
Providing Feedback and UI Context to
Programmers Writing Web Automation Scripts

Rebecca Krosnick1, Steve Oney2,1

1Computer Science & Engineering, 2School of Information
University of Michigan | Ann Arbor, MI USA

{rkros, soney}@umich.edu

Abstract—To more efficiently and effectively perform frequent,
tedious, or inaccessible web tasks, web users can leverage web
automation macros to programmatically click, type, and perform
other page operations. Developers commonly use automation
libraries such as Selenium to write custom web automation
scripts, but this comes with challenges. A developer must identify
robust navigation and element selection logic that works across
a variety of inputs and website pages. In particular it can be
challenging to choose meaningful and robust CSS selectors that
query the appropriate user interface (UI) elements from the
DOM. We believe developers need better tools for understanding
the effects their script has on a website. We built a prototype
web automation IDE that embeds UI snapshots, provides live
feedback on CSS selectors, and presents these across different
scenarios so the programmer can assess script robustness. We will
demo our prototype to get feedback and to discuss the challenges
and opportunities of UI automation.

I. INTRODUCTION

Certain web tasks can be obtrusively frequent (e.g., scraping
data), tedious (e.g., navigation and form filling), or inac-
cessible (e.g., to a blind person) for someone to complete
by hand. Web users can offload such tasks by running web
automation macros, for example via a browser extension,
that programmatically click, type, and otherwise interact with
website UIs. To create custom web macros, developers most
commonly write scripts, for example using Selenium [1],
Puppeteer [2], or Cypress [3]. Writing a web automation script
involves querying the Document Object Model (DOM) [4]
using CSS [5] or XPath [6] selectors to select desired UI
elements, and then interacting with them as appropriate. How-
ever, it can be challenging to write robust scripts that work
across different user inputs (e.g., dates to book a flight), page
states (e.g., logged in or not), page content (e.g., different
data across semantically similar Wikipedia articles), and page
DOMs (e.g., randomly generated UI element IDs). First, the
developer must be aware of such differences and identify
appropriate navigation and element selection logic. Then, the
developer must choose robust and meaningful CSS or XPath
selectors that select the elements they intend. These challenges
are exacerbated by the fact that developers typically do not
own the websites they are trying to automate, and therefore
must learn the DOM structure on the fly and also cannot
anticipate future changes to the website DOM or content.

This work is supported by NSF Award 2007857.

We believe developers creating web automation scripts need
more resources than current environments offer. We propose
providing UI context and element selection feedback within
the web automation developer’s scripting environment. We
built a prototype that provides snapshots of the website’s UI
state per line of code and feedback on the validity of CSS
selectors. This UI context and feedback is provided in one
place across user inputs and loop iterations to help developers
assess script success and discrepancies across scenarios.

II. PROTOTYPE

Our prototype web automation IDE (Figures 1 and 2)
embeds UI context and element selection feedback within
the web automation developer’s scripting environment. The
programmer writes their script in the editor in the left pane,
and can inspect (using Chromium dev tools) and interact with
the live website in the right pane.

UI snapshots. When the programmer runs their script,
snapshots of the website’s UI state before and after each line
of code are captured and rendered in a right pop-out pane
(Figure 2A). The programmer can view the snapshots for a
given line by clicking on that line in the editor or using the
form widget on the right. Developers can use these snapshots
to explore the effect a particular line of code has on the website
state and whether this matches their intentions.

CSS selector feedback. As the programmer writes a CSS
selector in the editor, elements matching the selector are
highlighted in blue in the live website view in real-time
(Figure 1A). This offers the programmer live feedback on
which elements their selector is matching, and allows them
to iteratively refine the selector inline and evaluate whether
it matches the desired element(s). The editor also provides
inline feedback on CSS selectors, indicating with a squiggle
and tooltip message whether a selector is valid and unique
(Figures 1B, 2B). This CSS validity check is performed each
time the programmer runs their code. The CSS validity check
may also be provided live as the user edits their code, if the UI
“before” snapshot for the given line of code is still valid (i.e.,
is not stale due to changes to earlier parts of the the script).

Across scenarios. The prototype IDE enables programmers
to see UI snapshots and CSS selector feedback across different
runs of a given line of code. This means that when the script
contains a loop, for example for scraping data from multiple
pages on a website, the programmer will be able to see UI



Fig. 1. Our prototype web automation IDE. As programmers write their script, they can inspect and interact with the target website within the IDE to identify
desired UI elements. When the programmer types a CSS selector on line 10, the matching UI elements on the website are highlighted in blue (A). Feedback
on CSS selectors also appears inline – the blue squiggle under #twotabsearchtextbox indicates it is found and unique (B). The programmer can also
run and test their script on different user inputs (C).

Fig. 2. Our prototype lets users inspect UI snapshots per line of code, across execution contexts. Here, the script has failed in the i=1 iteration of the loop,
and the snapshots (A) illustrate why. The UI snapshots for line 14 indicate that Stella (i=0) has five info elements (highlighted with a green border) matching
selector dd.txt (B) whereas Molly (i=1) only has one, which explains why the infoItems[1] indexing on line 15 failed for Molly’s page.

snapshots and CSS validity checks in the context of each
loop iteration (e.g., each article page) the code was run on.
The prototype IDE also lets users enter multiple sets of user
input values to run their script on (Figure 1C), enabling them
to see UI snapshots and CSS validity checks across different
inputs. UI snapshots across different runs are shown side by
side in the right pop-out pane, enabling users to compare
snapshot appearances and DOMs and identify discrepancies
(Figure 2A).

Implementation. The prototype is implemented as an Elec-
tron app [7], and uses the Puppeteer automation library [2]
for performing page operations and rrweb-snapshot [8] for

capturing DOM snapshots at runtime. The prototype lets users
run scripts on any real website.

III. PRESENTATION

We will present a live demo of our prototype during
the showpieces track and will have a few in-progress and
completed scripts ready to run or further edit. We have three
goals in presenting our demo: 1) to get feedback on our
prototype, 2) to further discuss our full paper [9] appearing
in the VL/HCC 2021 main program, and 3) to discuss in
general the challenges and opportunities in UI automation and
in integrating UI context into development environments.



REFERENCES

[1] “Selenium,” https://www.selenium.dev/, accessed: 2020-09-11.
[2] “Puppeteer,” https://pptr.dev/, accessed: 2020-09-18.
[3] “Cypress,” https://www.cypress.io/, accessed: 2021-03-19.
[4] “Introduction to the dom,” https://developer.mozilla.org/en-

US/docs/Web/API/Document Object Model/Introduction, accessed:
2021-06-11.

[5] “Css selectors,” https://developer.mozilla.org/en-
US/docs/Learn/CSS/Building blocks/Selectors, accessed: 2021-03-19.

[6] “Xpath,” https://developer.mozilla.org/en-US/docs/Web/XPath/, accessed:
2021-03-20.

[7] “Electron,” https://www.electronjs.org/, accessed: 2020-09-18.
[8] “rrweb-snapshot,” https://github.com/rrweb-io/rrweb-snapshot, accessed:

2020-09-18.
[9] R. Krosnick and S. Oney, “Understanding the challenges and needs of

programmers writing web automation scripts,” in Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2021.


