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Abstract. We consider the problem of making a sequence of decisions, each chosen from a finite action set over an
infinite horizon, so as to minimize its associated average cost. Both the feasibility and cost of a decision are allowed
to depend upon all of the decisions made prior to that decision; moreover, time-varying costs and constraints are
allowed. A feasible solution is said to be efficient if it reaches each of the states through which it passes at minimum
cost. We show that efficient solutions exist and that, under a state reachability condition, efficient solutions are
also average optimal. Exploiting the characterization of efficiency via a solution’s short-run as opposed to long-run
behavior, a forward algorithm is constructed which recursively discovers the first, second, and subsequent decisions
of an efficient, and hence average optimal, infinite horizon solution.

1. Introduction

Infinite horizon optimization at its most fundamental level is the problem of selecting an infinite sequence
of decisions which promises to minimize the associated costs incurred over an unbounded horizon (Bean and
Smith [1984], Schochetman and Smith [1989]). One of the key difficulties inherent in this task is the dilemma
of evaluating an infinite stream of costs whose cumulative value will typically diverge.

Perhaps the most commonly employed criterion is that of discounted costs. This criterion explicitly reflects
the time value of money via a discount factor which leads to convergence in cost. Perhaps the second most
commonly used criterion is obtained by replacing the original cost stream by its average value per period,
the so-called average-cost criterion. Advantages of the latter criterion include: a) the value of a discount
factor need not be specified; b) it is a numerically stable substitute for discounted problems with discount
factor near 1; c) when costs are not measured in dollars, use of a discount factor becomes artificial and
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potentially meaningless; and d) cumulative costs need not converge. Despite these advantages, the average-
cost criterion introduces a number of mathematical pathologies not shared by the discounted-cost criterion.
Perhaps the most serious is that, since the average value of an infinite horizon cost stream is insensitive to
the costs incurred over any finite horizon, the criterion is extraordinarily underselective. It includes average-
cost optimal strategies that are difficult to justify in any other respect (Hopp, Bean, and Smith [1987]).
This behavior is correctable in the stationary case by restricting consideration to a set of strategies within
which average-cost minimization makes sense. In particular, in stationary problems where neither decision
feasibility nor costs are time-dependent, restriction to stationary strategies yields an average-cost optimal
strategy that avoids the myopic behavior of the larger class of all average-cost optimal strategies (Ross [1983],
Puterman [1994]).

In this paper, we extend the latter approach to nonstationary problems where either feasibility or costs
(possibly both) are time dependent. However, stationary strategies need no longer be optimal here. In-
stead, we generalize by restricting consideration to efficient strategies (see Ryan, Bean, and Smith [1992],
Schochetman and Smith [1992] for a similar concept in the discounted case). A strategy is efficient if it is
average-cost (or equivalently undiscounted total cost) optimal to each of the states through which it passes.
We show that an efficient solution always exists and that, under a state-reachability condition, every effi-
cient solution is average-cost optimal. This result is perhaps surprising in that the mixing effects due to
ergodicity in the more traditional stochastic setting (Ross [1968], Federgruen and Tijms [1978], Hopp, Bean
and Smith [1987], Bean, Lasserre, and Smith [1990], Park, Bean, and Smith [1993]) are absent in our purely
deterministic model. As a consequence of the above, we conclude existence of an average-cost optimal solu-
tion. Moreover, because of its characterization in terms of its optimal behavior to states, as opposed to from
states, we construct a forward algorithm that is guaranteed to successively discover the first, second, and
subsequent decisions along an efficient, and hence average-cost optimal, strategy for general nonstationary
infinite horizon optimization. The algorithm is similar to the forward algorithms proposed in Schochetman
and Smith [1992] in the discounted case.

In section 2, we formally introduce the general class of discrete-time infinite horizon problems which
we study. We form their finite horizon approximating problems by projection of the feasible region and
objective function onto finite dimensional spaces. Efficient solutions are then introduced in section 3 as
feasible infinite horizon solutions which are optimal to each of the states through which they pass. The
existence of efficient solutions is demonstrated by a topological compactness argument. In section 4, we
introduce a state-reachability property which guarantees that every efficient solution is average-cost optimal,
and in particular, that an average-cost optimal solution thus exists. In section 5, we turn to the problem
of approximating efficient solutions by their computable finite horizon counterparts. We first show that
the sequence of sets of all efficient solutions of the finite horizon approximating problems converges, in the
sense of Kuratowski, to the set of efficient solutions of the infinite horizon problem. We next show policy
convergence, where the sequence of lexicomin elements of the sets of finite horizon efficient solutions is shown
to converge to the lexicomin infinite horizon efficient solution. This is an instance of Äselection convergence.
Average optimal cost convergence is established in section 6. In section 7, a finite forward algorithm, with
stopping rule, is given that recursively recovers the first, second, and subsequent decisions in an average-cost
optimal efficient solution, whenever the latter is unique.

For additional examples and omitted proofs, we refer the reader to Schochetman and Smith [1997].

2. Problem Formulation

We begin with an extremely general deterministic infinite horizon optimization problem, formulated as a
dynamic programming problem. The deterministic property removes our model from the stochastic frame-
work required for the majority of average-cost criterion work (Ross [1968], Derman [1966], Federgruen and
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Tijms [1978]). These stochastic models generally require a single fixed recurrent class of the Markov chain
corresponding to every policy, a property that fails in the purely deterministic case. Essentially, the only
restriction in this work, apart from being a deterministic model, is the requirement that at most a finite
number of decision alternatives is available at each decision epoch. Included are production planning un-
der nonstationary demand, parallel and serial equipment replacement under technological change, capacity
planning under nonlinear demand, and optimal search in a time-varying environment.

For convenience, we embed the problem within a discrete-time framework, where each decision is made at
the beginning of each of a series of equal time periods, indexed by j = 1, 2, . . . . The set of all possible decisions
available in period j (irrespective of the period’s beginning state) is denoted by Yj , and is assumed to be finite.
For convenience we let Yj = {0, 1, 2, . . . , mj} with the usual discrete topology, with mj > 1, ∀j = 1, 2, . . .
(we may interpret decision 0 as signaling no action for that period). We model the problem as a dynamic
system governed by the state equation

sj = fj(sj−1, yj), ∀j = 1, 2, . . . ,

where s0 is the given initial state of the system (beginning period 1); sj is the state of the system at
the end of period j, i.e., beginning period j + 1; yj is the control or decision selected in period j with
knowledge of the beginning state sj−1; and Sj is the given (finite) set of feasible states ending period j, so
that sj ∈ Sj . ∀j = 1, 2, . . . . The set Yj(sj−1) is the given (finite) non-empty subset of decisions available in
period j when the system is in state sj−1 ∈ Sj−1, so that yj ∈ Yj(sj−1) ⊆ Yj . Finally, fj is the given state
transition function in period j, where fj : Fj → Sj , with

Fj = {(sj−1, yj) ∈ Sj−1 × Yj : yj ∈ Yj(sj−1)}, ∀j = 1, 2, . . . .

We set S0 = {s0}, and require that

Sj = {fj(sj−1, yj) : sj−1 ∈ Sj−1, yj ∈ Yj(sj−1)}, ∀j = 1, 2, . . . ,

so that, in particular, S1 = {f1(s0, y1) : y1 ∈ Y1(s0)}. Thus, each Sj is exactly the set of feasible, i.e.,
attainable, states in period j. Note that our state space formulation is essentially without loss of generality
since we can if necessary identify distinct states to every feasible sequence of preceding decisions. We will at
times adopt the equivalent view that models the decision problem via a directed acyclic network where the
nodes correspond to the states sj , j = 1, 2, . . . and a directed arc joining state sj to state sj+1 corresponds
to an action in Yj+1(sj) that transforms state sj into state sj+1 via the state transition function f . Every
directed path from node s0 to node sj then corresponds to a feasible sequence of decisions that results in
state sj at the end of period j.

The product set Y = Π∞j=1Yj which contains all feasible decision sequences or strategies is then a compact
topological space relative to the product topology, i.e., the topology of componentwise convergence. (Note
that in general not all strategies in Y will be feasible.) Because of the finiteness of the Yj , componentwise
convergence yields eventual agreement in each component of the limiting strategy.

Lemma 2.1. Let y ∈ Y , {yn} ⊆ Y , such that yn → y, as n → ∞. Let 1 6 K < ∞. Then there exists nK

sufficiently large such that yn
j = yj in Yj, ∀j = 1, . . . , K, for all n > nK .

In section 4, we will find it necessary to assume that the sequence {mj} is bounded by some 1 6 m <∞,
i.e., mj 6 m, all j. In this event, the product topology on Y is metrizable with metric d given by

d(x, y) =
∞∑

j=1

βj |xj − yj |, ∀x, y ∈ Y,
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where we choose β so that 0 < β < 1/(m + 1).
We will let K(Y ) denote the set of all closed (hence, compact), non-empty subsets of Y . Equipped with

the Hausdorff metric D (Berge [1963]) derived from the above metric d, K(Y ) is also a compact metric
space (Hausdorff [1962]). It is well-known that the resulting convergence in K(Y ) is set convergence in the
sense of Kuratowski (Kuratowski [1966], Hausdorff [1962]). Recall that a sequence of sets Tn in an abstract
metric space (Z, ρ) is said to Kuratowski converge to T , written limTn = T , if T = lim supTn = lim inf Tn,
where:

(i) lim inf Tn= the set of points x in Z for which there exists xn ∈ Tn, for n sufficiently large, such that
ρ(xn, x)→ 0, as n→∞.

(ii) lim supTn = the set of points x in Z for which there exists a subsequence {Tnj} of {Tn}, and a
corresponding sequence {xj}, such that xj ∈ Tnj , ∀j, and ρ(xj , x)→ 0, as j →∞.

Now let x ∈ Y . Define x to be feasible if xj ∈ Yj(sj−1), where sj = fj(sj−1, xj), for all j = 1, 2, . . . . We
define the feasible region X to be the subset of Y consisting of all those x which are feasible.

Lemma 2.2. The subset X of all feasible solutions is non-empty and closed in Y , i.e., X ∈ K(Y ).

Proof. The non-emptiness of X follows immediately from our assumption that Yj(sj−1) 6= ∅, for all sj−1 ∈
Sj−1, and for all j = 1, 2, . . . . To show X is closed in the metric space Y , let {xn} be a sequence in X and
y an element of Y for which xn → y in Y , i.e., xn

j → yj , as n → ∞, ∀j = 1, 2, . . . . We show that y ∈ X,
i.e., yj ∈ Yj(sj−1), where sj = fj(sj−1, yj), ∀j = 1, 2, . . . .

By Lemma 2.1, we have that for each j, eventually xn
j = yj . Let 1 6 K < ∞. Then there exists

m sufficiently large such that xm
j = yj , ∀j = 1, 2, . . . , K. Since xm ∈ X by hypothesis, we have that

xm
j ∈ Yj(sm

j−1), where sm
j = fj(sm

j−1, x
m
j ), for all j = 1, 2, . . . . Then y1 = xm

1 ∈ Y1(s0) and f1(s0, y1) =
f1(s0, x

m
1 ) = sm

1 , so that s1 = sm
1 . Similarly, y2 = xm

2 ∈ Y2(sm
1 ) = Y2(s1) and f2(s1, y2) = f2(s1, x

m
2 ) = sm

2 ,
so that s2 = sm

2 . Continuing in this manner, we conclude that yK = xm
K ∈ YK(sm

K−1) = YK(sK−1) and
fK(sK−1, yK) = fK(sK−1, x

m
K) = sm

K , so that sK = sm
K . Since K is arbitrary, it follows that x ∈ X. ¤

Clearly, the infeasability of an infinite strategy is determinable from observing a finite sequence of its
initial decisions. Practically speaking, this is hardly a restriction since the feasibility of a potential decision
in period j is allowed to depend upon the entire sequence of decisions previously made.

Suppose y ∈ Y and N is a positive integer. Suppose y is such that yj ∈ Yj(sj−1), where sj = fj(sj−1, yj),
for j = 1, 2, . . . , N , i.e., y is feasible through period N . In this event, for each such j 6 N , we define sj(y)
to be the state sj = fj(sj−1, yj), which is an element of Sj . If we do this for each j = 1, 2, . . . , N , then
notationally we have that sj(y) = fj(sj−1(y), yj). (Note that the state sj(y) is well-defined.) We will refer
to each such sj(y) as the state through which y passes at the end of period j. If both z, y ∈ Y satisfy the
previous property with respect to N , and yj = zj , ∀j = 1, 2, . . . , N , then sj(y) = sj(z) for all j = 1, 2, . . . , N .
Moreover, if x ∈ X, then the previous property is satisfied for x and all positive integers N , so that sj(x) is
defined for each period j = 1, 2. . . . in this case. Finally, if x ∈ X, then (sj−1(x), xj) ∈ Fj , ∀j = 1, 2, . . . .

Turning to the objective function, we also allow the cost of a decision made in period j to depend upon the
sequence of previous decisions, or more accurately, upon the state resulting from these decisions. Specifically,
we let cj(sj−1, yj) be the real-valued cost of decision yj in period j, if we are in state sj−1 beginning period
j. We thus obtain cost functions cj : Fj → R, which we assume are uniformly bounded, i.e., there exists
0 < B <∞ such that

|cj(sj−1, yj)| 6 B, ∀sj−1 ∈ Sj−1, ∀yj ∈ Yj(sj−1), ∀j = 1, 2, . . . .

We will adopt the average-cost optimality criterion in this paper. Specifically, for each strategy x ∈ X,
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we define the associated average-cost A(x) by

A(x) = lim sup
N

1
N

N∑
j=1

cj(sj−1(x), xj),

so that −B 6 A(x) 6 B, ∀x ∈ X. One of the pathological aspects of the average cost criterion is it’s failure
to be continuous.

Our average-cost optimization problem (P ) can now be formulated as:

min
x∈X

A(x) (P )

We will denote the set of optimal solutions to (P ) by X∗. Of course, φ ⊆ X∗ ⊆ X, in general. Incidentally,
another pathological aspect of the average-cost criterion is that X∗ need be not closed in Y , since the
optimality of a strategy x is unaffected by costs incurred over early periods.

We remark that the discounted-cost criterion is formally included in the average- cost case. Let x ∈ X.
Consider the objective function of the discounted-cost criterion D(x) =

∑∞
j=1 cj(sj−1(x), xj)αj , where 0 <

α < 1. Set

c′j(sj−1(x), xj) = j

j∑
l=1

cl(sl−1(x), xl)αl −
j−1∑
l=1

c′l(sl−1(x), xl), ∀j = 2, 3, . . . ,

where c′1(s0, x1) = c1(s0, x1). Then 1
N

∑N
j=1 c′j(sj−1(x), xj) =

∑N
l=1 cl(sl−1(x), xl)αl, so that

A(x) = lim sup
N

1
N

N∑
j=1

c′j(sj−1(x), xj) =
∞∑

l=1

cl(sl−1(x), xl)αl = D(x).

In this way, we may transform any discounted-cost problem into an equivalent average-cost problem.
Our primary objective in this paper is to approximate optimal solutions of (P ) by solutions of finite

horizon truncations of (P ). To this end, for each N = 1, 2, . . . , let KN be the (finite) projection of the
feasible region X onto Y1 × . . . × YN , i.e., KN is equal to the set of (x1, . . . , xN ) ∈ Y1 × · · · × YN which
satisfy: xj ∈ Yj(sj−1), where sj = fj(sj−1, xj), ∀j = 1, 2, . . . , N .

The set KN denotes a set of N -horizon feasible strategies in the (finite) set Y1× . . .×YN of all N -horizon
strategies. Note that every element of KN can be feasibly completed to an element of X. Moreover, the first
N decisions of every element of X lie within KN . In fact, a subset in RN has these two properties if and
only if it is the projection of X onto RN . It is for this reason that we believe KN is the natural choice for
the feasible region of the N -th approximating subproblem.

Now, for technical reasons, we embed KN into Y by letting XN denote the set of all arbitrary extensions
of the elements of KN , i.e., XN = KN × YN+1 × YN+2 × . . . , so that XN ∈ K(Y ), all N . We shall
effectively identify XN and KN . Note that if x ∈ XN , then (sN (x), xN ) ∈ FN . Moreover, it is clear that
KN+1 ⊆ KN × YN+1, so that

XN+1 ⊆ XN , ∀N = 1, 2, . . . ,

i.e., the sets XN are nested downward. Moreover, their Kuratowski limit exists and is the infinite horizon
feasible region X, as the following lemma demonstrates.
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Lemma 2.3. We have X = ∩∞N=1XN . Thus,

lim
N→∞

XN = X.

Proof. Clearly, X ⊆ XN , all N , so that X ⊆ ∩∞N=1XN . Conversely, let x ∈ ∩∞N=1XN and suppose x 6∈ X.
Then δ = d(x, X) > 0, where as usual, δ = inf{d(x, y) : y ∈ X}. Let N0 be sufficiently large such that∑∞

i=N0+1 2−i < δ and y ∈ X. If xi = yi, 1 6 i 6 N0, then

d(x, y) 6
∞∑

i=N0+1

1
2i

< δ,

which is a contradiction. Thus, for each y ∈ X, there exists 1 6 iy 6 N0 for which xiy 6= yiy . This implies
that x 6∈ XN0 , which is a contradiction. For the second part, see Aubin [1990]. ¤

We define the N -horizon average-cost optimization problem (PN ) as follows:

min
x∈XN

AN (x), (PN )

where

AN (x) =
1
N

N∑
j=1

cj(sj−1(x), xj), ∀x ∈ XN ,

is the average cost of strategy x over horizon N, ∀N = 1, 2, . . . . It will be convenient to write CN (x) =
NAN (x), i.e.,

CN (x) =
N∑

j=1

cj(sj−1(x), xj), ∀x ∈ XN .

Clearly, each AN : XN → R is a continuous function, since AN depends only on KN , which is finite and
discrete. Similarly for CN . Note that if M > N , then CM (x)− CN (x) 6 (M −N)B.

Problem (PN ) is really an N -horizon problem since only the first N entries of x matter, i.e., if x ∈ XN is
(PN )-optimal, then so is (x1, . . . , xN , yN+1, yN+2, . . .), where yj ∈ Yj can be chosen arbitrarily ∀j > N +1.
We have defined (PN ) in this way so that solutions to (PN ) are in Y , for all N , i.e., they are comparable to
each other and to the solutions of (P ) as well. Hence, (PN ) is effectively a finite problem which is finitely
solvable (in the worst case) by enumeration of the elements of KN .

The optimal solution set X∗N to (PN ) is then a non-empty, closed subset of Y , since KN is finite and
non-empty. Thus, X∗N ∈ K(Y ), for all N . Although the XN are nested downward, the X∗N need not be. We
will denote the optimal objective value to (PN ) by A∗N , ∀N = 1, 2, . . . .

Now, for each N = 1, 2, . . . and s ∈ SN , define

XN (s) = {x ∈ XN : sN (x) = s},

so that {XN (s) : s ∈ SN} is a partition of XN . If x ∈ XN , then sN (x) is the unique element of SN for
which x ∈ XN (sN (x)), ∀N = 1, 2, . . . .

The following lemma observes that the state at time N of a strategy depends only upon the first N
decisions associated with that strategy.
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Lemma 2.4. Let N = 1, 2, . . ., and s ∈ SN . If x ∈ XN (s), then

(x1, . . . , xN , yN+1, yN+2, . . . ) ∈ XN (s),

where yj ∈ Yj is arbitrary for all j = N + 1, . . . .

Proof. This follows from the definition of XN (s). ¤

The key property that formally endows states with the intuitive notion that they should incorporate all of
the information about past decisions relevant to making future decisions is formalized by the following lemma.
Roughly speaking, it says that if two finite horizon feasible strategies with different horizons have the same
state at the earlier horizon, followed by identical decisions to the later horizon, then a) the earlier strategy
is feasible to the later horizon, with the same ending state as the later strategy, and b) the costs-per-period
are the same from the earlier horizon to the later horizon.

Lemma 2.5. If 0 6 N < M <∞, x ∈ XM , y ∈ XN , sN (x) = sN (y) and (xN+1, . . . , xM ) = (yN+1, . . . , yM ),
then

a) y ∈ XM , sM (y) = sM (x) and
b) cj(sj−1(x), xj) = cj(sj−1(y), yj), ∀j = N + 1, . . . , M.

Proof. Left to the reader. ¤

We will repeatedly apply the previous lemma in different contexts. Thus, it will be convenient to refer to
Lemma 2.5 as being applied to the context (N, M, y, x). In particular, note that Lemma 2.4 is a consequence
of the Lemma 2.5 applied to (0, M, y, x), with X0 = Y and s0(x) = s0(y) = s0.

3. Efficient Solutions

The state-space formulation above associated a unique state at each time period with every infinite horizon
feasible solution. Solutions that have the property of optimally reaching each of the states through which
they pass are called efficient solutions (Schochetman and Smith [1992], Ryan, Bean, and Smith [1992]). Such
a solution offers little opportunity for retrospective regret in that at every state along its path, there was
no better way to reach that state. This efficiency of movement through the state space suggests efficient
solutions as candidates for average-cost optimality. This last observation will be explored in the next section,
where efficient solutions will indeed be shown to be average-cost optimal under a state reachability property.
In this section, we formalize the notion of an efficient solution and prove the existence of such solutions.

For each 1 6 N <∞ and s ∈ SN , consider the problem (PN (s)) defined as follows:

min
x∈XN (s)

AN (x) (PN (s))

Optimal solutions to (PN (s)) consist of those N -horizon feasible strategies of least cost which have state s
ending period N . As was the case for (PN ), such optimal solutions exist and form a closed set in Y . Denote
them by X∗N (s), so that X∗N (s) ∈ K(Y ), for all N and all s ∈ SN .
Remark 3.1. Let N = 1, 2, . . . . If x is an N -horizon optimal solution, then it is optimal to its own state
sN (x) ending period N , i.e., if x ∈ X∗N , then x ∈ X∗N (sN (x)). This follows because x ∈ XN (sN (x)) ⊆ XN .
Hence, if x is least-cost over XN , the same must be true over the smaller set XN (sN (x)).

For each N = 1, 2, . . . , define X ∗N to be the set of all N -horizon feasible strategies which are optimal to
some feasible state s ∈ SN , i.e.,
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X ∗N = ∪
s∈SN

X∗N (s).

Since this is a finite (disjoint) union of closed, non-empty subsets of Y , it follows that X ∗N ∈ K(Y ), for all
N .
Remark 3.2. For each N = 1, 2, . . ., we have that X ∗N ⊇ X∗N because if x ∈ X∗N , then x ∈ X∗N (s), for the
state s = sN (x) in SN .

The following lemma is a version of the Principle of Optimality: any optimal solution (to its state) at
time N must have been optimal to the state it passed through at each time M < N .

Lemma 3.3. Let N = 1, 2, . . . and x ∈ XN . If x is optimal to horizon N (necessarily with ending state
sN (x)), then x is optimal to every earlier horizon M (with ending state sM (x)), i.e., if x ∈ X∗N (sN (x)), then
x ∈ X∗M (sM (x)), for all 1 6M 6 N .

Proof. Omitted. ¤

The following theorem is also a version of the Principle of Optimality: any optimal solution (to its state)
at time N + 1 must have been optimal to the state it passed through at time N . Equivalently, the efficient
solutions are nested downward. (Recall that the optimal solutions X∗N need not be nested downward.)

Theorem 3.4. For each N = 1, 2, . . ., we have X ∗N+1 ⊆ X ∗N .

Proof. Let x ∈ X ∗N+1. Then x ∈ X∗N (sN+1(x)), where sN+1(x) ∈ SN+1. By Lemma 3.3, we have that
x ∈ X∗N (sN (x)), where sN (x) ∈ SN , so that x ∈ X ∗N . ¤

We can now formally define an efficient solution to be any solution in Y which is a member of X ∗N , for
each N = 1, 2, . . . . That is, the set X ∗ of (infinite horizon) efficient solutions is given by

X ∗ = ∩∞N=1X ∗N .

Efficient solutions may thus be characterized as feasible solutions that are optimal to each of the states
through which they pass, i.e. x∗ ∈ X∗N (sN (x∗)) for each N = 1, 2, . . . . Note that X ∗ is a closed subset of Y ,
while X∗ is not closed in general.

Lemma 3.5. The set X ∗ is non-empty, i.e., X ∗ ∈ K(Y ).

Proof. Let x∗N ∈ X ∗N , all N . Then {x∗N} is a sequence in the compact metric space Y . Thus, there exists y
in Y and a subsequence {x∗Nk} of {X∗N} such that x∗Nk → y in Y , as k →∞.

Fix N . By Lemma 3.3, there exists kN sufficiently large such that x∗Nk ∈ X
∗
N , for all k > kN . Since X ∗N

is closed, it follows that y ∈ X ∗N . But N is arbitrary. Hence, y ∈ X ∗. ¤
By the previous lemma, efficient solutions always exist in our setting. We demonstrate in the next section

that, under an additional hypothesis, they are necessarily average-cost optimal.

4. State-Reachability and Average-Cost Optimality

In this section, we show that, under a state-reachability property, efficient solutions are average-cost
optimal. We then conclude the existence of an average-cost optimal solution under state-reachability, as a
consequence of the existence of efficient solutions.

Recall that for each N = 1, 2, . . . , we have X ⊆ XN , so that {sN (x) : x ∈ X} ⊆ SN . Conversely,
since every finite horizon feasible strategy is extendable to a feasible infinite horizon strategy, we have that
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{sN (x) : x ∈ X} ⊇ SN , so that SN = {sN (x) : x ∈ X}, ∀N = 1, 2, . . . , i.e., every N -horizon feasible state
is realizable as the N -horizon state of some infinite horizon feasible solution. Thus, there is no distinction
between finite and infinite horizon feasible states.

We now present a notion of bounded state-reachability which requires roughly that it be possible to feasibly
reach any state within a bounded number of periods from any other feasible state.

Definition 4.1 (Bounded Reachability Property). There exists a positive integer R such that for each
1 6 K <∞, each s ∈ SK and each finite sequence of states (tK , . . . , tK+R) in SK ×· · ·×SK+R, there exists
K 6 L 6 K + R and y ∈ XL for which sK(y) = s and sL(y) = t(L). We will refer to this as the Bounded
Reachability Property for (K, s; (tK , . . . , tK+R)). If there exists R > 0 for which this property holds for all
K, s; (tK , . . . , tK+R), then problem (P ) is said to satisfy Bounded Reachability.

We now can prove the main result of this paper.

Theorem 4.2. Suppose (P ) satisfies Bounded Reachability. Then every efficient solution is average-cost
optimal, i.e.,

X ∗ ⊆ X∗.

Proof. Let v ∈ X ∗. Since X ∗ = lim infN X ∗N , there exists a sequence {sN} and a corresponding sequence
{x∗N (sN )} such that sN ∈ SN , x∗N (sN ) ∈ X∗N (sN ), all N , and x∗N (sN ) → v in Y , as N → ∞. Since
X∗N (sN ) ⊆ XN , all N , it follows that v ∈ lim infN XN = X, i.e., v is feasible for (P ). We next show that v
is optimal for (P ), i.e., A(v) 6 A(x), ∀x ∈ X, so that v ∈ X∗.

Let x be an arbitrary element of X. Fix 1 6 K <∞. Let nk be as in Lemma 2.1, B as in section 2 and R
as in the Bounded Reachability Property. Fix T sufficiently large so that T > nk and T > K + R. Without
loss of generality, we may assume that nk > K + R. Set N = T and y = x∗(T, sT ) for convenience, so that
sT (y) = sT and y is optimal for (PT (sT )). Since x∗(N, sN ) → v, as N → ∞, and T > nk, it follows from
Lemma 2.1 that yj = vj , j = 1, . . . , K. Furthermore, since s0 is the initial state for all strategies, we have
that sK(v) = sK(y) and

cj(sj−1(v), vj) = cj(sj−1(y), yj), ∀j = 1, . . . , K,

by Lemma 2.5 applied to (0, K, y, v) (or (0, K, v, y)).

Applying the Bounded Reachability Property to (K, sK(x); (sK(y), . . . , sK+R(y)), there exists K 6 L 6
K + R and z ∈ XL such that sK(z) = sK(x) and sL(z) = sL(y). Observe that z ∈ XL(sL(z)) = XL(sL(y))
and y ∈ XT ⊆ XL.



K

x

v

z

s0

L K+R

y

n(K) T

w

sK(v)=sK(y)

sK(z)=sK(x)

sL(w)=sL(z)=sL(y)
sK+R(y)=sK+R(w)

s(T)=sT(y)=sT(w)

Figure 1 - Every efficient solution is average-cost optimal
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Now let
w = (x1, . . . , xK , zK+1, . . . , zL, yL+1, yL+2, . . .).

Then w ∈ XK(sK(x)) (Lemma 2.4), so that

sK(w) = sK(x) = sK(z),

w ∈ XL(sL(z)) = XL(sL(y)),

sj−1(w) = sj−1(z),

sL(w) = sL(z) = sL(y),

and
cj(sj−1(w), wj) = cj(sj−1(z), zj), ∀j = K + 1, . . . , L,

by Lemma 2.5 for (K, L, w, z). Similarly, by Lemma 2.5 for (L, T, w, y), we have that w ∈ XT (sT ) =
XT (sT (y)),

sT (w) = sT = sT (y),

sj−1(w) = sj−1(y),

and
cj(sj−1(w), wj) = cj(sj−1(y), yj), ∀j = L + 1, . . . , T.
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Since y is optimal for (PT (sT )), it follows that CT (w) > CT (y). But

CT (w) = CK(w) + [CL(w)− CK(w)] + [CT (w)− CL(w)]

= CK(x) + [CL(z)− CK(z)] + [CT (y)− CL(y)],

and

CT (y) = CK(y) + [CL(y)− CK(y)] + [CT (y)− CL(y)]

= CK(v) + [CL(y)− CK(y)] + [CT (w)− CL(w)],

so that
CK(v) 6 CK(x) + [CL(z)− CK(z)] + [CK(y)− CL(y)],

which implies that

CK(v) 6 CK(x) + 2(L−K)B

6 CK(x) + 2RB.

Hence, AK(v) 6 AK(x) + 2RB/K, where K is arbitrary. Consequently,

A(v) = lim sup
K

AK(v) 6 lim sup
K

AK(x) + lim sup
K

2RB

K
= A(x),

which implies that v ∈ X∗. Thus, X ∗ ⊆ X∗. ¤
Corollary 4.3. Suppose (P ) satisfies Bounded Reachability. Then there exists an average optimal solution
for (P ), i.e., X∗ 6= ∅.
Proof. Follows from Lemma 3.5 and Theorem 4.2. ¤

5. Optimal Solution Convergence

We showed in the previous section that efficient solutions, in the presence of Bounded Reachability, are
average-cost optimal, i.e., ∅ 6= X ∗ ⊆ X∗. However, in general, the inclusion is strict, X ∗ ⊂ X∗, i.e., there are
average-cost optimal solutions which may fail to be efficient. This is clear since average-cost optimality is a
long-run property while efficiency is a short-run property. It is in this sense that efficient solutions strengthen
the under-selective criterion of average-cost optimality (Hopp, Bean, and Smith [1987]). Moreover, efficient
solutions inherit the long-run properties of average-cost optimality through their behavior in the short-run,
i.e., optimality to every state through which they pass. It is this latter characterizing property that we
exploit in this section to approximate an efficient, and hence average-cost optimal, solution by solving for
short-run optimal solutions to (P ).

The following result says that the N -horizon efficient solutions X ∗N arbitrarily well approximate the infinite
horizon efficient solutions X ∗, for sufficiently long horizon N .

Lemma 5.1. (Average-Cost Optimal Solution Set Convergence) The sequence {X ∗N} of N -horizon efficient
solution sets converges in K(Y ) to the set X ∗ of all infinite horizon efficient solutions.

Proof. This follows from the definition of X ∗ and Theorem 3.4. ¤
The previous lemma assures us that for every efficient solution x∗ ∈ X ∗, there is a sequence of N -horizon

efficient solutions x∗N ∈ X ∗N which converges to x∗. We turn next to the problem of finding such a selection
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{x∗N} from the {X ∗N}. Following Ryan, Bean, and Smith [1992], we recall the notion of lexicomin of a subset
of Y .

Define the lexico order ≺ on Y as follows. For x, y ∈ Y , x ≺ y if there exists a positive integer k for
which xj = yj , for j = 1, . . . , k − 1, and xk < yk. We will write x ¹ y if x = y or x ≺ y. Clearly, ¹ is a
partial order on Y . Since it also satisfies the Law of Trichotomy, i.e., for each x, y ∈ Y , either x ≺ y, x = y
or y ≺ x, the relation ≺ is a linear order on Y . It will be convenient to denote the element (0, 0, . . . ) in the
compact metric space Y by θ. For our choice of β, i.e., 0 < β < 1/(m + 1), the following lemma shows that
the distances to elements of Y from θ determine the lexico order ≺.

Lemma 5.2. Let x, y ∈ Y . Then x ≺ y if and only if d(θ, x) < d(θ, y). Hence, x = y if and only if
d(θ, x) = d(θ, y).

Proof. Omitted. ¤
Now let V be an arbitrary non-empty subset of Y and λ ∈ Y . We define λ to be a lexicomin of V if λ ∈ V

and λ ≺ x, for all x ∈ V such that x 6= λ. Note that lexicomins are unique, when they exist. (Suppose λ and
µ are distinct lexicomins of V . Then λ ≺ µ and µ ≺ λ necessarily, and without loss of generality, it follows
that there exists a positive integer k such that λk 6 µk and µk < λk. Contradiction.) We will denote the
lexicomin of V by λ(V ), whenever it exists.

The following lemma emphasizes that a lexicomin is a nearest point selection.

Lemma 5.3. Let V be a subset of Y and x ∈ V . Then x is the lexicomin of V if and only if x is the point
in V nearest to θ.

Proof. Follows immediately from Lemma 5.2. ¤
The following lemma assures us that such a nearest-point selection from a set exists whenever the set is

closed.

Lemma 5.4. Let V be a closed non-empty subset of Y . Then there exists a (unique) lexicomin of V . In
particular, θ is the lexicomin of Y .

Proof. The function x→ d(θ, x) is continuous on the compact set V . Hence, it attains its minimum at some
point of V , which is necessarily the lexicomin of V by the previous lemma. ¤

The converse of this lemma is not true in general.
The following proposition assures us that the lexicomin selection from a sequence of Kuratowski-converging

sets is convergent.

Proposition 5.5. Let {Fn} be a sequence in K(Y ) which converges to F in K(Y ). Then the sequence
{λ(Fn)} converges to λ(F ) in Y .

Proof. In the terminology of Schochetman and Smith [1989], θ is a uniqueness point for F and {λ(Fn)} is a
nearest-point selection from the Fn defined by θ. The result then follows from Theorem 3.4 of Schochetman
and Smith [1989]. ¤

We are now in position to obtain our average-cost optimal solution convergence result in terms of solution
strategies instead of solution strategy sets.

Theorem 5.6. (Average-Cost Optimal Policy Convergence) The sequence {λ(X ∗N} of lexicomin N -horizon
efficient solutions converges in Y to the lexicomin infinite horizon efficient solution λ(X ∗), i.e.,

lim
N→∞

λ(X ∗N ) = λ(X ∗).
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Proof. Recall that X ∗N → X ∗ in K(Y ), as N → ∞. Since X ∗ and the X ∗N are closed and non-empty, each
contains a lexicomin denoted by λ(X ∗) and λ(X ∗N ), respectively, ∀N = 1, 2, . . . . By Proposition 5.5, we have
that limN→∞ λ(X ∗N ) = λ(X ∗) in Y , where λ(X ∗) ∈ X∗, i.e., it is an optimal solution for (P ). Thus, we have
average-cost optimal solution convergence in the familiar point sense. ¤

6. Value Convergence

In the previous section, we demonstrated policy convergence of solutions of the approximating problems
(PN ) to an infinite horizon average-cost optimal solution of (P ). However, since the average-cost operators
AN fail to converge uniformly to A (indeed, A is not a continuous function in general), we cannot conclude
value convergence in the average-cost case. In particular, the optimal average cost A∗N of problem (PN ) need
not converge to the optimal average cost A∗ of (P ); in fact, it need not converge at all. Despite this, there
is a weaker sense in which the optimal average-cost values {A∗N} of the subproblems (PN ) approximate the
optimal average-cost value A∗ of the problem (P ).

Theorem 6.1. Suppose (P ) satisfies Bounded Reachability. Then

A∗ = lim sup
N

A∗N .

Proof. Let x∗ ∈ X ∗ (Lemma 3.5) and x∗N ∈ X∗N , so that A∗ = A(x∗) (Theorem 4.2) and A∗N = AN (x∗N ),
∀N = 1, 2, . . . . Since x∗ ∈ X and X ⊆ XN , it follows that x∗ ∈ XN , so that AN (x∗N ) 6 AN (x∗), ∀N =
1, 2, . . . . Hence, since both sequences are bounded, by the results of Goldberg [1964], we have that lim sup

N
AN (x∗N )

6 lim sup
N

AN (x∗), i.e., lim sup
N

A∗N 6 A∗.

Conversely, let R be as in the Bounded Reachability Property. Fix N > 2R, so that M = N − R > R,
and set v = x∗N for convenience. Applying the Bounded Reachability Property to the data

(M, sM (v); (sM (x∗), . . . , sN (x∗))),

we conclude that there exists M 6 L 6 N and w ∈ XL such that sM (w) = sM (v) and sL(w) = sL(x∗).
Define

z = (v1, . . . , vM , wM+1, . . . , wL, x∗L+1, x
∗
L+2, . . . ).



R N-R=M L N

w

x*

v

z

sR(w)

sR(v)

sR(x*)

sM(v)=sM(w)=sM(z)

sL(x*)=sL(w)=sL(z)

sL(v) sN(v)

sN(x*)

s0

Figure 2 - Optimal average-cost convergence
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Clearly, z ∈ XL by Lemma 2.5. Also by Lemma 2.5 for (L, N, z, x∗), we have that z ∈ XN and sN (z) =
sN (x∗), so that z ∈ XN (sN (x∗)), and

cj(sj−1(z), zj) = cj(sj−1(x∗), x∗j ), ∀j = 1, 2, . . . , N.

Also recall that since x∗ ∈ X ∗, we have that x∗ ∈ X∗N (sN (x∗)).
Since x∗ is an optimal solution to (PN (sN (x∗))) and z ∈ XN (sN (x∗)), it follows that

CN (x∗) 6 CN (z) = CM (z) + [CN (z)− CM (z)] 6 CM (z) + (N −M)B

= CM (z) + RB 6 CM (v) + RB = CN (v) + [CM (v)− CN (v)] + RB

6 CN (v) + |CN (v)− CM (v)|+ RB 6 CN (v) + (N −M)B + RB = CN (v) + 2RB,

so that AN (x∗) 6 AN (v) + 2RB/N, for N > 2R. Hence, by the results of Goldberg [1964], we have

A∗ = lim sup
N

[AN (x∗)] 6 lim sup
N

[
AN (v) +

2RB

N

]
6 lim sup

N
[AN (v)] + 2 lim

N→∞

RB

N
= lim sup

N
AN (v),

i.e., A∗ 6 lim sup
N

A∗N , which completes the proof. ¤

Remark 6.2. Theorem 6.1 says that A(x) = lim supN AN (xN ), for x = x∗ ∈ X ∗ and xN = x∗N ∈ X∗N ,
∀N = 1, 2, . . .. For a general sequence {xN} such that xN ∈ XN , all N , even if xN → x in Y , as N →∞, it
is not necessarily the case that A(x) = lim supN AN (xN ). Thus, the convergence claimed in Theorem 6.1 is
restricted to optimal average-cost values, unlike in the discounted case.
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7. A Next-Decision Forward Algorithm

We know from average-cost optimal policy convergence (Theorem 5.6) that the first decision of the lexi-
comin efficient solution to problem (PN ), for large N , is the same as the first decision of the lexicomin infinite
horizon average-cost optimal solution. (Note the trivial nature of this claim when made with respect to an
arbitrary average-cost optimal solution, since finite leading decisions are irrelevant to the property of being
average cost optimal!) A finite algorithm for discovery of this first decision is then lacking only a procedure
for numerically discovering how large N must be for the claimed invariance to occur. We incorporate the
determination of such a horizon, called a solution horizon (Bes and Sethi [1988]), within the forward algo-
rithm below. We find the efficient solution set and the associated lexicomin solution for increasingly longer
horizons N , until a stopping rule is met. At this point, a solution horizon has been discovered; hence, the
first decision of the lexicomin infinite horizon average-cost optimal efficient solution has also been discovered.
(The algorithm is similar in spirit to that proposed in Lasserre [1986] in the discounted case except that we
use a lexicomin selection thus avoiding the assumption there that the optimal first decision is unique.)

Forward Algorithm
(1) Set horizon N = 1.
(2) Find the set X∗N (sN ) of all solutions optimal to state sN at horizon N , for each state sN in the set

SN of all N -horizon feasible states.
(3) Determine the lexicomin efficient solutions λ∗N (sN ) to state sN at horizon N , for all feasible states

sN ∈ SN . Set the lexicomin efficient solution λ∗N for horizon N equal to the lexicomin of {λ∗N (sN ) :
sN ∈ SN}.

(4) (Stopping Rule) If (λ∗N )1 = (λ∗N (sN ))1, for all sN ∈ SN , stop. The first decision of the lexicomin
infinite horizon average optimal solution is λ∗1 = (λ∗(N))1. Otherwise, increment the horizon N to
N + 1 and go to step 2.

It is clear from the Principle of Optimality that if the Stopping Rule is met, then the first decision of the
lexicomin infinite horizon efficient solution has been found. The next theorem provides a sufficient condition
that guarantees the Stopping Rule will eventually be met.

Theorem 7.1. Suppose that for every choice (s1, s2, . . . ) in
∏∞

N=1 SN , we have that

lim
N→∞

X∗N (sN ) = X ∗

in K(Y ). Then the Stopping Rule holds at some 1 6 N <∞.

Proof. For each N = 1, 2, . . . , and each sN ∈ SN , let λ∗N (sN ) = lexicomin of X∗N (sN ), λ∗N = lexicomin of X ∗N
and λ∗ = lexicomin of X ∗. Note that λ∗N must be in X∗N (rN ), for some unique rN ∈ SN , by definition of
X ∗N . Necessarily, λ∗N is the lexicomin of X∗N (rN ), i.e., λ∗N = λ∗N (rN ), ∀N = 1, 2, . . . .

Now suppose that the hypothesis is satisfied, but not the Stopping Rule. Then, for each N = 1, 2, . . . ,
there exists tN ∈ SN such that rN 6= tN and

(λ∗N (tN ))1 6= (λ∗N (rN ))1 = (λ∗N )1.

If not, then the Stopping Rule would be satisfied at any N where this was not the case. But we have seen
that λ∗N → λ∗ in Y , so that (λ∗N )1 = λ∗1, for large N (Lemma 2.1). Consequently, (λ∗N (tN ))1 6= λ∗1, for large
N . But, by hypothesis, limN→∞X∗N (tN ) = X ∗, so that limN→∞ λ∗N (tN ) = λ∗, which implies (Lemma 2.1)
that λ∗N (tN )1 = λ∗1, for large N . This is a contradiction. ¤
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The hypothesis of Theorem 7.1 is unfortunately difficult to establish directly in specific cases. We can
however provide a sufficient condition for this hypothesis which, although quite strong, is not vacuous (see
section 8 for an instance where it is met).

Theorem 7.2. If X ∗ is a singleton {x∗}, then the hypothesis of Theorem 7.1 is satisfied.

Proof. Let sN ∈ SN , for each N = 1, 2, . . . . It suffices to show that lim supN X∗N (sN ) ⊆ {x∗} and x∗ ∈
lim infN X∗N (sN ).

If x ∈ lim supN X∗N (sN ), then x ∈ lim supN X ∗N , by definition of X ∗N . But lim supN X ∗N = X ∗, so that
x = x∗ by hypothesis.

Conversely, since limN→∞ X ∗N = X ∗, x∗ is the limit of any selection from the X ∗N . In particular, x∗ is the
limit of any selection from the X∗N (sN ), i.e., x∗ ∈ lim infN X∗N (sN ). ¤

From a practical point of view, it is important to note that even in the absence of conditions that guarantee
that the Stopping Rule will eventually be met, if for whatever reason the Stopping Rule is eventually met
in an application of the forward algorithm, then we are assured that the first decision of an efficient infinite
horizon average-cost optimal solution has been found.

8. Concluding Remarks

Virtually every discrete infinite horizon decision making problem is included within the framework of the
general problem (P ) posed in section 2. See Schochetman and Smith [1997] for an extensive application of
the above theory to the problem of acquiring and retiring equipment over an infinite horizon in the presence
of technological change (Denardo [1982], Bean, Lohmann, and Smith [1985], [1994]). We also establish there
that the key property of Bounded Reachability is satisfied for this case.

Consequently, all of the previous results hold for this model. In particular, the Forward Algorithm of
section 7 may be employed, whenever the Stopping Rule is eventually met, to find the next replacement
decision in a rolling horizon procedure, to recover an optimal replacement schedule over the infinite hori-
zon. Similar stopping rules have been empirically observed to be usually met in practice, at least in the
discounted-cost case (Bean, Lohmann, and Smith [1985]). A sufficient theoretical condition for it to be met
in the average-cost case is (by Theorem 7.2) that X ∗ = {x∗}. For example, in the classic problem of replac-
ing equipment under stationary technology, since the problem is mathematically equivalent to a knapsack
problem, a singleton efficient solution obtains whenever the turnpike policy equipment type that minimizes
the infinite horizon average-cost under a stationary replacement strategy is unique (Gillmore and Gomory
[1966]). We note that it is not difficult to extend this observation to the nonstationary case of technological
change.

Acknowledgment: We are grateful to an anonymous referee for several suggestions that significantly
improved the clarity of the exposition.
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