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Abstract— The problem of finding optimal coordinated signal
timing plans for a large number of traffic signals is a challerging
problem because of the exponential growth in the number of
joint timing plans that need to be explored as the network sie
grows. In this paper, we employ the game-theoretic paradigm
of fictitious play to iteratively search for a coordinated spnal
timing plan that improves a system-wide performance criteion
for a traffic network. The algorithm is robustly scalable to
realistic-size networks modelled with high fidelity simuldions.
We report results of a case study for the the city of Troy,
Michigan, where there are 75 signalized intersections. Uret
normal traffic conditions, savings in average travel time ofmore
than 20 percent are experienced against a static timing plarand
even against an aggressively tuned automatic signal re-timgy
algorithm, savings of more than 10 percent are achieved. The
efficiency of the algorithm stems from its parallel nature. With a
thousand parallel CPUs available, our algorithm finds the pan
above in under 10 minutes, while a version of a hill-climbing
algorithm makes virtually no progress in the same amount of
wall-clock computational time.

Index Terms— Coordinated traffic signal control, optimization,
area traffic control

|. INTRODUCTION

Since Webster and Cobbe [1] first published their research

on pre-timed isolated traffic signal control, significanbgress
in traffic signal control has been made. With the introductio

of advanced computer, control, and communication technolo
gies in traffic networks, signal control systems are now able

to receive more network-related information and respond in

more congestion-adaptive manner. From past research,we ca

see that, in general, the more information a signal comroll

uses, the better performance it can achieve. However, the

complexity of algorithms for designing signal timing plans
correspondingly grows as more information is being utdize

Another factor that complicates the problem is the number
of signalized intersections considered. In the generag,cas 3)

with non-periodic signal timing plans allowed, the size of

the problem grows exponentially as the number of considered

signals increases. Therefore in practice, the tradeoffide

the accuracy of the algorithm, the amount of traffic-related

information used, and the size of the network remains ameissu

Based upon amount of information used in the control

schemes, we can classify related research into the folpwin
categories:

Manuscript received.

1) Offline: Pre-timed signal control schemes for both iso-
lated and coordinated signal control belong to this cate-
gory. Since pre-timed signal timing plans are computed
in an offine manner, they can only use information
related to historical flow statistics and network con-
figuration. Webster's method [1] and its extensions,
SIGSET [2], and SIGCAP [3] are examples of isolated
control methods (only a single signalized intersection
is considered). MAXBAND [4], [5] and its extensions,
and TRANSYT [6] are notable examples of coordinated
control methods (a group of signalized intersections is
considered simultaneously).

Online: The use of sophisticated surveillance technolo-
gies, including inductive loop detectors and surveillance
cameras at signalized intersections, enables traffic kigna
controllers to make use of real-time traffic information.
This information, including, but not limited to, vehicle
counts, link volume and link occupancy, proved to be
very useful in computing real-time signal timing plans
for both isolated and coordinated signal control. Most
modern traffic signal control technologies belong to this
category. For the isolated control case, it was Miller
[7] who first proposed a control strategy based on
online traffic information. Other more recent methods
include SCATS [8], PRODYN [9], [10], OPAC [11],
[12], UTOPIA [13], SPPORT [14], COP [15]. It should
be noted that although many of the above control
strategies (e.g., OPAC, PRODYN and SCATS) are also
used in coordinated control, the coordinations are mostly
done heuristically due to the combinatorial complexity
of the problem. Other notable research that focuses on
the coordinated control problem includes SCOOT [16],
CRONOS [17], REALBAND [18], Lin and Wang [19],
and Heung et al. [20].

Predictive: Based on offline and online information, the
next promising extension is to come up with predic-
tions of future network congestion, and compute the
signal timing plans in anticipation of predicted future
traffic conditions. An example of such an approach is
RHODES [21], [22]. It uses a combination of current
real-time information and planned timing plans from
upstream signals to predict future arrivals.

2)

Among these three categories, the control schemes with
offline and online information are well-studied and are Wide

S.-F. Cheng, M. A. Epelman and R. L. Smith are with Departmeht jmplemented. In comparison, control schemes that are tapab
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of using predictive information are still mostly experint&n
and researchers are just beginning to explore the benefits of



using such information. travel time experienced by all drivers in the network durting
The method we propose in this paper does make usegifen time horizon (we use the terms “driver” and “vehicle”

such predictive information. We rely on information on timeinterchangeably).

dependent origin-destination flows, which can be used te pre We formulate this coordinated traffic signal control prob-

dict link congestion in the future. We believe that high dyal lem as a discrete optimization problem, where the planning

predictive information will become more and more accessibhorizon is divided intoN time periods of equal length of

due to the following two important technological advances. seconds, and the decision variables are digmal phase's

The first important advance is high quality estimation gfrevailing during each of th&/ time periods, at each of the

dynamic origin-destination trip flows [23], [24]. The secbn signalized intersectioAsThe following notation will be used

is the use of vehicle-based GPS systems and other vehidle@lescribing the coordinated traffic signal control probie

tracking technology in vehicle routing. With such equipmen « | = {1,2,...,7}: set of signalized intersections;

we can precisely collect the origin-destination inforroati  « N = {1,2,..., N}: set of time periods (each time period

for the “smart” vehicles (i.e., vehicles outfitted with such s § seconds long);

equipment). Also, by using these vehicles as traffic probes. S; = {1,2,...,5,}: set of permissible signal phases for

we can get better estimates of current link congestions. By intersectioni, i € I;

combining the above two branches of research, high qualitys s;,, € S;: a decision variable representing the signal

predictive information required by our method should beeom  phase at intersectionduring time periodn.

available. The first goal of the paper is thus to introducehe problem can be formally written as:

an algorithm that is capable of incorporating this predeti

information in computing adaptive traffic signal timing pta
Another goal of this paper is to address the difficulty of .

finding solutions to the combinatorial problem that arises i sin €S, Vi€l VneN )

general coordinated traffic signal control. The size of the

of solutions that need to be considered grows exponentia

ES fche numb_edr of ént_ersecnons Ic’\:l/lndlor the flengt_h of the_ t Q/ERAGETRAVELTlME(-), which reflects the performance
orizon considered increases. Moreover, functions tylp'cameasure we discussed above. The dependence of this function

used o measure p_erfprmance (.)f the network, _SUCh as, &9{ the decisions made in the problem, i.e., the signal timing
example, average trip time experienced by the drivers, tave

b | d vi ionally i ) fic simol plans over the planning horizon, is inherently complex and
€ eva uate_ via computationally intensive .tra IC SIr al possesses neither analytical representation nor knoww-str
These functions also lack structural properties that ticil

e . . tural properties (such as monotonicity or subadditivitly).
optimization algorithms rely upon, calling for novel metiso effect, we are faced with a problem of optimizing a “black-

for searchin_g the splution space. O.ur alg_orithm allows.fmp box” function. In particular, in our research, all function
allel execution, which makes real-time signal control ffass dﬁvaluations are provided by a traffic simulation program, as

min AVERAGETRAVELTIME ({8 n,i € |,n € N})
S.t.

here the mapping from the vector of decision variables,
Xiyn}, to the objective value is represented by the function

even in a large network. The applicability of our approac - ; :
. o escribed in subsection V-B.
(calledCoSIGN, for “Coordinated SIGNals”) is demonstrated ¢ immediate concern resulting from this formulation is

bY a_test case study based on the real traffic network of Tr?ﬁe exponential explosion of possible joint decisions as N
Michigan. ) ) . and | get larger. In the worst case, all joint decisions, with
The paper is organized as fgllows. In section 2, the problem ber bounded bymax; {S;})N'!, have to be enumerated
formulation is stated. In section 3, we motivate the use gf,y eyajuated in order to find an optimal solution to assure

a game-theoretic approach to this problem. In section 4, {pyna1 optimality. For a practical size problem, this is msp
necessary technical background is provided and the aigorit iy Therefore, we take the approach of searching for fa-hig
is stated. In section 5, we restate the coordinated trafficasi )ity |ocally optimal solution instead. Still, consitey the
control problem In game theoretic _terms, a”‘?' explain trEf?)mplexity and scale of the problem, it is not obvious how
details of the algorithm’s implementation. In section & thst .o, this can be achieved within reasonable time.

case and results of experiments are discussed. Future ®ork i, the next section, we will propose the use of a game-

proposed in section 7. theoretic approach to resolve our dilemma.

Il. TRAFFIC SIGNAL CONTROL PROBLEM FORMULATION IIl. M OTIVATION FOR A GAME-THEORETIC APPROACH

We consider the problem of finding an optimal coordinated In_ .this sec-tion we briefly descripe the r.notivation. and the
traffic signal plan for a group of signalized intersectionsm intuition behind usinggame theoryin solving coordinated

a given time horizon. A problem instance is defined by spetgf"ﬁic signal control problems (see [25] for an early ap-

ifying the topology of the traffic network, the time horizon,pIICatlon to dynamic route guidance). Although some game
as well as the time-dependent origin-destination flows ovena signal phase is a collection of traffic movements that rexeight-
this time horizon. In particular, for every origin-destiioe of-way simultaneously. Therefore, all movements within lage must be
pair in the network, the timing of vehicles’ departures frorﬁozn'conf“_c“_”g' - , _ o

h iqin f the destinati d th te th tak By defining decision variables this way, we allow acyclicnsijtiming

the origin for the destination an I (he route they 1ake apgns. in the absence of cyclic parameters, we assume thetcagimount of
presumed to be known. The goal is to minimize the averagglow time is incurred if two consecutive decisions at ansigis different.



theory-related terms are mentioned throughout this sectio IV. GAME THEORY AND THE FP ALGORITHM

_thei_r_formal _definitions are def_erred to the next sectione Th | this section, we formally define a game and the solution
intuition behind our approach is emphasized here. concept of a Nash equilibrium, and discuss how one can use
_ Recall that the de_g|3|on varlables in our problem are thes 1o find a Nash equilibrium of a game.

signal phases prevailing during each of thetime periods

at each of the signalized intersections. The number of joint

decisions is thus bounded Hynax;{S;})V"7. The problem A. Game theory fundamentals

quickly becomes intractable as we increaseind/orl. How- Game theory studies how independent decision makers

ever, if we decompose the problem into smaller subproblemguld act under the assumption that an individual’'s payadif w

we may be able to find a sufficiently good solution in &e determined by actions of all participants. We now define

reasonable amount of time. the components of a game.

The decomposition of the problem can be accomplished by, players: Each independent decision maker in the game
assuming that each signal in each period is an independentde s defined as a player. Every player has a finite set of
cision maker. By adopting this decomposition, the certeali decisions calledtrategies(or pure strategieq that it can
decision problem, wittfmax;{S;})""* possible decisions, can choose from (or “play,” in game theory terminology). A
then be transformed int@\ - 1) subproblems, each with at  mixed strategyis a probability distribution over the set of
most max; {S;} possible decision alternatives. The effect is  the player’s strategies. fint strategy is a specification
to reduce an exponential to a linear number of alternatives of (mixed) strategies for all players.

to consider. However, if we decompose the problem without, payoff function: For every player, its associated payoff

considering the interactions among these independergidaci function is defined as a mapping from joint strategies
makers, we are just solvingV - I) isolated signal control to the corresponding payoff this player will get were

problems over very short time horizons, and there is no these joint strategies played (or expected payoff, if mixed
coordination among traffic signals. strategies were played). In general, players may have dif-

In order to effectively incorporate coordination of a large  ferent payoff functions. However, in this paper, all player
number of decision makers, we turn to game theory, which il be assumed to have identical payoff functions.
originates from economics. Modern game theory was created, Best reply function: Given an arbitrary joint strategy,
after von Neumann and Morgenstern [26] in 1944 and quickly g player's best reply function will return a strategy that
became a popular tool in explaining and predicting behavior gives this player its highest payoff value, assuming that

of groups of rational decision makersigyersin game theory all other players use the strategies specified in this joint
terminology) when their well-beings are associated witk th  strategy. As we will see later, this is the critical operatio
joint actions of all decision makers (players). If each digri in our approach.

maker who controls a time period for a signal is viewed as a, Nash equilibrium: A joint strategy is a Nash equi-
player in the game, and the average travel time of all vesicle  |ibrium if no individual player can improve its payoff

in the traffic network is viewed as@mmon payoffor every by unilaterally deviating from the play of the original
player, the coordinated traffic signal control problem daent joint strategy. More precisely, a joint decision is a Nash
be represented as game of identical interestsThe notion equilibrium if for every player, its current decision is its
of a solution to a game is that of Wash equilibrium(a best reply against this joint strategy. In other words, Nash
similar, but more transportation-specific result is Wapo equilibrium is a fixed point of the best reply function.

principle [27]), which for a game of identical interests can g first important existence theorem, proved by Nash [33],

be viewed as a coordinate-wise local optimum. Intuitively, i,:aq that every finite game in strategic férhms a mixed
joint decision is a Nash equilibrium if no individual playesn strategy equilibrium.

improve its payoff by unilaterally deviating from the omgil 0,2 complete treatment of these introductory terms and
joint decision. Note that in a game of identical interestasiN concepts, we refer to Fudenburg and Tirole [34].
equilibrium is not necessarily a global optimum.

It is well-known that finding Nash equilibria is a hard )
problem [28]. One of the earliest algorithms used to find Nagh FP and SFP algorithms
equilibria is an iterative process call@dtitious play[29], [30]. Computing Nash equilibria can be a difficult task. McK-
The primary pitfall of fictitious play (FP) is that in generalelvey and Mclennan’s work on GAMBIT [28] is an excellent
it does not converge to an equilibrium. However, Mondereeference for various computational methods for findingiNas
and Shapley [31] showed that for a special class of gamesgilibria. In this research, we will use a simple-to-immpnt
namely games of identical interests, FP will converge td-equterative algorithm which is a variation of Fictitious Plé&yP).
librium. Since virually all unconstrained discrete optmaiion Convergence results for the FP algorithm and its variargs ar
problems can be represented as games of identical intereststed in [31], [32]. Since in this paper we are mainly inséze
this result has recently inspired researchers in optingizat in solving the traffic signal control problem, most techmhica
to introduce FP as an optimization tool [32], [25]. In this

paper, after we model the traffic signal control problem aSSA game is said to be in strategic form if it has a finite set ofypta,
each player has a nonempty strategy set, and each playgdéf anctions

a game (_)f identigal intereSt§* we will apply a variation o thare properly defined for all joint strategies. A strategiengais finite if the
FP algorithm to find a solution. number of players and all players’ strategy sets are finite.



details are omitted here. We refer interested readers tp [#gorithm 1 Sampled Fictitious Play (sample size 1)
for a complete treatment. SFP()

The intuition behind FP lies in the theory of learning inl: Z(O#O) < INITIAL SOLUTION()
games. In a classical FP process (see, for example, [Zgﬁ,wh“e STOPCRITERION() is false do
every player assumes that other players are playing unknown D « SAmPLE(H, k)
stationary mixed strategies, and tries to learn them iterlgt 5 B < BESTREPLY(D)

. . . 4 © H(k+1,:) BT
The estimates of the unknown stationary mixed strategies ay. . x4 |
represented abelief distributions or beliefs and are shared 8: end while
among all players. The belief distribution for playeis a  _ SAMPLE(H. k)
mixed strategy calculated by finding the relative frequency. o, ; — 4 to P do
of all strategies from the history of its past plays. During:  u « DISCRETEUNIFORM(0,k — 1)
each iteration, each player finds ibest reply against the if en(?gr) «— H(u, j)
belief distribution of other players (i.e., its belief of WO 5. otum D
they will play). These best replies are then included in the

history of past plays and the beliefs are updated accordingl

To start the FP process, an arbitrary joint strategy is Usgfy, of history matrixH. Line 4 performs uniform sampling
The FP algorithm doesn’t converge to equilibrium in genergly each player's history independently. Line 5 computes
However, for games of identical interests, as in our case,qqt replyB to the sampled decisio. Line 6 appends
the sequence of beliefs generated by the FP algorithm @€, the end of the history matrik. Note that except for

guaranteed to converge to equilibrium [31]. k = 0, each rowk of matrix H stores best replies computed

The best reply operation of the classical FP algorithig jaration k. The above three lines are then repeated until
outlined above is too computationally expensive to implemeg 5 ocriTERION returnstrue. Since BESTREPLY subroutine

In practice. Laml.)e.rt. et al. [32] thus SUQQEStEd a varlary th‘§imply solves a collection oP one-dimensional optimization
called sampled fictitious playSFP) that is computationally problems whose input is the sampled decisbnit can be
practical. SFP is very similar to FP except the best repljleva g, oyt in parallel. As we will see later, the parallelat
ation in each iteration is done against samples randomiyrira ¢ e pest reply computation is the most important feature
from the belief distribution instead of the belief distitun - Jves SEP algorithm efficient.

itself. A convergence result for SFP with gradually inciegs Although this is not explicitly specified in the general

sample sizes is proved in [32]. In practic_e, however, SamIOIﬁseudo-code, we will keep track of the “incumbent” solution
of size one are of;en useq at each lteration. _ ._i.e., the pure strategy with best performance observedrso fa
The. SFP algorithm, with sample size one, is descr'b?ﬁroughout the algorithm. At termination, the SFP alganth
below: o . ) _ returns the current and therefore best incumbent solution.
1) Inltl_ahzat!on: An initial joint strategy is chosen arbi- 114 spEp algorithm was first implemented and used as an
trarily. Itis then stor(_ad n the history. optimization scheme by Garcia et al. [25], who applied it
2) Sample: A strategy is independently drawn from the, 5 gynamic traffic assignment problem. When compared to
history of each player (i.e., for each player, each pagte,iously established methods, the SFP algorithm was able
play is selected with equal probability). , to obtain solutions of the same quality significantly faster
3) Best ReP'Y5 For every player, the best reply is CompUte,g_ambert and Wang [35] further demonstrated the effectissne
by assuming that all other players play the strategigg ye spp algorithm as compared to simulated annealing for

drawn in step 2. _ o a communication protocol design problem.
4) Update: The best replies obtained in step 3 are stored

in the history.

5) Stop? Check if the stopping criterion is met; if not, go

to step 2, otherwise stop.

The pseudo-code for the SFP algorithm and the samplingAs mentioned above, traffic signal control problems are
subroutine is listed in Algorithm 1 below. This pseudo-codesually solved by either restricting the space of solutions
is specified for a game witl® players. HereD and B are by searching for parameters of predetermined cyclic pagter
P-dimensional vectors whose components contain individuai by limiting the number of signals considerably. Instead,
strategies of the players, afig” denotes the transpose operour approach will be to search for solutions to the full-
ation.H is a “history” matrix, whereH(k, j) represents player scale coordinated signal planning problem by using the SFP
j's best reply in thek!" iteration. NotationH (k, :) represents algorithm.
the k' row of matrixH, while H(:, 5) is the column containing  To solve a problem with the SFP algorithm, we must first
the history of past plays of player. This representation of formulate it as a game. In the following sections, we will
the history allows convenient access to relevant inforomati describe how to construct a game-theoretic model for the
for sampling in step 2. traffic signal optimization problem. Based on this formidat

Algorithm 1 implements the SFP algorithm in a straightforwe can then specify the performance measure used to evaluate
ward way. Line 1 generates an initial solution (joint stggfe signal timing plans and describe the best reply subroutine
by calling function NITIAL SOLUTION, thus populating thé™  using this performance measure.

V. COSIGN: SFPALGORITHM FOR THE TRAFFIC SIGNAL
CONTROL PROBLEM



A. Formulating coordinated traffic signal control problens a of only homogeneous motorized vehicles, is defined by

a game specifying origin, destination, flow rate (in number of
With the same notation as defined in section Il, we can Vehicles per hour), and flow starting and ending times.

formulate the problem as a game: As mentiongd in section I, this information i_s usually not
« Player: each tuple(i,n), i € I, n € N, is a player. LeP directly avaﬂable,_therefore we must cor_nbme Qata from
be the set of all players, anel = I - N, be the number several sources, including survey, real time adjustments,

and predictions, in order to come up with reasonable

. Strategy Space:for each player(i,n) € P, its strategy estimates. This is where accurate predictive information

space is the s&:. Player(i, n)'s decision is denoted by can really help us. With better predictive information,
D(i, n). the simulation will better describe real traffic congestion

and this implies that CoSIGN will be optimizing a more

realistic traffic simulation. As a result, for the signal

timing plan generated by CoSIGN, the gap between its
performance in the simulation and in the real traffic
network should also become smaller.

A detailed description of specifications of INTEGRATION-
B. Simulation by INTEGRATION-UM UM can be found in Wunderlich’s PhD dissertation [37].
Accurate evaluation of the average travel time can beWe selected INTEGRATION-UM as our traffic simulator

accomplished by invoking a computer traffic simulator. Im OLPurer on the basis of co_nvenie_nce of implementation,_since
experiment, the simulation is done by INTEGRATION-UM S source code was readily available to us. We would like to
developed ’by van Aerde [36] and modified by researché?g]phaSize that since our system architecture is_flexliblb wit

at the Intelligent Transportation Systems Research Ceﬂterregard to the type of simulator used, any _trafflc S|_mulat0r_
Excellence at the University of Michigan. INTEGRATION-COUId have been used here. The or_1|y_ requirement is that it
UM is an event-based, mesoscopic deterministic traffic sirfust be _able to gccept the signal timing plan_ genera;ed by
ulator. In order to perform a simulation, we need to provid‘éur algorithm as mput, and output necessary information to
INTEGRATION-UM with following inputs: our solver, as described below.

o Network topology definitions: the transportation net- o _ _
work is modelled as a directed graph in INTEGRATIONC. SFP with simulation-based best reply computation

UM. To fully specify the network topology, we first define A crucial step in implementing SFP is the computation of
intersections and connection points as the nodes in thest replies in line 5 of Algorithm 1. Since for the coordidt
graph. There are two types of nodes in INTEGRATIONsignal control problem the objective function can only be
UM: zone centroids, which can be used as origins ar§aluated through the execution of the traffic simulatoe, th
destinations for the vehicle trips, and normal nodesnly way to accurately compute each player’s best reply is by
which can be used as intersections or connecting poingtire enumeration of all player’s strategies. In a probleth Wi
The roads are then defined as directed links connectifi@ersections andV time periods, best reply computations for
these nodes. Important physical properties of each linl players would generally requireV S!_, S;) simulations.
including length, capacity, free-flow travelling spéed In practice the number of simulations can be decreased
and the signal timing plan and the phase controlling thismewhat by observing the following facts:

link (if any), must also be provided. , . 1) In line 4 of Algorithm 1, a joint strateg is sampled.

. Traﬁlc signal settings signal timing plans in the original One can evaluate this strategy (using the simulator)
version of INTEGRATION-UM were assumed to be and pass the resulting objective function value as a
cyclic. Cyclic plans were specified by parameters that  harameter to the best reply function. Recall that, for
define cyclic patte_rns, ie., cycl_e_length, green splitseff each player, best reply is obtained by comparing the
and lost (yellow) time. We modified INTEGRATION-UM objective function values of the sampled joint strategy
in order to take players’ joint strategy as input. Note that 54 the joint strategies obtained by substituting this
with & short enough time periafl the player model can player's strategy with other elements of its strategy set.
emulate any cyclic pattern. Unlike cyclic plans, the signal Since the value of the former is provided to the best
timing plans_specifie_d by players’ joint decisions incur reply subroutine(N - I) simulations can be saved.
lost time at intersection only when playersi,n) and 2y Giyen a sampled joint stratedy, there may exist some
(i, n +1) in two consecutive periods andn + 1 have intersections/time periods when there is only light traffic
different decisions. waiting to pass through. Since the performances of all

- Traffic flows: INTEGRATION-UM assumes that the strategies of the corresponding players are likely to be
network_ls empt_y at the start of 'Fhe simulation and all very close, best reply computations (and hence calls
the traffic entering the network is generated by mul- 4 the simulator) can be skipped for those players. We
tiple “flows.” Each flow, implicitly assumed to consist can define a threshold, and calculate a best reply for

4Free-flow travelling speed of certain link is the speed driexperiences a pllayer by inyoking the Simu!ator. Only if combined
when he/she is the only user of that link. traffic volume in the time period is greater than

of players.

« Payoff function: by collecting decision® (i, n) from all
players, a signal timing plan for the planning horizon is
formed. By sending this plan to the traffic simulator, we
can find the average travel time experienced by all drivers,
which is the payoff function value for all players.



(In our experiments, we used = 0, skipping best The pseudo-code in Algorithm 2 implements the ideas
reply computations only when no traffic was travelingliscussed earlier. A common evaluation of the simulator in
through the intersection in a time period.) When th®MIAX mode is performed in line 1. For each player, if the
traffic volume is less than or equal tg the best reply traffic volume is below the threshotd (as checked in line 4),

of this player can be essentially selected arbitrarily. T@ phase of the corresponding signal is randomly selected in
increase the exploration of the joint strategy space, Vliae 17. Otherwise, the algorithm loops through and evalsiat
drew a random strategy uniformly from the player'sall phases of the signal (except the phase usdd, iwhich is
strategy set in this case. already evaluated), starting in line 8.

To take advantage of the second observation, in additionNotice that whenever the simulator is executed in either
to the objective function value (i.e., average travel timegp MIN or MAX modes, we will be able to read the performance
need information on the traffic volume at each intersectigR€@sures and therefore update the incumbent pure strategy.
during each time period, obtained from time-dependenfidraf TS best pure strategy will be delivered as the solutiorat t
statistics for the sampled strategy. Since this infornmatioly end of the algorithm execution, as described in section IV-B
needs to be obtained in the beginning of each iteration, we
distinguish between executing INTEGRATION-UM in two VI. CASE STUDY. TROY, MICHIGAN, NETWORK

different modes: mode MAX, where both average travel time |n order to test performance of the CoSIGN algorithm, we
and the time-dependent traffic statistics are outputted, afised a realistic traffic network model built by Wunderlicl8]3
mode MIN, where only average travel time is outputted. (THg9], [37]. This case study model has been constructed based
latter mode is much less time consuming than the former.)on the real traffic network of Troy, Michigan, and, to ensure
SFP algorithm for the coordinated signal control problefidelity, carefully calibrated against empirical measuess.
with simulation-based best reply computation scheme dfs maintain this fidelity, we did not modify the model in any
scribed as above will be callédoSIGN and used throughout way except to insert the signal timing plans we generated. A
the paper. The stopping criterion used @oSIGN is the map snapshot of the Troy network is shown in Fig. 1. The
number of SFP iterations. corresponding model of the network topology is shown in
Fig. 2. Here are the parameters used in our experiments:

Algorithm 2 Simulation-based best reply function

B=BESTREPLY(D)

1: (v,F) « INTEGRATION-UMyax (D)

2: forall : €1do

3 for all n € N do

4 if F(i,n) > « then

5: Umin < U

6: B(i,n) < D(i,n)

7: D/ — D

8 for all s €S;, s # D(i,n) do

9: D'(i,n) <« s

10: vs + INTEGRATION-UMyn (D)
11: if vs < vmin then

12: Vmin < Vs

13: B(i,n) «— s

14: end if

15: end for )
16: else Fig. 1.
17: B(i,n) <—RANDOM(S;)

18: end if

19:  end for

20: end for

21: return B

The pseudo-code for the simulation-based best reply func-
tion is listed in Algorithm 2. Below is the list of functions
used in Algorithm 2 (her® denotes a joint strategy):

o INTEGRATION-UMyn(D): the function runs the simu-
lation and returns the objective function value.

o INTEGRATION-UMpax (D): the function runs the simu-
lation and returns the objective function value and time-
dependent traffic statistics. The objective function value
is stored inv, while the time-dependent traffic statistics
data are stored ifr, a matrix whereF(i,n) represents
traffic volume at intersection during time periodn.

o RANDOM(S;): the function uniformly picks an elementrig. 2. The Troy network topology model, composed of 5294ir@00 nodes
from S; and returns it. and 72 zone centroids that can serve as origins or destisatio




« Length of the time periods = 10 seconds Algorithm 3 Coordinate Decent (CD) algorithm.

o Number of time periodsN = 720 CD()0
« Number of signalized intersections:= 75 3D A ioiJTONO
o Number of playersP = N - I = 54,000 % while w e P do

« Stopping criterion: 20 iterations of CoSIGN are executed: 5, — BESTREPLY,(DF)

he original cycli ftraffic signals embedded i th % D" (6nD%y)
The original cyclic pattern of traffic signals embeddedieth o .0y 5 2

model was used as the initial solution. We assumed that gl w=u+1
vehicles will follow fastest free-flow pathdrom their origins 8:  else
; ; 9: u=1
to destinations. 100 endif
11: k+—k+1,p« (pmod P)+1
12: end while

A. Competing Timing Plans and Algorithms

The goals of this section are twofold: to demonstrate the

potential benefits of coordinated traffic signal controlngsi u = P (recall thatP is the number of variables in
predictive traffic information (as discussed in the Introdu this problem), the objective function value cannot be
tion), as well as evaluate the effectiveness of our algarith improved after looping through alP variables, and thus

approach, the CoSIGN algorithm, for this task. Towardsehes e stop.
goals, we compared CoSIGN to the following alternatives:

The CD algorithm by construction considers coordinated
Static: fixed cyclic signal timing plans were supplied bysjgnal timing plans, thus we also expect it to enjoy the beefi
the city of Troy and embedded in the original modebf coordination, as CoSIGN does. However, CD is a “serial”
When implemented, these signal timing plans were dgfgorithm in that it considers the variables sequentiatiigh
fined by cycle time, offsets, and phase splits. Since regle output of one single-variable optimization serving as a
time signal plan optimization was not available in Troy afhput into the next one. In a real traffic network (like the fro
the time the model was built, these plans are kept constggiwork), where the number of variables is large and the time
throughout the planning horizon. required to invoke a single simulation is non-negligiblee t
Automatic Signal Re-timing (ASR): although real-time time required to obtain any significant improvement through
signal timing plan optimization was not available in Troy,nning CD algorithm may be prohibitively long. To demon-
when the model was constructed, the INTEGRATIONstrate the benefits of parallelization, we will explore the

UM simulator provides an automatic cycle and phasgyssibility of parallel execution of CoSIGN and compare it
split optimization tool, which can be used to evaluatgy cp in subsections VI-C and VI-D.

the potential impact of such schemes. When the tool is

turned on, cycle lengths and green splits at all signals _ _ L L .
are recalculated at user-specified intervals, using er& Benefits of signal coordination and predictive inforroati
traffic volume information. For detailed description ofghi ~ Results of experiments comparing CoSIGN to the static and
algorithm, refer to Appendix. ASR signal timing plans can be seen in Table I. The perfor-

Since static and ASR timing plans control each signal fjance measure is the average travel time experienced by all

isolation, the benefits of coordinated signal control can IivVers in the traffic network, evaluated by INTEGRATION-

demonstrated by comparing CoSIGN to static and ASR conttgM- For thenormal-flow casgéaken from Wunderlich's model,
schemes. This comparison is conducted in section VI-B. around 26,000 vehicles were allowed to flow into the network

from the beginning of the simulation to tie™ minute mark.

Coordinate Descent (CD) a straightforward way to . . ' .
solve a discrete optimization problem of the form (1) is t(-)rhls t_rafﬂc volume, as well as the flow patters used in our
experiments, are consistent with the traffic patterns oleser

gtart with some initial solution, loop through al vanai_;:le n Troy at the time the model was constructed. After the

(i.e., coordinates) one by one, and solve each single; .

; . . inflow was stopped, the simulator was allowed to run an

variable problem while keeping the values of all other | ... : . !
. ) : . _-additional 96 minutes in order to clear all traffic. To evakia

variables fixed. The result from the single-coordinate . . "
R . erformance under different traffic conditions, we credtead

optimization is used to update the current solution. The

. . S|5nilar scenarioslight-flow caseand heavy-flow casewhere

process stops when a solution cannot be further Improvg . ) .

after looping through all variables. In our setting, CD ca € same traffic flow pattern and_tlme horizon were used,
' ' But the flow rate was decreased (increasedp @, so that

be formally implemented as follows (heB¥ denotes the : .
joint strategy at iteratiork, (s, D’ip) denotes the same gpprommately 13,000 (39,000) vehicles were allowed to flow

joint strategy with the strategy of playerreplaced by into the network.
s,, and the subroutine BSTREPLY, evaluates the best Note that as depicted in line 4 of Algorithm 1, a random

reply strategy for playep only): sample is drawn from the history during the beginning of
Py =gy for piayep only)- . each iteration. This randomness makes CoSIGN a stochastic
The stopping criterion in line 3 of CD is based on the :
) . S . algorithm. Therefore, to assess performance of CoSIGN, we
number of consecutive non-improving iterations, If

report summary statistics (mean, best and worst values) of

5The fastest free-flow paths are computed with the assumjttianfree- SO|Uti0ns_ found by 15 independent runs of COSIGN O_n each
flow speeds prevail on all links over the planning horizon. problem instance. Although there is some variability inldgya



TABLE |

PERFORMANCE OF THREE COMPETING ALGORITHM$

of dependence of the method’s performance on the interval
length; e.g., more frequent re-timings did not necess#eiyl

Avg. travel time (min.) : .
Cight flow Normal flow | Heavy flow to improvements.) In other words, the reported margin of
Static 10.1 (+13%) | 19.4 (+29%)°| 43.8 (+58%) CoSIGN over ASR is a conservative bound, and in practice,
Best ASR - Z.g (+5%) ﬂ.g (+14%) 22-3 (+38%) with re-timing intervals determined mostly ad hoc, this giar
CoSIGN® [Mean T 8.9 151 576 will be much larger. In Fig. 3, we plot the evolutions of
Worst | 9.0 15.3 29.8

@ Average travel times are used for performance comparisopoge. 102
b Fifteen independent CoSIGN runs are executed in all flow anies)

and best, mean and worst times are obtained accordingly. 101

¢ The number in each cell is corresponding average travel {ime
minutes) for that case. The percentages listed in row ‘Statnd
“Best ASR” are margins computed with “CoSIGN — Mean” as base.
For example, +29% in Static-Normal flow cell means that therage
travel time of static timing plan, under normal flow, is 29%nathan
that of CoSIGN on average.

9.8

9.6

Average travel time (min.)

of obtained solutions, stemming from the stochastic natfire
the algorithm, CoSIGN finds a signal plan that significantly B 1 1 4 5 5
improves on the starting solution in each instance. feratons

Table | compares average travel times of signal plans foupg 4. The evolution of best values as a function of iteratiount for the
by multiple CoSIGN executions to that of a static signal plaliyht-flow case.
and the one found by ASR. From Table | we can see that
the plans found by CoSIGN (both on average and even in
the worst case) perform better than the other two, under all w“
flow conditions, and the margin of advantage increases as flow
gets heavier. Since the static signal timing plan is not tkap
to traffic conditions, this result is to be expected. As fog th
ASR algorithm, although it is responsive to the real-tinadfic
condition, its underlying assumption is that the network is
undersaturated, and this condition is more likely to beatedl
in the heavy-flow case than in the light-flow and normal-flow
case. This leads to relative deterioration of performari¢be
ASR approach in the heavy-flow case.
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Fig. 5. The evolution of best values as a function of iteratoount for the
heavy-flow case.
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mean best value (average travel time of current incumbent
solution) versus iteration number for the normal-flow case.
Similar evolutions are drawn for the light-flow and heavyaflo
cases in Fig. 4 and Fig. 5 respectively. Fig. 3, 4 and 5 mativat
our choice of terminating CoSIGN after 20 iterations: mdst o
the improvements were achieved within the first 10 iteratjon
and improvements arourtd™ iteration were small.

Another interesting statistic we observe in these computa-
tional experiments is the average travel time experienged b
drivers leaving their origins at different times. For alrdb

It should also be noted that in the ASR implementatioffow scenarios, we consider 24 groups of vehicles, grouped
within INTEGRATION-UM, the interval between signal re-according to their departure times, where ifigroup contains
timings is a user-specified parameter. Our experiments witbhicles departing within thé" minute. For each such group,
various settings of this parameter demonstrated its afitiche average travel time of all vehicles in the group is then
importance to the performance of ASR. Results reported jotted as a data point. In Figs. 6, 7, and 8, average travekti
Table | reflect the performance of ASR with the re-timingf each group for each control scheme are plotted against all
interval that was empirically found to be the best for eaghossible departure minutes, @, ..., 24). From these figures
experiment. (These “best” intervals had different lengthder we can conclude that as flow grows heavier, CoSIGN performs
different traffic conditions, and we found no discerniblét@an relatively better than the two alternatives.

N
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T

Average travel time (min.)
=
d
@

i
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10
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Fig. 3. The evolution of best values as a function of iterattount for the
normal-flow case.
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the light-flow case.

10 12 14 16 18 20 22 24
Departure time (min.)

4 6 8

Average travel time as a function of vehicles’ departtimes, for

25

22.5F

Average travel time (min.)
e

P N N

a o S

N
N
)

i
)

~ - - Static
ASR

——CoSIGN |4

75 -
0 2

Fig. 7.
the normal-flow case.
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C. Parallelized implementation of CoSIGN
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Fig. 8.
the heavy-flow case.
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enough to fit into the desired update interval. One way to
significantly reduce the “wall-clock” running time without
sacrificing the precision or scope of the solution is through
parallelization. In this subsection we will describe how to
parallelize CoSIGN and discuss the impact that degree of
parallelization has on the running time of the algorithm.

As mentioned earlier, computation between line 2 and line
17 in Algorithm 2 can be parallelized. WitR identical CPUs
available, we can divide the best reply evaluations for all
players intoK tasks, and assign each task to a CPU. Each task
will take the sampled joint strategh, its associated objective
value,v, and the set of player®),, as input parameters. The
output of each task will be the best replié;, for players
in P;. Note that sinceUf(:1 P; =P, we haveuf(:1 B, =B.
Regardless of the degree of parallelization, as long as lsamp
drawn in line 4 of Algorithm 1 and in line 17 of Algorithm 2
remain the same, CoSIGN will evaluate the same set of
solutions and return the same output.

In order to asses the impact of parallelization without reso
ing to repeatedly re-running CoSIGN on clusters of CPUs of
various sizes, we instead analytically relate the runnimg of
CoSIGN to the degree of parallelization, and rely on a single
run of CoSIGN to make performances estimates.

We will use the following notation:

SMax
SMIN:
P:
NcosieNn:

K:

time required to execute INTEGRATION-UhAx (+)
time required to execute INTEGRATION-U (+)
number of players

number of CoSIGN iterations executed

(Ncosion = 20 in our implementation)
number of available CPUs

In our calculations we neglect time spent on communica-
We have demonstrated the benefits of a coordinated sigfighs between CPUs and samplings in the implementation of
control algorithm that takes into account predictive taffiCoSIGN since the time spent on simulations dominates total
information in the previous subsection. However, anothekecution time. Also, we assume that at every iteratisn,
important consideration is the time required to executérsugasks for best reply evaluation are created in a balanced man

an algorithm. In a straightforward serial implementatiam oner, i.e., they require approximately equal time for exiecut
a Pentium-4 2.8GHz PC with 1GB RAM, running RedHat |n BesTREPLY function, one call to INTEGRATION-

Linux, 20 iterations of CoSIGN took 169.04 hours for thQJMMAX(.) and at most (N Zle(gi — 1)) calls to
normal-flow case, and 397.6 hours for the heavy-flow Case|NTEGRATION-UMyn (-) will be made. Let Py be the
Since CoSIGN is expected to be responsive to current traffiomber of calls made to INTEGRATION-Upyi () in one
conditions and forecasts, its execution time should betsh@gration. The wall-clock running time of 8 TREPLY function
with K CPUs utilized as described above is bounded above

by

P
Ter < Swax + [%—‘ SMIN 2

(this is an upper bound since, as discussed in section V-C,
best reply computations are skipped for some of the players)
Therefore, the total wall-clock running time &fcosion itera-
tions of CoSIGN will be

T(K) =

Ncosicn: TBR

P
NcosieN (SMAX + {%-‘ SMIN) . (3

IN

To obtain a tighter bound, leP; be the average number of
simulations actually used per iteration, after we consttier
savings described in subsection V-C; we can then replace (3)



with One of the main assumptions in our derivation is that
P, the time spent on communication can be neglected. We

T(K) = Ncosien (SMAX + {}-‘ SMIN) verified this assumption by looking at the timing analysis

P from our parallel experiments. We observed that in all cases
~ NcosiGN {—S-‘ SMIN - (4) the percentage of time spent on communication is less than

_ K _ 0.005%. Therefore, at least in our current experiments, the
In the Troy test case with normal traffic flows, we observegbmmunication time is indeed negligible.

during a typical run of CoSIGN (wittNcesion = 20) Smin =
1.3 seconds and’, = 21,582 (note that this is about®%

reduction in the number of simulations). Hence (4) becomes: Rejative performance of parallelized CoSIGN vs. Coordi-

T(K) < 20 {—21[’?82} 1.3 sec.= 20 {—21}?82} L3 in (5) Nate Descent

60 As noted in prior sections, CoSIGN is a heuristic that
For instance, forK = 134, 70 minutes of wall-clock searches for an optimal solution to the coordinated traffic
signal control problem. Although we have empirically shown
the algorithm’s benefits based on a realistic test case, the
solution found in 20 iterations is not guaranteed to be an
optimal solution to the problem, even in the local sense.
In fact, while the average vehicle travel time in the normal
flow case was 15.60 minutes under the signal plan found by
CoSIGN, the Coordinate Descent (CD) algorithm described
in subsection VI-A, given sufficient time, found a plan with
average time of 13.13 minutes. It should be noted, however,
that it took CD 362,500 iterations over several days of ragni
o time to identify this solution.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 . .

K (number of CPUs) A meaningful way to compare practical performance of
any two heuristic algorithms, such as CoSIGN and CD, on
a problem is to compare the objective values of solutions
computation time will be needed to execute CoSIGN. Fé?ey find given th.e same amount of wall-clock time. As we
K — 256, the required time is 37 minutes, and fiir— 1024 emonstrate in this seg:uon, as thg number of proces_sore.mad
— just 9 minutes. We chose these illustrative valueskof available to CoSIGN increases, its wall-clock running time

since such computational facilities are readily availabte decreases, and the quality of solutions found by CD in the

educational institutions such as the University of MiclnigaSame time deteriorates dramatically.

and University of Texas. To give the reader a broader sense of'S I the previous subsection, we do not resort to multiple
the impact that different degrees of parallelization havere 2/90rithm runs, but rather use analytical estimates of ingin
wall-clock time required by CoSIGN, we plotted (5) in Fig. 9times of CD and CoSIGN to perform the comparison.

To demonstrate that parallelization is indeed feasible, weRecall that the CD algorithm is initialized with some initia
implemented a parallel version of CoSIGN on cluster systerfiglution, and in each step afterwards, uses a simulation to
managed by the Center for Advanced Comptftiagthe Uni- €valuate the current player’s alternative decision. Inheac

versity of Michigan. The specifications of the cluster syste these steps, the solution will be modified if the current play
are as follows: alternative decision improves the solution. As this preces

« morpheus: the 208 processor Athlon cluster is composgdd9ests, the CD algorithm cannot be parallelized and must
of 17 nodes of dual Athlon 1600MP CPUs. 29 nodes &€ €xecuted serially. Therefore, the wall-clock time reephi
dual Athlon 2400MP CPUs, and 58 nodes of dual Athloff €xecuteNcp iterations of CD is

2600MP CPUs.
o nyx: the 450 processor Opteron cluster is composed of (Neo + 1)Swin- (6)

225 nodes of dual Opterons, ranging from Opteron 240s . ) )
(@ 1400 MH2) to Oprieron 2445 ?@91800 Mlgz) ?We did not invoke the threshold test to bypass potentially
' upnecessary simulations in CD since that would require run-

In our experiments, the typical number of processors use . . .
: : . : ning INTEGRATION-UMyax at every iteration. Sincé&wyax
V(\:':it:ther 8, 16, or 32, due to the job scheduling policy at ﬂ(]a?(ceedsSMm by 50% to 150%, depending on the number of
' . . vehicles in the network, the added computational effortieiou
Note that these systems are equipped with CPUs slower thaqW : . .
. ) utweigh potential savings.)
the one we have run our serial experiment on, therefore e

curve in Fig. 9 is not directly applicable. However, a corre- Let Nep(X) denote the number of iterations CD would

sponding plot for running time versus degree of paralléiiza be able to perform if it were allowed the same amount of

can be easily reconstructed by measutgy on each system. wall-clock time as it takes to execut®¥cqsign iterations of
the parallelized CoSIGN algorithm running on a clusterof

Shttp://cac.engin.umich.edu processors, i.eJ(K). Setting (Nep(K) + 1)Sun = T(K)
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Fig. 9. Running time of CoSIGN versus degree of parallébiraty .
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and using the formulas above, we obtain:

N
=)
T

N S Pr/K]- S wr
Neo(K) < cosioN (Smax + [Pr/K] - Suin) 1
SmIN g
SMAX Pr 2.l
= N — —1. 7 =Y
COSIGN(SMlN + {K-D (7) :

(Recall thatPr = NZle(Si — 1).) Once again, ifP; is
the actual average number of simulations used per iteration
by CoSIGN, we can obtain a tighter bound:

N
a
T

-
=

—CD
- - -CoSIGN
T T

Smax P, T R T T T T
Neo(K) < Ncosion < < tlxl)" L @ O A umber of CPUs avalable o Cosion)
MIN
In the Troy test case with normal traffic flow8/cosign =  Fig. 10, Average travel time of solution found by CD when gitee same

wall-clock time as the parallel execution of CoSIGN wikh processors, vs.

20, P, = 21,582, and the numeric form of (8) becomes: K 1
. for the normal-flow case

Suax 21,582
Nep(K) < 20 -1 w0
eo(K) < (SMIN +{ K D
21,582 ®r
~ 20 {—K w (9) sl

The number of iterations CD will be able to complete in

the same amount of wall-clock time as CoSIGN is inversely

proportional to the number of processors available to COEIG
As mentioned in the beginning of the section, we did

W
R
T

Average travel time (min.)

perform one multi-day run of CD for the normal flow scenario 2%

in the Troy network. We can now compare the performance 2 —
. . - - -CoSIGN

of t_he algorithms as follows: for a particular value &f, we R T TR

estimateNcp(K) based on (9) and consult the output of the K (number of CPUs avalable to CoSIGN)

CD run to Ob_tam the a\(erag_e travel time fo,r the Slgna! plaﬂg. 11. Average travel time of solution found by CD when githe same
found by CD inNcp(K) iterations. The resulting comparisonyali-cock time as the parallel execution of CoSIGN with processors, vs.
is presented in Fig. 10, where we plot the average travel tir§efor the heavy-flow case

of solutions found by CD inN¢p(K) iterations versusik’
for the normal-flow case. A similar graph for the heavy-flow
case is plotted in Fig. 11. (These graphs may appear a 8P makes very slow progress in each iteration. Therefore,
counterintuitive at first, as the increase in the number df€P it will not in fact achieve significant improvement over the
results in worse objective function values found. To intetp Starting points it is provided.
these graphs, recall that addition of CPUs decreases the
amount of wall-clock time allotted to CD, allowing for fewer Vi
iterations and less progress.) For comparison, the average
travel times of 15.08 minutes (for the normal flow case) and A natural extension of the paper is to test CoSIGN on other
27.62 minutes (for the heavy flow case) obtained by CoSIGiven larger and more detailed traffic networks. The use oémor
are also plotted on the same graph. (Recall that these are atlganced traffic simulators may also be desirable in moglelin
mean performance measures of solutions found by seversl ramore complicated traffic characteristics. Also, in someesas
of CoSIGN on each problem instance.) we may want to reduce the length of control intervals in order
As Fig. 10 indicates, CD underperforms CoSIGN in thito better emulate real-world scenarios. All these factargn
comparison if the latter is allowed 26 CPUs or more. More&sombined together, will make an already challenging prnoble
over, if CPUs number in the hundreds, CD makes almost egen more so. To reduce computational requirement, we can
progress from the initial solution in the time it takes CoSIG replace the full-blown simulations with simplified onesg(e.
to complete its run. Similar result can be observed in Fig. 19ee [40]) in best reply evaluations. Since, in evaluatingt be
where CD underperforms CoSIGN in this comparison if theeplies, what we really care about is the relative supdyiofia
latter is allowed 16 CPUs or more. single player’s strategy selections; a simplified simolatihat
Even though in the long (very long!) run CD found a bettetan accurately provide this relative performance comparis
solution than CoSIGN, since wall-clock times available imwill be good enough. Of course, in order to design good ap-
practice are limited, the parallelized CoSIGN algorithmil wi proximated best replies, a deep understanding of the proble
always be superior to CD in practice. Since CD is an inheyenstructure is required (as demonstrated in [25]). This issue
sequential algorithm, multiple available CPUs can beagdi critical, since being able to complete best reply evalumestio
by running CD for the specified number of iterations starting quickly is key to the implementation of real-time control.
different initial solutions on each CPU and reporting thetbe Another interesting extension is to evaluate the robustnes
solution found. However, based on our empirical experignaa the signal timing plans obtained by CoSIGN in the presence

. FUTURE WORK
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of stochastic traffic flows. For a small traffic network, thiare
bility of traffic signal timing plans can be derived analyiig,

e.g., see [41]. In our case, analytical derivation is nosjixe
due to the size of the problem, therefore we should seek other

indicators, e.g., the variance of vehicle travel times sTigpe

of analysis will be very useful in determining the effectiess

of our approach in the face of stochasticity.

Another way to deal with the stochasticity in traffic flows
is to adopt a rolling-horizon type of implementation (esge
[21], [42]). Each time we observe a change in the traffic flow
pattern (either measured directly, or inferred indirécthye
can use the latest information to update the model and rerun
the CoSIGN algorithm.

Finally, to more accurately capture the operating conadgio
of real traffic networks, we should introduce feasibilityneo
straints to our model (e.g., minimal or maximal green time
continuously given to a phase). However, if constraints are
introduced to our model, some sampled joint decisions may
become infeasible, and this requires special treatment. Ou
current conjecture is that such difficulty can be handled by
defining proper repair rules.

Our ultimate goal is to design an algorithm that is capable )
of finding a robust, scalable, and responsive coordinated2
traffic signal timing plan in a large-scale traffic networker
framework introduced in this paper provides the foundation
for developing such a system. However, to move closer to
our ultimate goal, we should incrementally incorporate the
improvements discussed here.
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APPENDIX
AUTOMATIC SIGNAL RE-TIMING

Automatic signal re-timing in INTEGRATION-UM is an
online cycle time and phase-split optimization heurists,
described in Wunderlich [37]. The underlying theory for
this approach is based on Webster and Cobbe’s model [1].
Underlying analysis will not be explained in detail here;
instead, the implementation of the algorithm as embedded in
INTEGRATION-UM is presented.

The automatic signal re-timing algorithm determines signa
timing plans based on current flows on the approaclessling
to the signalized intersections. (In this appendix we use th
term “flow” to represent the volume of traffic on a link or
approach.) The re-timing algorithm in INTEGRATION-UM
is invoked repeatedly at user-specified intervals, andgeds
in three steps:

3)

“If a signal timing plan is used at more than one intersectigimim the
traffic network, the approach is defined as the set of linksiegrmto these
controlled intersections during the same phase.

12

Estimating link flows: for each signalized intersection,
the equivalent flow for each link is estimated by combing
average incoming flow and average size of the standing
gueue. The following formula is used for this purpose:

vt = [0+ 4g, (10)

where v is the estimated flow on link:, f* is the
exponentially smoothed average flow on limkandq® is

the exponentially smoothed average size of the standing
gueue on linka.

Both average incoming flowf{*) and average size of the
standing queueq(’) of link o are obtained by periodi-
cally performing the following exponential smoothing
updates:

fo 0.75f 4 0.25 f&
¢* = 0.9¢%+0.14%,

(11)
(12)

where f is the number of vehicles flowing into link
during the interval between smoothing updates, éhd
is the size of standing queue on liakduring the same
interval.
Computing critical values: based on the above flow
data, the procedure will compute a measure (i.e., critical
value) that represents the relative congestion of each
link. By using this measure, the procedure then com-
putes cycle length and the allocation of green times.
For each linka leading to the intersections controlled
by the signal timing plan, a critical value (measure
of congestion)y® is computed as the ratio between
estimated link flow and link’s saturation flow:
a
v = (13)

where s® is link a’s saturation flow rate (as defined in
the network topology definition).
Let the setA,, consist of all the links that have the right
of way during phase of the signal under consideration.
The critical value for phasg is then the maximaj® of
all links in A4,:

Yp = max {max{ya}, ymin} , (14)

acA,

whereymin is a predefined minimal critical value.
The combined critical value for the signal timing plan,
denoted byY’, is then the sum of values @f, over all

its phases:
Y = Z Yp-
p

Computing cycle time and green time for each phase
the new cycle time for each signal timing plaf,, is
computed from its corresponding critical valdé, and
the sum of lost time (i.e., yellow time) for all phases,
L. ForY <0.95,

(15)

(L.5L+5)
(1-Y)
Otherwise,C, = Cnax Cmin @andChax are the specified

minimal and maximal cycle times, respectively.

) Cmax}7 Cmin} (16)

C, = max{min{
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After C, is obtained, the length of green time for alf26]
phases can be computed accordingly. the length of

green time assigned to phageis determined by [27]
g = 2(Co- ). an
p Y o
[29]
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