u has fewer than 2 operands, some parent[u][j] will be set to −1.
The output of calc is result, a bitvector of size n, where result[u] stores the
calculated value of node u.

We first need to get a topological order of the DAG to calculate the node
values. The simplest imperative toposort function (omitted here) is too complex
for the solver to reason about, but the declarative model of toposort (mtopo) is
simple and solver-friendly. The main part of calc is for calculating each node’s
value according to the node operator and is based on the previously calculated
node values. This calculation is usually performed using a “big switch” (or several
if statements). The cases for different operators are very similar: depending on
the operator, fetch the values of different number (can be 0) of parents, and
calculate the result, which are tedious to write. Here calc relies on synthesis to
reduce this burden (see the minrepeat block): it abstracts the common structure
of all cases and leaves the differences to unknown constant choices, which are



solved by the synthesizer. The use of synthesis also allows the function to adapt
to small changes in its requirements. For example, if the programmer decides
to no longer support OR because it is redundant with AND and NOT, the
synthesizer can adjust the function accordingly without the need to modify the
code. Similarly, new operators can be added or encoding of existing operators
can be modified just as easily.

The parse function takes as input the more readable format of the DAG
(where the operator and operands for each node are grouped together as a 3-
tuple), and converts it to the internal representation used by calc. It needs to
copy the right number of operands from input to parent, and set the remaining
parent values to −1 depending on the kind of operator, which we specify as
choices to be synthesized. The body of parse (omitted here) is also sketched
with unknown choices to solve similar to calc.

An interesting question in this case is how to provide a specification. The test
function is a harness testing two aspects of the program: execution safety (for
any input the program should execute without any assertion failure, array out of
bounds error, or reading uninitialized value error) and functional correctness (for
a set of known inputs the program should produce the known correct outputs).
The two aspects together are sufficient for the Sketch solver to determine all the
unknown constants.

As we can see from Table 1 and Figure 6, the use of function models enable
the synthesis for this complex program. Without the model, the solver timed out
after 5 hours and couldn’t synthesize the program; whereas with the model, it
solves the program in about 5 minutes (less than 40 minutes even after adding
the adherence checking time). We can also see that the Cegis+ algorithm is
much faster than Cegis because the inputs to the function model mtopo are
significantly influenced by the unknown holes in parse, and Cegis+ performs
slightly better than the pure angelic model.

7 Related Work

The idea of using function models for synthesis is very related to the work on
component-based synthesis and is inspired from modular reasoning techniques
used in verification. The work on efficiently solving QBF (Quantified Boolean
Formulas) is also related to our technique of solving Adherence constraints. We
briefly describe some of the related work in each of these areas.

Component-based Synthesis: The work on component-based synthesis con-
siders the problem of synthesizing larger systems using components as building
blocks, which is a central motive for our work of introducing function models in
Sketch. The closest related work to ours is that of synthesizing loop free pro-
grams using a library of components [9]. This work assumes that all library com-
ponents have complete logical specifications and it employs a constraint-based
synthesis algorithm similar to the angelic algorithm for solving the Correctness
constraint in the synthesis phase. Recently this approach has been applied for
synthesizing efficient SIMD implementation of performance critical loops [1]. As



we have observed for many benchmark problems, often times a partial specifica-
tion of the library component suffices for synthesizing the correct client code. In
the presence of partial function specifications (under-constrained specifications),
the angelic algorithm may not converge and is inefficient, whereas the Cegis+
algorithm efficiently converges to the solution for both partially-specified and
fully-specified function models. The work on LTL synthesis from libraries of
reusable components [13] assumes that the components are specified in the form
of transducers (finite state machines with outputs). Our work, on the other hand,
considers the problem of functional synthesis and uses constraint-based synthesis
algorithms.

Efficient QBF solving: Efficient solving of Quantified Boolean Formulas (QBF)
has been a big research challenge for a long time and the constraints generated
by Sketch are too large for current state-of-the-art QBF solver to handle [22].
Recently, word-level simplifications (inspired from automated theorem proving
and model finding techniques based on sketches) have been proposed to han-
dle quantified bit-vector formulas in an SMT solver [31]. We can also use this
technique to solve the Adherence constraint, but it would require us to provide
function templates for the unknown uninterpreted function. Our reduction al-
lows the Cegis algorithm to efficiently solve the constraint without the need of
a function template.

Compositional Verification: The idea of using function models for synthesis
is inspired from modular verification techniques used for model checking [6]. This
idea of modular reasoning using pre-conditions and post-conditions of functions
is widely used today in many verification tools such as DAFNY [12] and MAGIC [5]
to enable verification of large complex systems. These Assume-guarantee rea-
soning based techniques applies the divide-and-conquer approach to reduce the
problem of analyzing the whole system into verification of individual compo-
nents [16, 28]. For verifying individual components, it uses assumptions to cap-
ture the context the component makes about its environment and uses guaran-
tees as properties that will hold after the component execution. It then composes
the assumptions and guarantees to prove properties about the whole system. Our
function models apply these ideas in the context of software synthesis.

Program Synthesis: Program synthesis has been an intriguing research ques-
tion from a long time back [14, 15]. With the recent advances in SAT/SMT solvers
and computational power, the area of program synthesis is gaining a renewed
interest. It has been used successfully in various domains such as synthesizing
efficient low-level code [24], data-structures [21], string transformations [7, 8],
table lookup transformations [18] and number transformations [19] from input-
output examples, implicit declarative computations in Scala [11], graph algo-
rithms [10], multicore cache coherence protocols [29], automated grading of pro-
gramming assignments [20], automated inference of synchronization in concur-
rent programs [30], and for solving games on infinite graphs [2]. We believe our
technique can complement the approaches used in many of these domains.



8 Conclusion

In this paper, we presented a technique to perform modular synthesis in Sketch
using function models. This technique enables solving of sketches when they call
complex functions and when the correctness of the main harness function de-
pends on a partially interpreted version of the complex function (which we call
models). We show that both the Cegis and the angelic algorithm are inefficient
and potentially incomplete, and we present a complete and terminating algo-
rithm to efficiently solve sketches with all kinds of function models. On the basis
of promising preliminary results, we believe that this technique will prove very
useful in using Sketch for synthesizing complex and large synthesis problems.
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