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We propose a hierarchical algorithm for approximating shortest

paths between all pairs of nodes in a large-scale network. The
algorithm begins by extracting a high-level subnetwork of rela-

tively long links (and their associated nodes) where routing

decisions are most crucial. This high-level network partitions

the shorter links and their nodes into a set of lower-level sub-
networks. By fixing gateways within the high-level network for

entering and exiting these subnetworks, a computational sav-
ings is achieved at the expense of optimality. We explore the
magnitude of these tradeoffs between computational savings
and associated errors both analytically and empirically with a

case study of the Southeast Michigan traffic network. An order-
of-magnitude drop in computation times was achieved with an

on-line route guidance simulation, at the expense of less than
6% increase in expected trip times.

0 ur interest in this article is directed toward solving very
large-scale shortest path problems, motivated by the prob-
lem of finding minimum travel time paths within an on-line
route guidance system. Route guidance within the context of
Intelligent Transportation Systems is the task of providing
routes between origins and destinations that promise to
minimize the trip times experienced. The link travel times
that are provided as an input to this function are time-
dependent forecasts based upon current and anticipated
traffic congestion (see e.g., Kaufman and Smith,'”! Wunder-
lich and Smith™!). Because of the rapid change of link travel
times caused by time-varying travel demands and lane
blockage resulting from incidents, the data used in comput-
ing the shortest paths information is updated periodically,
ideally every 5 to 10 minutes. During the time interval
between data updates, a shortest path must be provided for
every origin/destination (O/D) associated with trips that
begin during that time slice. Thus, the calculation of shortest
paths must be efficient enough to respond in a timely way to
trip requests on a real-time basis. Because a realistic problem
may have hundreds of thousands of nodes, all of which may
be potential origins and destinations, a fast heuristic that can
provide good approximations in a limited amount of time
may be preferred to exact methods.

We present here a hierarchical approach for finding ap-
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proximate solutions for shortest path problems. A key idea
behind our development is the imposition of a hierarchical
network structure. Our approach is motivated by the obser-
vation that traffic networks have a hierarchical structure that
divides links (and nodes corresponding to intersections of
these links) into two or more classes (Yagyu et al.*l). The
higher level corresponds to longer links (i.e., highways)
where the frequency of decision opportunities is low, with
routing decisions being correspondingly more important.
The lower level corresponds to links of limited duration (i.e.,
surface streets) and, correspondingly, more opportunities to
correct routing decision errors. The links and nodes com-
prising the higher level subnetwork correspond to a macro-
scopic representation of the whole network. This high-level
subnetwork partitions the original network into a set of
subnetworks at the lower level in a way to be described
later. By solving for all pairs of shortest paths in the higher
level subnetwork and interfacing with gateways into the
lower level subnetworks, we achieve significant economics
of computation, albeit at the expense of a loss of optimality.
We explore in this article the magnitudes of the computa-
tional gains and associated errors from optimality.

A similar approach is taken by Shapiro, Waxman, and
Nir,'®! who classify each of the arcs in the network, and
approximate shortest paths based on the assumption that it
is desirable to spend as little time as possible on lower level
arcs. Their approach can be very efficient, especially when
only a few shortest paths need to be computed. Moreover, it
has the advantage that it is not necessary to explicitly con-
struct a hierarchy of subnetworks. Alternatively, our ap-
proach has the advantage that much of the preprocessing
computations can be done in parallel, so that the computa-
tion of an additional shortest path is very cheap. Our ap-
proach thus seems more suitable for cases where at least a
moderate number of shortest paths have to be computed.

Habbal, Koutsopoulos and Lerman'® propose a parallel
decomposition method for solving the all-pairs shortest path
problem. Their algorithm, however, is an exact one, and



164

Chou, Romeijn, and Smith

seems to be less suitable for use in an on-line route guidance
system, which is the motivation for our study.

We begin by introducing the hierarchical algorithm (HA)
in Section 1. We show how the nature of traffic networks
induces a natural choice for how the hierarchical network
should be modeled. In Section 2, we discuss the issue of the
efficiency of HA for solving the all-pairs shortest path prob-
lem, as well as the case where only a limited number of
nodes can occur as origin or destination. Furthermore, con-
ditions for efficiently implementing HA are presented. In
Section 3, the efficiency of HA when applied to an on-line
route guidance system is investigated. A numerical experi-
ment is reported in Section 4, which is based upon a real
traffic network, the Southeast Michigan road network.

1. A Hierarchical Approach

1.1 Overview

In this section, we introduce a hierarchical approach to
solving for shortest paths in a large-scale network. The main
idea is to decompose the network into several smaller (low-
level) subnetworks. When a shortest path needs to be found
between two nodes in the same subnetwork, we approxi-
mate this shortest path by the shortest path having the
property that all nodes on the path are contained in that
same subnetwork. The resulting path is an approximate
shortest path in that the true shortest path could leave the
subnetwork at some point, and re-enter it before arriving at
the destination.

To provide approximations of shortest paths between
nodes not contained in the same subnetwork, we define a
(high-level) network, which is actually a subnetwork of the
original network, whose nodes intersect all (low-level) sub-
networks. The nodes that are present in both the high-level
network and in one or more low-level subnetworks are
called macronodes. The high-level network is called the ma-
cronetwork, reflecting the fact that it gives a macroscopic
view of the original network. Correspondingly, the low-
level subnetworks are called microsubnetworks, reflecting
the fact that they give a microscopic view of a part of the
original network. Given this decomposition, we can approx-
imate a shortest path between two arbitrary nodes of the
original network by constraining the path to pass out of the
microsubnetwork containing the origin, through the ma-
cronetwork, and into the microsubnetwork containing the
destination. Variants of this general procedure are consid-
ered, based upon the departing macronode out of the origin
subnetwork and the entering macronode into the destina-
tion subnetwork chosen.

1.2 The Hierarchical Algorithm
1.2.1 Definition
Let G = (V, A, C) be a strongly connected directed graph
with a set of nodes V, a set of arcs A C V X V, and a
non-negative arc length function C: A — R. (A directed
graph is strongly connected if there exists a directed path
from each node to each node of the network.) Our objective
is to approximate shortest paths within the network G.

We will first describe the HA in its most general form,

consisting of the following three phases. In Sections 1.2.2
and 1.2.3, we will briefly discuss some of the choices that can
be made within this general framework. These choices will
then be illustrated in Section 4.

Phase 0: Decomposition

Extract a strongly connected, but not necessarily fully
dense, macronetwork G = (V, A, C), where VCV,ACV XV,
and C: A — R. The nodes in V will be called macronodes, and
correspondingly, the arcs in A will be called macroarcs. Each
macroarc (I, ]) € A corresponds to some directed micropath
from I to | in the original network G where the correspond-
ing arc length C(I, ) is defined as the length of this path.
Note that the micropath corresponding to an arc (I, ]) € A is
not necessarily the shortest path between I and ] in the graph
G, but rather depends on the structural properties of the
network. Finally, note that all macronodes are micronodes
as well and that there exists such a subnetwork associated
with every choice of macronode set V C V because G is, by
assumption, strongly connected.

Divide the original network G into H strongly connected,
but not necessarily disjoint, microsubnetworks G,
Vi, A, C,), where V, CV,V=U,V, A, =AN({V, X V),
and VNV, # Pforh=1,...,H. Note that every cover (V,,
h=1,2,...,H)of V (ie, a set of subsets satisfying V =
U, V,) is allowed as long as each V,, in the cover contains at
least one macronode.

Phase I: Constrained Shortest Paths

Find all required shortest paths (which can either be all
shortest paths or a suitable subset thereof, depending on the
type of shortest path problem that needs to be solved) in the
macronetwork G and in the microsubnetworks G,, h =
1,..., H. Let the function

f:VXVﬁR

return the shortest path lengths in the macronetwork G.
Similarly, let

fir Vi XV, - R

return the shortest path lengths in microsubnetwork G,, h =
1,..., H

Phase II: Combination

Consider a pair of micronodesi € V,,j € V,. If h = € (i.e,,
the micronodes are contained in the same microsubnet-
work), then the corresponding shortest path between i and j
is approximated by the shortest path from i to j computed in
Phase I with all intermediate nodes contained in this sub-
network V. Otherwise, the shortest path is approximated by
combining three parts computed in Phase I:

(i)  the shortest path (in G;) from i to some macronode
IeV,NV;

(ii)  the shortest path (in the macronetwork G) from I to
some macronode | € V, N V; and

(iii)  the shortest path (in G;) from macronode ] to j.

Note that there always exist macronodes I and ] in steps (i)
and (iii) that are also micronodes in G, and G, respectively,
by construction in Phase 0. Variants of HA depend upon
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how these nodes I and | are selected when there are multiple
candidates. Note also that the combination phase can be
simplified somewhat when the origin node i and/or the
destination node j are macronodes. In particular, in those
cases we can skip step (i) and/or (iii) in Phase II. However,
depending on the particular choice of macronode made in
these steps, it may be fruitful to treat an origin or destination
macronode as any other micronode. We will come back to
this later when discussing strategies for choosing the exiting
and entering macronetwork macronodes for a given O/D
pair.

1.2.2 Comments on the Decomposition Phase

In the decomposition phase of the Hierarchical Algorithm,
there are obviously many possible ways of choosing the
macronodes, macroarcs, and microsubnetworks. However,
in a specific application, there usually is a natural hierarchy
within the arcs. For example, in a traffic network, the ma-
cronetwork can be chosen to be the network consisting of
highways and freeways, with the macronodes being a suit-
ably chosen subset of the entrances to and exits from these.
The macroarcs will then be micropaths consisting only of
highways and freeways, and the microsubnetworks could
be chosen in a natural way as the subnetworks enclosed by
the macroarcs. In Section 4, we will illustrate this procedure
of forming the macro- and micronetworks using the actual
Southeast Michigan road network.* We will also see there
that usually some adjustments are necessary to obtain a
macronetwork that is connected and sufficiently dense in the
original network for the HA algorithm to be successful.

1.2.3 Comments on the Combination Phase

If, in the combination phase, different microsubnetworks
containing the origin and destination contain only one
macronode each, it is unambiguous as to how to construct
the approximating path from the description of HA. How-
ever, often there will be more than one macronode that can
be used to connect the microsubnetworks to the macronet-
work. In that case, we need to make a choice among these
macronodes. An intuitively appealing choice would be to
choose the macronodes that allow us to enter the macronet-
work as soon as possible. In other words, we choose the
closest macronode that can be reached from the origin, and
the macronode from which the destination can be reached as
quickly as possible. More precisely, if i € V), is the origin,
and j € V, (£ # h) is the destination, then the connecting
macronodes are chosen to be

* =arg min fi(i, I)

1evinv

and

J* =arg min f,(], j).

JEVVV

*SEMCOG, 1985. Survey of Regional Traffic Volume Patterns in
Southeast Michigan. Technical Report, Southeast Michigan Council
of Governments, Private Communication.

The version of HA corresponding to this rule for the selec-
tion of macronodes will be called Nearest HA.

Obviously the best possible selection rule among all HA
variants in terms of quality of the solution obtained (but also
the most expensive one in terms of computation time) is to
select the pair of macronodes that yields the shortest approx-
imate path. In other words, choose the pair of connecting
macronodes as follows:

Ui, D+ f(L ) + fol], )}

min

(I*, J*) = arg
(LDE(VINV)X(VenV)
This variant of HA will be called Best HA.

At times there will be more than one microsubnetwork
containing the origin (and/or destination). In that case we
would adjust the choice of macronodes as follows. For Near-
est HA, we set

*=arg min

fk(i/ I)

IEUpiev,ViNV

and similarly for J*. Similar adjustments would be made for
finding (I*, J*) for Best HA.

2. Computational Complexity Analysis

2.1 Notation and definitions

For the heuristic HA to be useful, there obviously needs to
be time savings to balance the loss in precision in computing
the approximate shortest paths produced by it when com-
pared to an exact algorithm. In this section we investigate
the relative efficiency of both Nearest HA and Best HA
under various conditions. Before analyzing the complexity
of HA, we first review the concepts of 0, (), and ® functions
(see e.g., Aho, Hopcroft and Ullman™).

Definition 2.1. Let f and g be functions from the non-negative
integers to the non-negative reals.

(a) f(n) is said to be O(g(n)) (or f(n) = 0(g(n))) if there exist
positive constants ¢ and n, such that

f(n) <cg(n) forall n = n,.

Note that the O-notation is used to specify an upper bound on the
rate of growth of some function. Analogously, the Q-notation is
used to provide a lower bound on the rate of growth, whereas the
O-notation is used if the upper and lower bounds coincide.

(b) The function f(n) is said to be Q(g(n)) (or f(n) =
Q(g(n))) if there exist positive constants ¢’ and n, such
that

fn)=c'g(n) forall n = n,.
(c) The function f(n) is said to be O(g(n)) (or f(n) =

O(g(n))) if there exist positive constants c, ¢’ and ng such
that

c'g(n) < f(n) <cg(n) foralln=n,.

Now, assume that the number of nodes |V| in the graph G
is ®(N), where N is an input parameter characterizing the
size of the graph. Because we are focusing on road networks,
which are sparse (i.e., the degree of each of the nodes can be
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bounded from above by a constant, independent of the size
of the network), the most efficient algorithm for computing
all shortest path lengths exactly is Dijkstra’s algorithm (see
e.g., Denardo,*! Dreyfus and Law!™!). The number of oper-
ations needed by this algorithm is O(N log N) and {(N) for
solving for the shortest paths from a single origin to all
destinations. We will repeatedly make use of this result in
the remainder of this section.

To gain insight into the potential gain in computation
time achievable by HA and how we should decompose the
original network to realize this gain, we assume within this
section that we decompose the network in such a way that
the number of macronodes is O(N™) (for some 0 < m < 1),
and that the number of microsubnetworks is ®(N*) (for some
0 < k < 1). The actual performance gain under real-world
conditions will be explored in Section 4. Each microsubnet-
work is further assumed to be of roughly the same size, so
that the number of nodes in each subnetwork is O(N* ).
Moreover, we assume that each macronode is shared, on
average, by a constant number of microsubnetworks, so that
the number of macronodes per microsubnetwork is @(N" )
(so that the number of macronodes is roughly equal for all
microsubnetworks). Because we need at least one macro-
node per microsubnetwork, we obviously need that k < m.
The relative magnitudes of m and k to achieve the greatest
computational savings will be explored under two scenarios
in the next two subsections.

2.2 The All-Pairs Shortest Path Problem

We begin by investigating the efficiency of HA for solving
the all-pairs shortest path problem. Let Cy(N) denote the
number of operations needed for approximating all shortest
path lengths in a network structure defined above using
Nearest HA, Cg(N) the corresponding number using Best
HA, and C(N) the number of operations needed for com-
puting all shortest paths using Dijkstra’s algorithm in the
same network. The following theorem gives the relative
efficiency of Nearest HA with respect to Dijkstra’s algo-
rithm.

Theorem 2.2 The relative efficiency of Nearest HA with respect
to Dijkstra’s algorithm for the all-pairs shortest path problem
satisfies

Co(N) Cp(N)
NI O(log N) and o) - Q(1).
Proof. See the appendix. ®

The proof of the above result shows that the combination
phase is the most time-consuming one, and, in fact, that the
complexity for that phase is independent of the particular
decomposition chosen. Notwithstanding this fact, we could
try to minimize the effort necessary for Phase I, even though
this phase is already much less time-consuming than Phase
II. Recall from the proof of Theorem 2.2 that Phase I takes on
the order of N™™@~%2™ gperations (disregarding the “log
N” term). Recall also that m = k. Therefore, it seems optimal
(with respect to computation time) to choose m = k. The
computation time for Phase I then becomes of the order

Nmax@=k2k) ywhich is minimized if 2 — k = 2k, or if k = 2.
This means that to most efficiently implement Nearest HA,
the network should be decomposed in such a way that

(i)  the number of subnetworks should be of the same
order as the number of macronodes, i.e., the number
of macronodes per subnetwork should be
independent of the size of the network; and

the size of each of the subnetworks should be smaller
than the size of the macronetwork.

(ii)

However, note that a pure minimization of the computa-
tional effort does not take into account any natural structure
present in the network, or the magnitude of the error in-
curred by the corresponding decomposition.

The following theorem is the analogue of Theorem 2.2 for
Best HA.

Theorem 2.3 The relative efficiency of Best HA with respect to
Dijkstra’s algorithm for the all-pairs shortest path problem satis-

fies

Co(N) 2(k—m)
CoN) O(N log N)
and
Co(N)
— Q NZ(kfm) ,
cm ~ A
where m = k.
Proof. See the appendix. ®

Unlike in the case of Nearest HA, the only instances where
savings might be obtained occur when k = m, i.e., when the
number of macronodes per subnetwork does not grow with
N. Whenever m > k, the complexity “savings” actually be-
come a complexity “dissavings” in the sense that Dijkstra’s
algorithm is more efficient than Best HA! However, if k = m,
then the relative efficiency of Best HA is the same as the
relative efficiency of Nearest HA.

2.3 The Limited Shortest Path Problem

We have seen that HA does not always perform more effi-
ciently than Dijkstra’s algorithm for solving all shortest
paths in a network defined as above. Fortunately, however,
in traffic networks, most nodes cannot actually occur as
origin or destination. Consider, for instance, surface street
intersections or highway entrances or exits. To model this
observation, we assume that there are ®(N”) nodes that can
occur as origins or destinations, for a total of ©(N>?) shortest
paths to be computed (where 0 < y < 1). Moreover, we
assume that these origins (destinations) are spread out uni-
formly over the network, and that every microsubnetwork
contains at least one origin, so that y = k.

In this subsection, we will be concerned with computing
all shortest paths between the nodes that can occur as origin
or destination. Note that, in traffic networks, we rarely need
to compute all such shortest paths because network data
(e.g., link travel times) is being updated periodically and not
all possible trips will take place between any two updates.
This situation will be analyzed in Section 3.
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Similar to the notation in the previous section, let
Cp(N; v), Cn(N; y), and Cg(N; y) denote the number of op-
erations needed for computing or approximating the re-
quired shortest paths in the network structure defined above
using Dijkstra’s algorithm, Nearest HA, and Best HA, re-
spectively. In particular, it is easy to see that

Cp(N; v) = 6(N*"og N)
and
Cp(N; y) = Q(N').

Theorem 2.4. The relative efficiency of Nearest HA with respect
to Dijkstra’s algorithm for the limited-pairs shortest path problem
satisfies

Cp(N; )
2P = (N log N
GO R og N)
and
Co(N; 7) Nobmy )
— : —max(y,m—k)
Cu; y - min{ g N N /
where

€1(k, m, y) = min(k — max(0, m — ),
1—vy—2max(0, m — v))
€y(k, m, y) = min(k — max(0, m — vy),

1—=vy—2(m~=v).

Proof. See the appendix. ®

As before, we can investigate the optimal number of
macronodes and microsubnetworks in terms of computa-
tional efficiency. If, for simplicity, we only consider the
O-expression for the relative efficiency of Nearest HA, we
see that

Cp(N; v)
Cn(N; )

Clearly, it is optimal to choose k as large as possible. Because
k < m by assumption, we will let k = m. The relative
efficiency then becomes

Cp(N; )
Cn(N; )

The optimal relative efficiency can now be obtained if m =
1+ vy —2m,orm=(1+ +)/3. Itis easy to see that (1 +
v)/3 = min(y, 1 — v), so that the optimal relative efficiency
is O(N™" 1" YNog N), for k = m = (1 + v)/3.

Now consider the case of Best HA. Then the following
theorem is the analog of Theorem 2.4.

— @ (Nmin(k,kfm+y/lfy/1+y72m)10g N)

= QNI 208 N),

Theorem 2.5. The relative efficiency of Best HA with respect to
Dijkstra’s algorithm for the limited-pairs shortest path problem
satisfies

Cp(N; v)

—— L~ g(NYkm] N
CN; 3 = O o8 N)

Table I. Summary of Complexity Results
Operation Complexity
Number of shortest paths O(N?)
solved
All-pairs shortest paths in O(N™axm+ 1=K g N)
micronetworks
All-pairs shortest paths in O(N*"log N)
macronetworks
Combination phase
Nearest HA O(N™%
Best HA O(N>m=0)
and
Co(N; ) (N‘Z’(k""f” 1
— : —y—2(m—k)
Co(N: 7) Q| min log N * N .
where

Ci(k, m, y) = min(k — max(0, m — ),
1—y—2(m~k)
€45(k, m, y) = min(k — max(0, m — v),
1—=vy—=2(m~-v).
(]

Proof. See the appendix.

From Theorem 2.5, we have the following relative efficiency
for the case of Best HA

Cp(N; v) .
— @ Nmm(k,k—m+y,1—y—2m+2k)1 N .
Cs(N; ) ( o N)
Again, it is optimal to choose k = m, yielding
Cp(N; ) .
— @ Nmm(m,y,l—y)l N .
CoN; )~ ! 0g N)
So the optimal relative efficiency is again

O(N™" 1= MNog N), attained for k = m = min(y, 1 — ).
Table I summarizes the complexity results derived in this
section.

3. On-Line Shortest Path Calculations

In this section, we explore the complexity of Best HA and
Dijkstra’s algorithm when implemented in an on-line short-
est path route guidance system. In an on-line route guidance
system, the arc length function C is updated regularly, on
the basis of recent information concerning the link traversal
times (see Kaufman and Smith!™). In such a system, a path
will have to be provided for a certain O/D pair if a request
is made for that pair during the time slice during which the
arc length function is valid. Moreover, such a path will only
have to be computed if and when the O/D pair is requested
for the first time during a time slice. Unlike the problems
discussed in the preceding section, where the number of
O/D pairs requiring solutions was assumed known, the
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relevant question here is: “How many different O/D pairs
will be requested in a given time slice?” To help answer this
question, we first describe a classical problem, called the
coupon-collector problem.

3.1 Coupon-Collector Problem

The coupon-collector problem (CCP) is defined as follows.
Suppose a set containing { distinct objects is given. A col-
lector samples from the set with replacement, where with
each trial, he has a probability p; of drawing the ith object,
independently of previous events.

Given a probability vector p, let Y, (p) be the number of
different items observed in the first n trials. The following
result on the expected value of this number is well known
(see e.g., Boneh and Hofri,”! Caron and McDonald"):

E(Y,(p) = 2(1—(1—p)".

i=1

(1)

3.2 Computational Complexity Per Time Slice

In this subsection, we investigate the complexity of Best HA,
as well as Dijkstra’s algorithm, in an on-line route guidance
system. For simplicity, we assume that each microsubnet-
work has the same size, i.e., |V,| = |V|/H for all h. We start
by introducing some additional notation.

Let the expected number of O/D requests per unit time be
constant, given by n. If the length of the time slice is equal to
7, then the expected number of O/D requests in a time slice
is nT. We also assume that the probabilities for the O/D
requests are homogeneous over time. In particular, let p;
denote the probability that an O/D request corresponding to
the pair of nodes (i, j) is made, for all i, j € V. Furthermore,
let p;. be the probability that an O/D request is made from
origin i, i.e., p, = X, p;. Similarly, let the probability that an
O/D request is made to destination j be denoted by p, =
2, p;- If W C Vis a set of nodes, denote the probability that
an O/D pair is requested from an origin in W by py,.
2iew Pir and denote the probability that a request is made to
a destination in W by p.,, = Z;cyp,. Finally, let ¥, =
Uj.iev, Vi, be the union of nodes contained in the microsub-
networks that share node i € V.

Note that in this framework, the number of nodes that can
occur as origin or destination is given by the cardinality of
the set V= {i € V:p,. > 0 or p.,, > 0}. Now, if |V| = O(N") (for
v < 1), then the analysis in Section 2 gives the efficiency of
HA compared to Dijkstra’s algorithm when computing all
shortest paths that might be requested. This can be seen as
the limiting case of the analysis in this section, as the dura-
tion of the time slices increases.

3.2.1 Complexity of Dijkstra’s Algorithm

We now consider the expected number of computations
required by Dijkstra’s algorithm per time slice. We may
recall that the shortest paths from an origin, say i, to all the
nodes in the network G can be obtained at modest additional
cost (and the same complexity!) by using Dijkstra’s algo-
rithm, even if only one O/D path is desired. Therefore, we

assume that we compute all shortest paths from a single
origin the first time an O/D request is made from that origin
during the time slice.

This problem can clearly be viewed as an instance of the
coupon-collector problem. The items are all possible origins
i € V that can be requested, with associated probabilities p;,
and each O/D request within a time slice is an independent
trial. Therefore, from Equation 1, the expected number of
one-pair shortest path problems we have to solve over the
network G is

VI

D= (1= p)m

i=1

per time slice. Thus, the computational complexity of Dijk-
stra’s algorithm for the duration of 7 time units can be
obtained by multiplying the expected number of different
origins observed during a time slice with the complexity of
the one-pair shortest path problem, yielding

vl

T (1) = 0 [V[log|V|-2(1 — (1 = p)™) |.

i=1

(2)

3.2.2 Complexity of HA

To investigate the complexity of the two versions of HA, we
distinguish, as we did before, between the number of oper-
ations required for Phase I and Phase II computations.

In Phase I, several shortest path problems over different
subnetworks need to be solved. These problems can be
classified as: (i) the shortest paths in the macronetwork; (ii)
the shortest paths within a subnetwork corresponding to
origins; and (iii) the shortest paths within a subnetwork
corresponding to destinations. We first consider the ex-
pected number of computations required for solving the
shortest paths in the macronetwork per time slice. During a
time slice, a one-to-all shortest paths problem will be solved
in the macronetwork from each macronode that is an ele-
ment of the subnetwork containing the origin of some O/D
request that was made during that time slice. In terms of the
coupon-collector problem, the items are now the macro-
nodes, and the item probability corresponding to macro-
node I € V is

qr= 2 2 Pij-
i€V jEV;

The expected number of corresponding one-origin shortest
path problems that has to be solved during time slice 7 is

D= (1-g)").

ev

The product of the expected number of one-pair shortest
path problems and the cost for solving each problem brings
the complexity of solving the shortest paths in the macronet-
work to

of [Phog?]- S0 — 1 - ch)”)>. )

1ev
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We next consider the complexity of solving for the second
type problem, i.e., all shortest paths from an origin, within
the subnetwork containing that origin, corresponding to
requests during a time slice. In other words, for each new
origin, the shortest paths from that origin to all destinations
within its subnetwork are computed. In this case, the items
are the origins, with corresponding probability p,. as defined
above. The complexity for this phase over the time slice
becomes

4

ol (VI/K)log(|V|/K) - > (1= (1—p)™ |.

i=1

(4)

For the type three problem, it can be seen that the one-pair
shortest path problem from a macronode within a given
subnetwork containing that macronode is computed the first
time a destination of an O/D request is made in that sub-
network, and the origin is not. For each O/D request, the
probability that the destination is an element of subnetwork
Gy, (the item probability) is

Pr= Z E Pij-

iEVy JEV)

If a destination in G,, is sampled, the shortest paths to that
destination from all macronodes in G, needs to be com-
puted. Because there are on the order of |V|/H macronodes
in each subnetwork (recall that the number of subnetworks
sharing a given macronode is roughly a constant), the total
computational cost for these computations during the time
slice is

1% v V| <
({3l ) o)

The complexity of Phase I for 7 units of time, denoted by
J'(7), can now be obtained by adding Equations 3-5.

In Phase II, the combination is performed for each new
appearance of an O/D pair across subnetworks. For Best
HA, on the order of ([V|/H)* feasible paths have to be
compared for each O/D pair. If we define

_[1
81']'— 0

for all i, j € V, then the complexity of Phase II computations
for Best HA during the time slice is

)
Tp(r) =0 q :

The total complexity of Best HA for the duration of a time
slice 7, denoted by J (1), is then simply equal to

if i and j are in different subnetworks
otherwise,

vl |v]

2 20-qa

i=1 j=1

- Py 5;‘;‘)"'—) . (6)

Ts(1) = T'(7) + Ty(7). (7)

It is clear that the complexity expressions in Equations 2 and
7 are extremely difficult to compare. An overall comparison
of the efficiency of HA with Dijkstra’s algorithm cannot be
made. Therefore, in the next section, we will return to this

topic when we consider an experiment using a set of real-life
data.

4. Application to the Southeast Michigan Vehicular
Transportation Network

In this section, we illustrate the process of implementing the
Hierarchical Algorithms for solving shortest path problems
in a large-scale real network. In particular, special attention
is paid to the case of on-line route guidance. The methodol-
ogy of implementing HA as well as the numerical results are
the main focus of this section.

4.1 Description of the Network and Data Resources

The real network we used to conduct the experiments in this
section is the Southeast Michigan road network. This road
network was generated from the topological data provided
by the regional planning authority of the Southeast Michi-
gan Council of Governments (SEMCOG).* The region cov-
ered by this road network consists of five counties, Macomb,
Monroe, Oakland, Washtenaw, and Wayne. Moreover, this
network includes most roadway segments in the region,
from freeways to major streets.

There are 3,189 nodes and 5,658 links (11,316 directed
arcs) in this road network, where links represent the street
segments and nodes represent the intersections. Figure 1
shows the Southeast Michigan road network. Links are clas-
sified by SEMCOG into six different levels, from class 1
(major freeways) to class 6 (local streets). Each road class has
an associated speed limit, as shown in Table II. The link
travel time is then defined as the time it takes to traverse the
link at the corresponding speed limit.

Other resources provided by SEMCOG are a set of zone
centroids, and the average number of trips between zone
centroids over a typical 24-hour period. Each zone centroid
represents the center of the population within a certain area
(zone). Standard transportation methods were used by SEM-
COG to identify 1,543 zones and corresponding zone cen-
troids across the road network as origins and destinations
for regional travel.

4.2 Aggregation of the Network
In this section, we consider the problem of defining an
appropriate two-level structure for the Southeast Michigan
network so that it is suitable for the application of HA.
We will first form a macronetwork in the Southeast Mich-
igan network. As we have suggested in Section 1.2.2, a
natural way of forming the macronetwork for a traffic net-
work is to define the high-speed roads and the major inter-
changes as the macrolinks and the macronodes, respectively.
Based upon this principle, we start by defining the nodes
connecting either two class 1 links, or one class 1 and one
class 2 link as macronodes. The initial macronetwork is then
formed by connecting these macronodes through macro-
links formed by a path consisting of class 1 links only.

*SEMCOG, 1985. Survey of Regional Traffic Volume Patterns in
Southeast Michigan. Technical Report, Southeast Michigan Council
of Governments, Private Communication.
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Table II. Speed Limits in Miles/Hr
Road class 1 2 3 4 5 6
Speed limit 65 50 40 40 35 35

However, the macronetwork obtained in this way is not
connected, and contains “gaps,” that obviously will cause
poor performance of the HA algorithms. Figure 2 shows this
original two-level network where the thick solid lines rep-
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The Southeast Michigan road network.

resent the macrolinks. To solve these problems, we upgrade
some lower level links to class 1 (but retaining the original
link traversal times, so that this upgrading does not have an
effect on the complete network), and form new macrolinks
using these new class 1 links.

The resulting macronetwork is shown in Figure 3. Once
the macronetwork is defined, we decompose the network
into a set of microsubnetworks by letting the macrolinks
carve up the network. In this way, each area surrounded by
macrolinks is a microsubnetwork. Figure 4 shows the micro-
subnetworks defined for the Southeast Michigan network.
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Figure 2. The original two-level Southeast Michigan road network.

Finally, we add the zone centroids to the network. These
zone centroids are isolated nodes in the network. To connect
these nodes to the network we add, for each zone centroid,
two links which connect the centroid to the two nearest
nodes in the network (in Euclidean distance). These centroid
connectors are then assigned a length equal to this Euclidean
distance, and are characterized as class 7 links with a low
speed limit of 20 miles /hour. This models the fact that travel
on the connectors (i.e., the low-volume surface streets) be-
tween centroids and the arterial network is generally slow.
The addition of the zone centroids and their connector links

increases the size of the network from 3,189 nodes to 4,732
nodes (and from 11,316 to 14,300 arcs).

4.3 Numerical Results

In this section, we report on computational experiments
with both Nearest and Best HA, as well as Dijkstra’s algo-
rithm, for solving for shortest paths for all possible trip pairs
in the Southeast Michigan road network. The heuristics and
Dijkstra’s algorithm were coded in C and executed on an
IBM RS6000 workstation.
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Figure 3. The modified two-level Southeast Michigan road network.

As noted before, the only trips possible in the network are
between zone centroids. In other words, we have to compute
the shortest paths between 1,543 X 1,543 = 2,380,849 pairs of
nodes, in a network with 4,732 nodes. The total number of
trips is equal to n = 12,753,236.

Furthermore, the data provided by SEMCOG on the av-
erage number of trips between centroids over a 24-hour
period is incorporated to weigh the errors resulting from the
approximation algorithms. In particular, the error associated
with each O/D pair is weighed by the corresponding num-

ber of trips made during 24 hours. The average error result-
ing from HA is then calculated as follows:

2;’71(@{7 €)n;

€ =

Yvhere, for O/D pair i, {; denotes the shortest path length,
{,; denotes the approximated shortest path length, and #;
denotes the number of trips during a 24-hour period.
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The weighted results of solving the shortest paths for all
trip pairs are shown in Table III. We can see from this table
that Nearest HA is about 15 times as efficient as Dijkstra’s
algorithm, whereas Best HA is almost twice as efficient as
Dijkstra’s algorithm. Although the error for Nearest HA is
quite high, the error for Best HA is small.

In the next section, we conduct a simulation of on-line
shortest path information queries in the Southeast Michigan
road network. Because Best HA gives very accurate approx-
imations at acceptable cost, we will only focus on Best HA
and Dijkstra’s algorithm in the next section.

4.4 An Application of On-Line Shortest Path Queries
In this subsection, we conduct a numerical experiment for an
on-line route guidance system in the Southeast Michigan

Table III. Results of Solving the Shortest Paths for all
Trips

_ CPU Time (seconds)

€
(%) Phase 1 Phase II Total

Dijkstra 0.0 — — 60.22
Nearest HA 21.5 4.25 0.66 491
Best HA 49 4.68 29.32 34.00

road network. In this experiment, O/D requests are made
probabilistically between zone centroids, where the probabilis-
tic O/D request matrix is generated based on the data of the
average number of trips made for a 24-hour period. We assume
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Figure 5. CPU time as a function of time slice length.

that the number of O/D requests is constant over time, and
thus the number of requests per minute is equal to 12,753,236/
1,440 ~ 8,856. The probability of a request made for O/D pair
i, denoted by p,, is then computed as p; = n,;/n for all i.

The main purpose of this experiment is to compare the
relative efficiency of Best HA and Dijkstra’s algorithm in an
on-line route guidance system through a simulation con-
ducted using real-life data.

4.4.1 CPU Times Required by the Algorithms Per Time Slice
As we have discussed above, in an on-line route guidance
system the complexity of Dijkstra’s algorithm as well as that
of Best HA depends on the duration of the time slice that is
being considered. Our goal in this simulation is to compare
the efficiency of Best HA with that of Dijkstra’s algorithm
using various time slice durations.

In an on-line route guidance system, it is sufficient to only
provide the shortest path information for the O/D pair
currently being requested. Moreover, recall that, using
Dijkstra’s algorithm, the shortest path from an origin to a
destination node is obtained once the destination node is
labeled as a permanent node during the process of building
a shortest path tree from that origin. However, at modest
additional cost, we can obtain the complete shortest path
tree from the origin. We propose two policies for implement-
ing Dijkstra’s algorithm in an on-line route guidance system
based on these properties of Dijkstra’s algorithm. The first
policy (Policy 1) we propose is to stop the search process as
soon as the destination becomes “permanently labeled”
when solving for the shortest path for an O/D pair. Thus,
under this policy, only the shortest paths from the origin to
nodes that have been labeled permanently are computed.
The second policy (Policy 2), on the other hand, is to com-

plete the search until all the nodes have been labeled per-
manent. As a result, the shortest paths from the origin to all
other nodes in the network are obtained after the search.
When solving for the shortest path for one particular O/D
pair, Dijkstra’s algorithm obviously performs more effi-
ciently under Policy 1 because the search process is stopped
after obtaining the necessary information. However, when
applied to an on-line route guidance system, there is no
guarantee of better performance of Policy 1. Note that in an
on-line route guidance system, the shortest path informa-
tion, once obtained, is stored until an update of the distance
(link travel time) matrix takes place. Thus, it may take longer
to complete a single shortest path search from an origin
under Policy 2, but more shortest path information can be
provided at modest additional cost within the current time
slice when requests are made from the same origin.

In practice, a reasonable time period between the updates
of link traversal times will be no more than 20 minutes.
Thus, we run each single simulation for a 20-minute period.
Furthermore, the cumulative CPU times required to solve
the shortest paths in response to O/D requests are recorded
at different points in time during each simulation. Our major
aim is to simulate the CPU times consumed by Dijkstra’s
algorithm and by Best HA per time slice in an on-line route
guidance system using various time slice lengths. Figure 5
shows the total CPU times required by both approaches
under different policies over the whole simulation period. It
can be seen that under either policy, the CPU time required
by using Dijkstra’s algorithm increases rapidly within a very
short period of time, whereas that required by Best HA
increases gradually and slowly throughout the simulation
period. The figure also shows that Dijkstra’s algorithm per-
forms more efficiently under Policy 1 if the duration of a
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Figure 6. The CPU time savings achieved by Best HA over Dijkstra’s algorithm.

Table IV. Efficiency Ratio of Dijkstra’s Algorithm vs.

Best HA
Time
Slice Policy I Policy II
5 14.7 11.6
10 15.8 9.2
15 15.5 7.6
20 15.2 6.6

time slice is less than 3.7 minutes. However, for a longer
period of time, Policy 2 outperforms Policy 1. A similar
observation can be made for Best HA. However, because
only subnetworks are considered instead of the complete
network, the critical time slice length where Policy 2 starts
dominating Policy 1 is much smaller (about 1 minute).

We can see from Figure 5 that Best HA is much more
efficient than Dijkstra’s algorithm during the entire simula-
tion period. The amounts of time savings achieved by Best
HA over Dijkstra’s algorithm for various periods of time are
shown in Figure 6. To be more specific, Table IV shows the
efficiency ratios for a number of time slices. The average
relative error by Best HA collected at various points in time
during the simulation are shown in Figure 7. For a 20-
minute simulation period, the average relative error is
5.78%.

4.4.2 Expected CPU Time Required by the Algorithms

In this section, we compute the expected CPU times re-
quired by both algorithms, based upon the discussion con-
ducted in Section 3.2, for an on-line route guidance system

implemented in the Southeast Michigan road network. We
further compare the expected values to the simulation re-
sults obtained in the preceding section.

As we have shown in Section 3.2, Equation 2 gives the
expected amount of computational effort required by Dijk-
stra’s algorithm to solve the shortest paths in response to
O/D requests for 7 units of time. This expected number is
obtained by multiplying the expected computation time re-
quired to solve a one-pair shortest path problem over the
whole network with the expected number of shortest paths
that need to be solved in a unit period. We may also recall
that by applying Best HA, there are four types of subprob-
lems that need to be solved. Furthermore, different compu-
tational effort is required to solve different types of subprob-
lems. These subproblems can be categorized as follows:

1. the shortest paths in the macronetwork,

2. the shortest paths within a subnetwork corresponding to
origins,

3. the shortest paths within a subnetwork corresponding to
destinations,

4. the combination of approximate solutions.

Again, the expected CPU time required for solving each type
of subproblem can be obtained by multiplying the expected
number of subproblems that need to be solved during a time
slice with the corresponding time needed for solving a single
subproblem. The computation time required by Best HA is
then the sum of the expected times required for solving
these subproblems. For more details on the expected com-
putation time required by the algorithms, we refer to Equa-
tions 3-6 in Section 3.2.

We compute the expected CPU times required by both
algorithms based upon Equations 2 and 7. However, we
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substitute the average CPU time required to solve each
single subproblem for the corresponding expected compu-
tational effort. The expected CPU times required by both
algorithms are then computed using various periods of time.
Figure 8 shows the expected total CPU time required by
both algorithms compared to the simulation results obtained
in the preceding subsection. Furthermore, the expected CPU
times required by Best HA for solving subproblems of types

1-4 as mentioned above are shown in Figure 9, where CTi(t)
is the (expected) CPU time corresponding to a subproblem
of type i in a t-unit time slice.

Computing the expected CPU times required by the al-
gorithms as illustrated here is a very cost-effective way of
obtaining an overall picture on the performance of the algo-
rithms in an on-line route guidance system. This is, in par-
ticular, very helpful in making decisions on the choices of
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the algorithm, the duration of a time slice, etc. Although the
expected CPU times computed this way might not be as
accurate as the simulation results, it gives a rather good
estimation without the effort and the computer time and
memory space required in conducting a simulation.

The expected computational costs can also be used to
adjust the size of the macronetwork and the microsubnet-
works so that an efficient implementation of HA can be
achieved in the hierarchical network. As we have men-
tioned, the efficiency of HA strongly depends on the choice
of decomposition. The size of the macronetwork and micro-
subnetworks affect the amount of computational effort re-
quired for solving subproblems of different types. For in-
stance, consider the expected CPU times required by Best
HA for solving subproblems of types 1-4. A large amount of
CPU time required in Phase II (subproblems of type 4)
suggests reducing the number of macronodes within each
microsubnetwork, thus reducing the size of the macronet-
work. On the other hand, a high computational cost of
solving subproblems of type 2 or type 3 suggests reducing
the sizes of microsubnetworks, thus increasing the number
of microsubnetworks. These insights can be very helpful for
constructing the hierarchical network structure at an early
stage of implementation.
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Appendix
Theorem 2.2 The relative efficiency of Nearest HA with respect

to Dijkstra’s algorithm for the all-pairs shortest path problem
satisfies

Co(N)
N O(log N)
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and

Co(N)
Cx(N)

= Q(1).

Proof. In Phase I, the shortest paths that need to be solved
by Nearest HA are the shortest paths for all O/D pairs
within every microsubnetwork, and in the macronetwork.
The total number of operations required in this phase is thus

O(N¥) - Cp(O(N'™) + Cp(O(N™),
which is

@(Nmax(z—k,Zm)lOg N) and Q(Nmax(z—k/Zm)).

In Phase II, the nearest macronode is selected from
O(N™ %) surrounding macronodes for each micronode, re-
quiring a total of @(N'"""*) operations. Furthermore, to
obtain lengths of the approximate shortest paths that are
across subnetworks, one addition is needed for each path if
the path connects a macronode and a micronode, whereas
two additions are needed if the path connects two micro-
nodes. It is easy to see that the number of paths of the second
type is much more important, and that, independent of the
values of m and k, there are O(N?) such O/D pairs. (There
are ®(N' %) nodes per subnetwork, and ®(N¥) subnetworks,
yielding ®((N* %2 - (N¥)?) relevant O/D pairs.)

Because k > 0 and m < 1, the combination phase (Phase II)
outweighs the shortest path phase (Phase I), so adding up
the number of operations for both phases, we get

Cn(N) = O(N?).

The result now follows easily from the complexity results for
Dijkstra’s algorithm. m

Theorem 2.3. The relative efficiency of Best HA with respect to
Dijkstra’s algorithm for the all-pairs shortest path problem satis-

fies

Co(N) -
W = @(N k ’”)log N)
and
CD(N) 2(k—m
CB(N) — Q(N (k )),

where m = k.

Proof. The number of operations in Phase I is the same as
for Nearest HA, i.e.,

@(Nmax(z—k,Zm)lOg N) and Q(Nmax(z—kgm)).

In Phase II, the best approximating path is selected from
O(N2"~9) possible paths (corresponding to that number of
possible pairs of macronodes for the originating subnetwork
and the destination subnetwork, respectively). Since there
are again O(N?) relevant O/D-pairs, this phase requires a
total of @(N>"2""0) gperations.

Again it is clear that the combination phase (Phase II)
outweighs the shortest path phase (Phase I), so adding up

the number of operations for both phases, we get
CB(N) — @(N2+2(mfk)).

The result now follows easily from the complexity results for
Dijkstra’s algorithm. m

Theorem 2.4. The relative efficiency of Nearest HA with respect
to Dijkstra’s algorithm for the limited-pairs shortest path problem
satisfies

Cp(N; v)
=0 N@l(k,m,y)l N
Cn(N; ) ( o8 N)
and
Cpo(N; v) Netm )
P 3 - —max(y,m—k)
CuN; ) Q| min log N’ N ,
where

€1(k, m, y) = min(k — max(0, m — y), 1 — vy
— 2 max(0, m — 7))
Lok, m, y) = min(k — max(0, m — ), 1 — vy — 2(m — )).

Proof. We will again distinguish between the number of
operations required by Nearest HA in Phase I and Phase II.

In Phase I, several shortest paths have to be solved in
various subnetworks. First, we solve for all shortest paths
within a subnetwork from each origin, which requires a total
of O(NY"'"*ogN) and Q(N*"'"*) operations. Next, the
shortest paths for all pairs of nodes have to be computed in
the macronetwork, because we have assumed that there is at
least one origin within each microsubnetwork. This requires
O(N*" log N) and Q(N*") operations. Finally, within all mi-
crosubnetworks containing at least one destination, the
shortest paths have to be computed from all macronodes
contained in that microsubnetwork. This requires O(N"**~*
log N) and Q(N"*'~%) operations. Adding the numbers of
operations required for solving these subproblems brings
the number of operations required in Phase I to

0 (Nmax(max(y,m)Jrl*k,Zm)lOg N)
and

Q (Nmax(max(y,m)+l 7k,2m))

In Phase II, the nearest macronode is selected from
O(N"™ % surrounding macronodes for each micronode
which can be an origin (or destination), requiring a total of
O(NY*"~¥) operations. Furthermore, to obtain lengths of the
approximate shortest paths that are across subnetworks, one
addition is needed for each path if the path connects a
macronode and a micronode, whereas two additions are
needed if the path connects two micronodes. It is easy to see
that the number of paths of the second type is much more
important, and that, independent of the values of m and k,
there are ®(N>*) O/D pairs.

The total number of operations required by Nearest HA
now satisfies

CN(N’ ,y) — @(maX(Nmax(max(y,m)+17k,2m)10g N, Ny+max(y,mfk)))
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and
CN(N, ,y) — Q(Nmax(max(y,m)+17k,2m,27)).

The result now follows in a straightforward manner from
the complexity results for Dijkstra’s algorithm. =

Theorem 2.5. The relative efficiency of Best HA with respect to
Dijkstra’s algorithm for the limited-pairs shortest path problem
satisfies

Cp(N; ) ”
— =0 Nﬁ(k,m,v)l N
Cs(N; ) ( 8 )
and
Cp(N; v) ( . (Nﬁ(krmlw 1*7*2(mfk)>>
m = (| min W, N .
where

€1k, m, y) = min(k — max(0, m — y), 1 —y — 2(m — k))
€3k, m, y) = min(k — max(0, m — y), 1 —y — 2(m — )).

Proof. The number of operations in Phase I is the same as
for Nearest HA, i.e.,

@ (Nmax(max(y/ m)+17k,2m)10g N)

and

Q (Nmax(max(y,m)+ 1 —k,Zm))

In Phase II, there are ®(N*Y) O/D pairs that require com-
bining paths obtained from Phase I, at a cost of @(N>"~Y)
per combination. Thus, ®(N*(y+m—k)) operations are nec-
essary for Phase II. Thus, the total number of operations
required by Best HA satisfies

CB(N, ,y) — @(maX(Nmax(max(y,m)+17k/2m)10g N, NZ(ermfk)))
and
CB(N, ,y) — Q(Nmax(max(y,m)+17k,2(y+m7k))).

The result now follows in a straightforward manner from
the complexity results from Dijkstra’s algorithm. m



