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1 Introduction

We develop Markov chain Monte Carlo samplers to be used in adaptive search algorithms
for global optimization problems in both discrete and mixed continuous/discrete domains.
The ideal version of the Simulated Annealing algorithm requires a neighborhood genera-
tion mechanism that samples according to a sequence of Boltzmann distributions [23, 26].
For specific combinatorial problems, such as the Traveling Salesman Problem, specialized
neighborhood generators have been developed to be used in random sampling in optimiza-
tion algorithms [3, 10, 27]. However, for mixed continuous/discrete domains, which are
prevalent in many engineering optimization problems [12, 18, 22, 28], appropriate neighbor-
hood generators have not been developed. Many effective global and convex optimization
algorithms for continuous problems have embedded the Markov chain Monte Carlo sampler
known as Hit-and-Run (HR) [7, 11, 19, 20, 29, 30]. To sample a point in a set, HR generates
a direction vector uniformly on a hypersphere, then samples a point from the intersection
of the line along the generated direction and the sampled set [25]. A new discrete version
of HR, called Discrete Hit-and-Run (DHR), creates a bidirectional random walk (biwalk)
that is analogous to the random direction used in HR [4]. While DHR preserves asymptotic
convergence properties to target (e.g. Boltzmann) distributions like continuous HR, the con-
struction in [4] requires a lot of computation. We present efficient versions of DHR using
pattern Sphere and Box Biwalks that maintain the theoretical properties of DHR, such as
convergence to a uniform distribution in some cases in polynomial time, but are computa-
tionally much more efficient to implement. In addition, we extend Sphere and Box Biwalks
as candidate point generators for mixed continuous/discrete domains. We prove that Sphere
Biwalk converges to the continuous direction generated by Hit-and-Run as the discrete mesh
of the mixed domain becomes finer and approaches a continuous domain. Similarly, Box Bi-
walk converges to Hit-and-Run with a modified continuous direction distribution.

We embed the new samplers in a mixed continuous/discrete version of Improving Hit-
and-Run (IHR) [30], which is a type of Simulated Annealing algorithm that only accepts
improving points instead of involving a cooling schedule. We use IHR as an optimization
framework to avoid the effect of cooling schedules on the algorithm performance and al-
lows us to contrast the effect of the neighborhood generators. We present numerical results
comparing IHR with Sphere and Box Biwalks to IHR employing other candidate point gen-
erators.

The new Markov chain Monte Carlo (MCMC) samplers we propose for mixed con-
tinuous/discrete domains intend to mimic the good performance of continuous HR. Smith
[25] proved convergence of HR to a uniform distribution in total variation, and Lovász [13]
proved the rate of convergence to uniform is O(n3) with a warm start assumption. Lovász
and Vempella extended the convergence results to log concave density functions [14] and
relaxed the warm start assumption [15]. The HR algorithm with a Metropolis filter generates
sample points that converge to an arbitrary multivariate distribution [6, 19], and Andersen
and Diaconis [2] proposed a generalization of HR algorithms for MCMC samplers.

Discrete Hit-and-Run samples from a discrete set S, which is a subset of an integer lat-
tice of a hyperrectangle H, by generating two independent nearest neighbor random walks
from the current state of the Markov chain that stop when they step out of H [4]. The gener-
ated walks are called forward and backward walks (or paths) and we call the pair of walks
a random biwalk. The ordered sequence of points visited by the biwalk are stored in a list.
Then, a new state for the Markov chain is chosen uniformly from the ordered list of points
that are also in S as the next candidate point. If a Metropolis filter is employed (for accep-
tance or rejection), then, as in HR, the limiting distribution of DHR with random biwalks is
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the target distribution on the discrete set S ⊆ H. Thus, even for a set S with isolated points,
DHR does not get trapped in isolated regions of S. Baumert et al. [4] also provide bounds
on the finite time performance of DHR. For several special cases, the rate of convergence is
O(n4).

In [4], DHR with random biwalks is computationally expensive to implement because
it requires generating a random number for each point in the biwalk and storing the ordered
list, which requires large memory capacity. Instead, we introduce pattern biwalk in which we
create forward and backward paths, using a randomly generated pattern. The pattern biwalk
does not allow loops where the random biwalk does allow loops, but pattern biwalk is more
closely analogous to the random direction of HR. The pattern is formed by generating a step
size for each dimension and a random order of dimensions. Therefore, this requires 2n− 1
random number generations on the integer lattice of an n-dimensional hyperrectangle H, in
contrast to an average number O(nL2) for DHR with random biwalks, where L is the length
of the longest side of H. We also use the pattern to map a uniform random number to a point
on the biwalk, instead of explicitly generating and storing the entire ordered list. In order
to generate the discrete step sizes for a pattern, we use two different methods called Sphere
and Box Biwalks. In Sphere Biwalk, we choose a uniform direction on an n-dimensional
hypersphere and generate a random point on the diameter defined by this direction. The ran-
dom point is rounded to the nearest integer lattice point on discrete dimensions (continuous
dimensions allow real-valued points), to define the step size for each coordinate. The step
sizes, together with a random permutation of coordinate directions, define the pattern of the
biwalk. Similarly, Box Biwalk generates a point in a hyperrectangle which is rounded to
the nearest integer lattice point, to provide the vector of step sizes for the biwalk. Then, we
conceptually use the pattern to create the forward path, starting from the current state of the
Markov chain, until we step out of H and use the opposite pattern to create the backward
path. Similar to DHR with random biwalks, we sample uniformly from the points that are
both on the biwalk and the set S.

The Sphere and Box Biwalks are easily extended to sample from a mixed continu-
ous/discrete domain, and thus are applicable to a wide variety of real-world optimization
problems. An intuitive way to handle mixed continuous/discrete domains is to treat the con-
tinuous and discrete domains separately and apply continuous HR and DHR to the separated
domains. Although this method is easy to implement, the approach may lose valuable in-
formation carried by the unseparated domain. As an alternative, Romeijn et al. [20] offers a
Step Function approach for mixed continuous/discrete domains. Our numerical results show
that IHR with pattern biwalks provides a more efficient optimization algorithm than using
either a separate approach or the Step Function approach.

The proposed pattern biwalks for both discrete and mixed continuous/discrete domains
preserve the property of converging to a target distribution with conditions on their parame-
ters. Given any target distribution π on a mixed continuous/discrete S contained in a hyper-
rectangle H, both pattern Sphere and Box Biwalks generate Markov chains that converge
in distribution to π when using a Metropolis filter, and the radius of the utilized sphere is
sufficiently large, or the lengths of the utilized box are sufficiently large.

Generating pattern biwalks are analogous to the use of random direction in HR. We
prove that as the mesh of the lattice used in Sphere Biwalk gets finer, the stochastic process
of the points generated with pattern Sphere Box Biwalk converges to the stochastic process
of points generated by HR. In a similar way, under particular rules for choosing the lengths
of the utilized box for Box Biwalk, the stochastic process of the points generated with the
pattern Box Biwalk converges to the stochastic process of points generated by HR when the
random direction is box generated. This provides Sphere and Box Biwalks the potential for
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solving mixed continuous/discrete problems with similar performance as HR. In addition,
we provide bounds on the finite time performance of the pattern Sphere and Box Biwalks
on special discrete sets, which compare favorably with DHR with random biwalks.

The rest of the article is organized as follows. In Section 2, we provide the optimization
setting of Improving Hit-and-Run and embed pattern biwalks for mixed continuous/discrete
domains. We define our pattern Sphere and Box Biwalks in Section 3. Then, we provide
the theorems and necessary conditions to show that these new MCMC samplers converge
to a target distribution in Section 4. In Section 5, we show that they are mixed continu-
ous/discrete analogs of continuous HR. We analyze the convergence rate of Sphere and Box
Biwalk for discrete domains in Section 6. Finally, we provide the computational studies on
the performance of the new candidate point generators on global optimization test problems
in Section 7.

2 Pattern Mixed Hit-and-Run and Improving Hit-and-Run for Global Optimization

We develop our MCMC samplers to be used in global optimization algorithms. We test our
approach using a discrete and mixed continuous/discrete version of Simulated Annealing,
that is, with Improving Hit-and-Run [30]. An iteration of IHR starts with a random direc-
tion, and picks a candidate point on the line from the current point in this direction. Then, the
candidate point is accepted if it provides a better objective function value than the current
point gives. HR, as an MCMC sampler approximating a target distribution, generates a ran-
dom direction and picks a point in the same way as IHR, however, instead of checking the
improvement in the objective function value, HR applies a Metropolis filter with respect to
the target distribution for acceptance/rejection. Thus, by providing a new method of picking
a direction and a point on the associated line with pattern Sphere and Box Biwalks, we can
extend IHR and HR to mixed continuous/discrete domains.

We consider the following optimization problem,

min f (x)

s.t. x ∈ S⊆ H,

where H is a mixed continuous/discrete lattice of a hyperrectangle such that

H = ∏
i=1,...,n

{
[li,ui] if i is a continuous dimension
{li, li +1, . . . ,ui} if i is a discrete dimension,

provided that li,ui ∈ R, if i is a continuous dimension and li,ui ∈ Z, if i is a discrete dimen-
sion and li < ui for all i = 1, . . . ,n.

An iteration for making a transition from a point x to y by the modified Improving Hit-
and-Run algorithm or for Hit-and-Run as a sampler for the mixed continuous/discrete case
with pattern-based biwalks is provided below.

Modified Improving Hit-and-Run and Hit-and-Run with Pattern Biwalks

Step 0. Given a starting point x ∈ S⊆ H.
Step 1. Generate a pattern biwalk from x.
Step 2. Generate a candidate point z by choosing a point uniformly distributed from the

associated biwalk intersected with S.
Step 3. Accept or reject the point z;
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– for IHR optimization,

y =
{

z if f (z) < f (x)
x otherwise.

– for HR with Metropolis filter for target distribution π ,

y =
{

z with probabilitymin(1,π(z)/π(x))
x otherwise.

In Section 3, we describe how to execute Steps 1 and 2 in the description of the al-
gorithms above, using the new pattern Sphere and Box Biwalks. In Section 4, we provide
theoretical results showing that HR with the pattern biwalks converge to the target distribu-
tion that is used in the Metropolis filter given in Step 3. The accept/reject criterion for IHR
optimization, given in Step 3, is used for solving the global optimization test problems in
Section 7.

3 Pattern Biwalk

3.1 Sphere and Box Biwalks

We design Sphere Biwalk to be analogous to continuous Hit-and-Run [25]. We call this
candidate point generator Sphere Biwalk, because as the mesh of the mixed lattice of the
hyperrectangle becomes finer, the points on the biwalk generated by Sphere Biwalk converge
to the direction generated by Hit-and-Run where the direction is chosen uniformly on a
hypersphere. Box Biwalk differs only in the way the step-size pattern is chosen; uniformly
on the interior of a box as opposed to using a hypersphere.

The first step of Sphere Biwalk is to generate n mixed continuous/discrete step length
directions {D1, . . . ,Dn}, where each Di is an n-dimensional vector and the only nonzero
entry is the ith entry, which is the length of step to be taken along the ith coordinate axis.
Note the ith entry is restricted to be an integer when i is a discrete dimension, but real-valued
otherwise. This set of directions is generated by first choosing a direction uniformly dis-
tributed on the surface of an n-dimensional hypersphere of radius R, R ≥ 1, and picking a
point uniformly distributed on the corresponding diameter, then rounding the point to the
nearest mixed lattice point. This could be interpreted as an iteration of HR with rounding.
The rounded mixed lattice point determines the step sizes in each coordinate direction. The
second step of Sphere Biwalk generates a random permutation of the coordinate dimensions,
which completes the pattern of the biwalk. The third step generates a forward path by re-
peatedly taking steps according to the mixed coordinate direction Di in the chosen order of
dimensions until stepping out of hyperrectangle H. The fourth step generates a backward
path in the reverse direction. This constitutes the pattern biwalk in Step 1 of the Modified
IHR and HR algorithm on a mixed continuous/discrete domain. We now define Sphere Bi-
walk with parameter R.

Sphere Biwalk

Step 0. Given a current point x ∈ S⊆ H, and R ∈ R, R≥ 1.
Step 1. Generate n coordinate step length directions {D1, . . . ,Dn} as follows:

1.1. Generate a continuous direction D̃ = (d̃1, d̃2, . . . , d̃n) uniformly distributed on the
boundary of a unit hypersphere.
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1.2. Generate a point uniformly on the line set L̃D̃ = {v : v = rD̃,r ∈ [−R,R]}, and round
it to the nearest mixed lattice point, call it V D̃ = (vD̃

1 ,vD̃
2 , . . . ,vD̃

n ). If vD̃
i = 0 for all

i = 1,2, . . . ,n, go to Step 1.1.
1.3. For i = 1,2, . . . ,n, set Di = (0, . . . ,0,vD̃

i ,0, . . . ,0) with vD̃
i at the ith entry and 0 at

the other entries.
Step 2. Generate a random permutation of n coordinate dimensions, {I1, . . . , In}, with Ii ∈
{1, . . . ,n} and Ii 6= I j for i 6= j and i, j = 1, . . . ,n, uniformly, i.e. each possible permuta-
tion has equal probability, 1/n!.

Step 3. Generate a forward path starting from x, providing the ordered list of points form-
ing the forward path {W x

0 ,W x
1 , . . . ,W x

f }, such that W x
0 = x, by repeatedly moving in the

order of dimensions, {I1, I2, . . . , In}, with the associated step direction DIi for the Ii
th

coordinate dimension until stepping out of H, as follows:
3.0. Let W x

0 = x. Set j = 0 and t = 0.
3.1. Update forward counter for coordinate dimension:

t =
{

1 if t = n
t +1 otherwise.

3.2. If (W x
j +DIt ) /∈ H, go to Step 4; otherwise,

if DIt 6= 0, let W x
j+1 = W x

j +DIt , set j = j +1 and go back to Step 3.1,
if DIt = 0, go back to Step 3.1 directly.

Step 4. Generate a backward path starting from x, providing the ordered list of points form-
ing the backward path {W x

−b,W
x
−b+1, . . . ,W

x
−1,W

x
0 }, such that W x

0 = x, by repeatedly
moving in the reversed order of dimensions, {In, In−1, . . . , I1}, with the negative asso-
ciated step direction −DIi for the Ii

th coordinate dimension until stepping out of H, as
follows:
4.0. Set j = 0 and t = n+1.
4.1. Update backward counter for coordinate dimension:

t =
{

1 if t = n
t−1 otherwise.

4.2. If (W x
j −DIt ) /∈ H, stop; otherwise,

if DIt 6= 0, let W x
j−1 = W x

j −DIt , set j = j−1 and go back to Step 4.1,
if DIt = 0, go back to Step 4.1 directly.

Thus, the Sphere Biwalk results in an ordered list of points, {W x
−b,W

x
−b+1, . . . ,W

x
−1,W

x
0 ,

W x
1 , . . . ,W x

f } that are generated from x by the step length directions {D1, . . . ,Dn} and permu-
tation of coordinates {I1, . . . , In}. In IHR and HR, the next step is to choose a point uniformly
distributed from this biwalk, and an efficient implementation is discussed in Section 3.2.

We define the Box Biwalk in a manner similar to Sphere Biwalk. Instead of using a
hypersphere to generate the continuous direction, we use an n-dimensional box, [−c1,c1]×
·· ·× [−cn,cn], where 2ci is the length of the ith side of the box. Box Biwalk generates a point
uniformly distributed in the box, and then rounds it to the nearest mixed lattice point. This
rounded point determines the mixed continuous/discrete step length directions {D1, . . . ,Dn}.
We provide Step 1 of Box Biwalk with parameters ci ∈R, if i is a continuous dimension and
ci ∈ Z, if i is a discrete dimension and ci ≥ 1 for all i = 1, . . . ,n. The rest of the algorithm is
the same as Sphere Biwalk.
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Box Biwalk

Step 1. Generate n coordinate step length directions {D1, . . . ,Dn} as follows:
1.1. Generate a continuous point uniformly distributed in the interior of the box [−c1,c1]×
·· ·× [−cn,cn].

1.2. Round it to the nearest mixed lattice point, call it V D̃ = (vD̃
1 ,vD̃

2 , . . . ,vD̃
n ). If vD̃

i = 0
for all i = 1,2, . . . ,n, go to Step 1.1.

1.3. For i = 1,2, . . . ,n, set Di = (0, . . . ,0,vD̃
i ,0, . . . ,0) with vD̃

i at the ith entry and 0 at
the other entries.

Both pattern biwalks produce an ordered list of points, with the difference being the dis-
tribution used to generate the step length directions. Sphere Biwalk generates the step sizes
by generating a continuous direction on the surface of a hypersphere and picking a point on
the diameter (as one iteration of HR) before rounding, whereas Box Biwalk generates the
random point in the interior of the box before rounding. A family of pattern biwalks could
be defined by their step size distributions on a mixed continuous/discrete domain.

3.2 Implementation of Pattern Biwalk

We develop efficient ways of implementing Sphere and Box Biwalks embedded in HR and
IHR. Because generating and maintaining explicit forward and backward paths has a high
computational cost, we use the pattern to generate a candidate point z on the pattern bi-
walk, combining Steps 1 and 2 of the Modified IHR and HR, without explicitly gener-
ating the whole biwalk. Both Sphere and Box Biwalks result in an ordered list of points
{W x
−b,W

x
−b+1, . . . ,W

x
−1,W

x
0 , W x

1 , . . . ,W x
f } that are generated from x by the step length direc-

tions {D1, . . . ,Dn} and permutation of coordinates {I1, . . . , In}. The next step is to generate
a candidate point z uniformly distributed on the biwalk.

If all the dimensions are discrete, then a uniformly distributed point is generated by
simply counting the number of points in the biwalk, generating a random number such that
the points are all equally weighted, and mapping that random number to the corresponding
point W x

i . If all the dimensions are continuous, then the biwalk results in a sequence of
intervals, with the left and right endpoints of the intervals defined by the ordered list of points
{W x

i } and the two exit points from the hyperrectangle. In this case, a uniformly distributed
point is generated by calculating the length of the biwalk, generating a random point on
the length and mapping it to a corresponding point z in one of the intervals. When all the
dimensions are continuous, then the chance of landing in a specific interval is weighted by
the length of the interval with respect to the total length of the biwalk.

When the set S is mixed with several continuous dimensions and several discrete ones,
then the biwalk consists of intermingled intervals [W x

i ,W x
i+1) and points W x

i determined by
the ordered list of points and whether the step direction is continuous or discrete. In this
case, we generate a uniformly distributed point on the biwalk using a mixture of uniform
densities on continuous intervals and point masses on discrete points.

We start by counting the number of points with discrete dimensions in the biwalk, the
length of the continuous intervals in the biwalk, and by determining whether the two exit
points of the biwalk are along a continuous dimension or a discrete dimension. We arbitrarily
consider the points {W x

i } as the left-hand side of an interval, even on the backward walk, but
we need to add a partial interval if the exiting dimension on the backward walk is continuous.
In this way, if all the dimensions are discrete, our procedure is equivalent to a discrete
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uniform distribution on the number of points, and if all the dimensions are continuous, then
it is equivalent to a continuous uniform distribution on the total length of the biwalk.

We first use a modified minimum ratio test to count the number of steps that can be
taken on dimension i through the forward path, µ

f
i , and the number of steps that can be

taken on dimension i through the backward path, µb
i , irregardless of whether the dimension

is discrete or continuous. For i = 1, . . . ,n,

µ
f

i =


⌊

ui−xi
vD̃

i

⌋
if vD̃

i > 0⌊
xi−li
|vD̃

i |

⌋
if vD̃

i < 0
and µ

b
i =


⌊

xi−li
vD̃

i

⌋
if vD̃

i > 0⌊
ui−xi
|vD̃

i |

⌋
if vD̃

i < 0.

Then, for forward and backward paths, the number of complete cycles of all dimensions
before leaving H, µ f and µb respectively, are defined as follows:

µ
f = min

i=1,...,n
µ

f
i and µ

b = min
i=1,...,n

µ
b
i .

We also need to define ĩ f , the order of the dimension that the forward path steps out of H,

ĩ f = min
i=1,...,n

{i : µ
f

Ii = µ
f }.

And then, the dimension that steps out of H on the forward path is Iĩ f .
For the sake of clarity in the representation, let N be the set of discrete dimensions with

non-zero vD̃
i and Ñ be the set of continuous dimensions with non-zero vD̃

i .
If all the dimensions are discrete, i.e., |N|= n, then the number of points on the forward

path is the sum of two parts: the number of points on the complete cycles of all dimensions,
which is µ f n; and the number of points on the remaining full dimension steps taken after
the complete cycles before stepping out of H, which is ĩ f − 1. Thus, the number of points
on the forward path (not including W x

0 ) is

t f = nµ
f + ĩ f −1.

However if the dimensions are mixed continuous/discrete, then we calculate the length
of the forward path as the sum of five parts:

i.) the length of the complete cycles of continuous dimensions on the forward path, which
is µ f

∑Ii∈Ñ |vD̃
Ii |;

ii.) the number of points on the complete cycles of discrete dimensions, which is µ f |N|;
iii.) the length of remaining full continuous dimension steps taken after the complete cycles

before stepping out of H, which is ∑i<ĩ f ,Ii∈Ñ |vD̃
Ii |;

iv.) the number of points on the remaining full discrete dimension steps taken after the com-
plete cycles before stepping out of H, which is |{i : i < ĩ f , Ii ∈ N}|; and

v.) the length of the remaining portion of the last step that resides in H, if it is a continuous
dimension.

If the last step is a continuous dimension and has positive direction, that is vD̃
Iĩ f
≥ 0, the

forward path leaves H through the upper bound of dimension Iĩ f , thus the remaining length
is uIĩ f − (xIĩ f + µ f vD̃

Iĩ f
), otherwise, if vD̃

Iĩ f
< 0 the path leaves H through the lower bound of

Iĩ f , and the remaining length is (xIĩ f + µ f vD̃
Iĩ f

)− lIĩ f . If the dimension that steps out of H is
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discrete, we do not need to add the remaining portion. Thus, the length of the forward path
in the mixed case is

t f =



µ f
∑Ii∈Ñ |vD̃

Ii |+ µ f |N|+∑i<ĩ f ,Ii∈Ñ |vD̃
Ii |+ |{i :< ĩ f , Ii ∈ N}| if Iĩ f ∈ Ñ and vD̃

Iĩ f
≥ 0

+uIĩ f − (xIĩ f + µ f vD̃
Iĩ f

)

µ f
∑Ii∈Ñ |vD̃

Ii |+ µ f |N|+∑i<ĩ f ,Ii∈Ñ |vD̃
Ii |+ |{i : i < ĩ f , Ii ∈ N}| if Iĩ f ∈ Ñ and vD̃

Iĩ f
< 0

+(xIĩ f + µ f vD̃
Iĩ f

)− lIĩ f

µ f
∑Ii∈Ñ |vD̃

Ii |+ µ f |N|+∑i<ĩ f ,Ii∈Ñ |vD̃
Ii |+ |{i : i < ĩ f , Ii ∈ N}| if Iĩ f ∈ N.

The length of the backward path is similar, where ĩb is the order of the dimension that
the backward path steps out of H,

ĩb = max
i=1,...,n

{i : µ
b
Ii = µ

b},

and Iĩb is the dimension that steps out of H on the backward path. The length of the backward
path for the mixed case, tb, is given as follows:

tb =



µb
∑Ii∈Ñ |vD̃

Ii |+ µb|N|+∑i>ĩb,Ii∈Ñ |vD̃
Ii |+ |{i : i > ĩb, Ii ∈ N}| if Iĩb ∈ Ñ and vD̃

Iĩb
≥ 0

+(xIĩb
+ µbvD̃

Iĩb
)− lIĩb

µb
∑Ii∈Ñ |vD̃

Ii |+ µb|N|+∑i>ĩb,Ii∈Ñ |vD̃
Ii |+ |{i : i > ĩb, Ii ∈ N}| if Iĩb ∈ Ñ and vD̃

Iĩb
< 0

+uIĩb
− (xIĩb

+ µbvD̃
Iĩb

)

µb
∑Ii∈Ñ |vD̃

Ii |+ µb|N|+∑i>ĩb,Ii∈Ñ |vD̃
Ii |+ |{i : i > ĩb, Ii ∈ N}| if Iĩb ∈ N.

Once the lengths of the forward and backward paths are determined, we can generate
a candidate point z as follows. We generate a random number p uniformly distributed on
the interval [−tb, t f ]. If 0 < p ≤ t f , the point is on the forward path, otherwise it is on the
backward path.

First, suppose p is positive, 0 < p≤ t f , indicating the candidate point z is on the forward
path. To map p to z, we have to identify whether z falls on a continuous interval, or a point
associated with a discrete dimension. We first determine µ

f
p , the number of complete cycles

of all dimensions from x to the candidate point, which is given by

µ
f
p =

⌊
p

∑Ii∈Ñ |vD̃
Ii |+ |N|

⌋
.

Starting from x, after moving µ
f
p complete cycles on the forward path, the remaining

distance to z is p− µ
f
p

(
∑Ii∈Ñ |vD̃

Ii |+ |N|
)

. We find the order of coordinate dimension that

encompasses the point z, say ĩ f
p, given as

ĩ f
p = min

i=1,...,n

i : ∑
j≤i,I j∈Ñ

|vD̃
I j
|+ |{ j : j ≤ i, I j ∈ N}|> p−µ

f
p

(
∑

Ii∈Ñ

|vD̃
Ii |+ |N|

) .

Then, we move ĩ f
p − 1 steps on the forward path and the remaining distance to z is p−

µ
f
p

(
∑Ii∈Ñ |vD̃

Ii |+ |N|
)
−∑i<ĩ f

p,Ii∈Ñ |v
D̃
Ii |− |{i : i < ĩ f

p, Ii ∈ N}|.
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If ĩ f
p is the order of a continuous dimension, then we move the remaining distance to z

through the unit direction of DI
ĩ f
p
, which is

DI
ĩ f
p

|DI
ĩ f
p
| .

Thus, if Iĩ f
p

is a continuous dimension, the candidate point is

z = x+ µ
f
p

n

∑
i=1

DIi +
ĩ f
p−1

∑
i=1

DIi

+

p−µ
f
p

(
∑

Ii∈Ñ

|vD̃
Ii |+ |N|

)
− ∑

i<ĩ f
p,Ii∈Ñ

|vD̃
Ii |− |{i : i < ĩ f

p, Ii ∈ N}|

 DI
ĩ f
p

|DI
ĩ f
p
|
.

If Iĩ f
p

is a discrete dimension, we stop the move before the step ĩ f
p, yielding,

z = x+ µ
f
p

n

∑
i=1

DIi +
ĩ f
p−1

∑
i=1

DIi .

If −tb ≤ p ≤ 0, then the candidate point z is on the backward path and is calculated
similarly. Let µb

p be the number of complete cycles from x to the candidate point, which is

µ
b
p =

⌊
−p

∑Ii∈Ñ |vD̃
Ii |+ |N|

⌋
.

Then let ĩbp be the order of coordinate dimension that encompasses the candidate point z,

ĩbp = max
i=1,...,n

i : ∑
j≥i,I j∈Ñ

|vD̃
I j
|+ |{ j : j ≥ i, I j ∈ N}|>−p−µ

b
p

(
∑

Ii∈Ñ

|vD̃
Ii |+ |Ñ|

) .

If Iĩbp
is a continuous dimension, the candidate point is

z = x−µ
b
p

n

∑
i=1

DIi −
n

∑
i=ĩbp+1

DIi

−

−p−µ
b
p

(
∑

Ii∈Ñ

|vD̃
Ii |+ |N|

)
− ∑

i>ĩbp,Ii∈Ñ

|vD̃
Ii |− |{i : i > ĩbp, Ii ∈ N}|

 DI
ĩbp

|DI
ĩbp
|

If Iĩbp
is a discrete dimension,

z = x−µ
f
p

n

∑
i=1

DIi −
n

∑
i=ĩ f

p+1

DIi .
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4 Convergence to a Target Distribution

We provide a theorem with necessary conditions to show that both Sphere and Box Biwalks,
when used with a Metropolis filter in HR, converge to the target distribution used in the
Metropolis filter. We first provide a theorem for the discrete case, and then for the mixed
case.

First, we consider discrete HR with Sphere and Box Biwalks operated on S⊆ H, where
H is an integer lattice of a hyperrectangle. We let π be the target distribution associated with
the Metropolis filter. We assume that π is a strictly positive probability mass function defined
on S. We define the transition matrix, Q = {qxy : x,y ∈ S} of the Markov chain associated
with Sphere or Box Biwalk for candidate points and the transition matrix P = {pxy : x,y∈ S}
of the Markov chain associated with discrete HR and Sphere or Box Biwalk after applying
the Metropolis filter for target distribution π . Thus,

pxy = min
{

1,
π(y)
π(x)

}
qxy for all x,y ∈ S. (1)

In order to prove convergence to the target distribution we prove in Lemma 1 that the
transition matrices associated with Sphere and Box Biwalks are symmetric, and then in
Theorem 1 that the Markov chain for discrete HR with the Metropolis filter and Sphere or
Box Biwalk converges to π .

Lemma 1 Consider Sphere and Box Biwalks operated on S ⊆ H, where H is an integer
lattice of a hyperrectangle such that H = ∏i=1,...,n{li, li +1, . . . ,ui} and li,ui ∈Z with li < ui
for all i = 1, . . . ,n. The transition matrices Q are symmetric.

Proof Let an ordered set of points r = {r1, . . . ,x, . . . ,rm} denote a bidirectional walk, gen-
erated with Sphere or Box Biwalk from a starting point x; and r1 and rm being the end of
backward and forward paths respectively. Let P(r | x) denote the probability of generating
path r from the starting point x. The probability of generating the path only depends on
the choice of discrete step directions and the order of dimensions, which are independent
of the starting point. Therefore any path r generated by Sphere or Box Biwalk satisfies
P(r | x) = P(r | z) for all x,z ∈ r. Now consider any x,z ∈ S. Let Rx,z be the set of all possible
paths with starting point x that contain z and let P̃(z | r) be the probability of selecting point
z uniformly from the points in path r. Then,

qxz = ∑
r∈Rx,z

P(r | x)P̃(z | r).

We also have that Rx,z = Rz,x, because for any r ∈ Rx,z there is a corresponding path r′ ∈ Rz,x
with reversed direction vectors and permutations (i.e. if z is on the forward path of r, then x
is on the backward path of r′), and vice versa. Finally, given path r ∈ Rx,y, since all points
on the path are equally likely to be chosen, P̃(z | r) = P̃(x | r). Hence

qzx = ∑
r∈Rz,x

P(r | z)P̃(x | r) = qxz.

Thus, Q is symmetric. �

Theorem 1 Consider HR with Sphere and Box Biwalks operated on S ⊆ H, where H is
an integer lattice of a hyperrectangle such that H = ∏i=1,...,n{li, li +1, . . . ,ui} and li,ui ∈ Z
with li < ui for all i = 1, . . . ,n. Let π be the target distribution associated with the Metropolis
filter.
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i.) For Sphere Biwalk, if R≥ (∑n
i=1(ui− li)2)

1
2 , or if R≥ 1 and S = H;

ii.) for Box Biwalk, if ci = ui− li for i = 1, . . . ,n, or if ci ≥ 1 and S = H,

then the Markov chains generated by HR with Sphere and Box Biwalks converge in distri-
bution to the target distribution π over S.

Proof We first prove the irreducibility of P = {pxy : x,y ∈ S}, the transition matrix asso-
ciated with discrete HR with Metropolis filter π and Sphere or Box Biwalk. For Sphere
Biwalk, if R ≥ (∑n

i=1(ui− li)2)
1
2 , the probability of generating any point y ∈ S from a cur-

rent point, say x ∈ S is positive; because the probability of generating D̃ that is in the di-
rection y− x in Step 1.1 and rounding to y after generating a uniform point on the line set
L̃D̃ = {v : v = rD̃,r ∈ [−R,R]}, due to R chosen sufficiently big, is positive. Similarly, for
Box Biwalk, if ci = ui− li for all i = 1, . . . ,n, then the probability of generating any point
y ∈ S after rounding a uniform point in the box [−c1,c1]×·· ·× [−cn,cn] in Step 1.2 is posi-
tive. Moreover, if S = H, the probability of generating any point from a current point is also
positive as long as R≥ 1 for Sphere Biwalk, and ci ≥ 1 for Box Biwalk. Therefore, for both
biwalks, given conditions i and ii, qxy > 0 for all x,y∈ S. And given that π is strictly positive,
pxy = min{1,π(y)/π(x)}qxy > 0 for all x,y ∈ S, therefore, P is irreducible. The generated
biwalks include the current point, therefore the probability of staying at the current point is
positive. Thus, P is aperiodic.

Next, we prove that P is reversible relative to π , that is,

π(x)pxy = π(y)pyx for all x,y ∈ S.

Since Q is symmetric as provided in Lemma 1,

qxy = qyx for all x,y ∈ S (2)

and, we observe that

π(x)min
{

1,
π(y)
π(x)

}
= π(y)min

{
1,

π(x)
π(y)

}
, (3)

then combining (1), (2), and (3), we conclude that

π(x)pxy = π(x)min
{

1,
π(y)
π(x)

}
qxy = π(y)min

{
1,

π(x)
π(y)

}
qyx

= π(y)pyx for all x,y ∈ S.

From reversibility, we can take the summation,

∑
x∈S

π(x)pxy = ∑
x∈S

π(y)pyx for all y ∈ S

and because P is a probability transition matrix, ∑y∈S pxy = 1; thus,

∑
x∈S

π(x)pxy = π(y)

and given that the Markov chain is irreducible and aperiodic and S is finite,

∑
x∈S

π(x)pxy = lim
n→∞

Pn = π(y) for all y ∈ S.

Thus, we conclude that for every starting point x ∈ S, the Markov chain associated with
discrete HR with Sphere or Box Biwalk when used with a Metropolis filter with target
distribution π converges to π . �
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To prove a similar convergence theorem for HR with Sphere and Box Biwalks on mixed
continuous/discrete domains, we have to consider biwalks with intermingled intervals and
points. While the current point x is always on the left-hand side of an interval, the next point
z may be a point interior to an interval on a continuous dimension. However, for any path
r ∈Rx,z that starts at x and includes z, with corresponding step length directions {Dr

1, . . . ,D
r
n}

and order of permutations {I1, . . . , In} there exists a unique path r′ ∈ Rz,x, where Rz,x denotes
the set of all paths starting from z and passing through x. The path r′ is determined by the
negative step directions −Dr

i for all i except for the dimension that includes the point z,
{−Dr

1, . . . ,−Dr
k−1,D

r′
k ,−Dr

k+1, . . . ,−Dr
n} with the opposite order of r. We replace that step

direction Dr
k, with Dr′

k whose step size equals |zk− xk| divided by the number of Dr
k steps

taken from x to z on r. In this way, the total length of the biwalk on the kth dimension is equal
for both paths r and r′, thus the probability of choosing z given x on r equals the probability
of choosing x given z and path r′. Thus, symmetry of Q is also satisfied for the mixed case.
The convergence theorem for mixed domains is now given.

Theorem 2 Consider HR with Sphere and Box Biwalks operated on S ⊆ H, where H is a
mixed continuous/discrete lattice of a hyperrectangle such that

H = ∏
i=1,...,n

{
[li,ui] if i is a continuous dimension
{li, li +1, . . . ,ui} if i is a discrete dimension,

provided that li,ui ∈ R, if i is a continuous dimension and li,ui ∈ Z, if i is a discrete di-
mension and li < ui for all i = 1, . . . ,n. Let π be the target distribution associated with the
Metropolis filter used in HR with pattern biwalk.

i.) For Sphere Biwalk, if R≥ (∑n
i=1(ui− li)2)

1
2 ,

ii.) for Box Biwalk, if ci = ui− li for i = 1, . . . ,n,

then the Markov chains generated by HR with Sphere and Box Biwalks converge in distri-
bution to the target distribution π over S.

5 Convergence to Hit-and-Run

Sphere Biwalk is a mixed continuous/discrete analog of the original continuous HR, where
the direction is chosen uniformly on the surface of a hypersphere. And Box Biwalk is a
mixed continuous/discrete analog of a variation of continuous HR where the direction is
chosen uniformly in the interior of a hyperrectangle. We provide the necessary conditions
and theorems to prove the convergence of the mixed continuous/discrete form to the contin-
uous form as the mixed lattice gets finer.

Consider the Sphere Biwalk on a finite space Sδ contained in a mixed lattice of an hy-
perrectangle Hδ with δ being the minimum distance between two lattice points for discrete
dimensions in Hδ . That is, Hδ = {(x1,x2, . . . ,xn) ∈ Rn : li ≤ xi ≤ ui for i = 1, . . . ,n and
xi
δ
∈ Z for discrete dimensions i}. In order to prove convergence, we introduce a continuous

hyperrectangle H̃ = {(x1,x2, . . . ,xn) ∈ Rn : li ≤ xi ≤ ui for i = 1, . . . ,n} and let S̃ ⊆ H̃ be a
measurable continuous subset of H̃, such that

H̃ = lim
δ→0

Hδ and S̃ = lim
δ→0

Sδ .
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Let D̃ = (d̃1, d̃2, . . . , d̃n) be a continuous unit direction generated uniformly on the surface of
an n-dimensional unit hypersphere with center being the origin, as in Step 1.1 of Sphere Bi-
walk. For a given pair of R and δ , where R≥ δ , let V D̃

(R δ ) = (vD̃
(R δ )1, . . . ,v

D̃
(R δ )n) be the mixed

continuous/discrete lattice point obtained by rounding D̃, as in Step 1.2 of Sphere Biwalk.
We denote the set of step length directions, as in Step 1.3, by DD̃

(R δ ) = {DD̃
(R δ )1, . . . ,D

D̃
(R δ )n}.

Given a starting point x0 ∈ Sδ , let SDD̃
(R δ )

(x0) be the set of mixed continuous/discrete points

contained in Sδ that are on at least one of the biwalks generated from x0 with DD̃
(R δ ) and any

permutation of the dimensions. Let L̃D̃(x0) be the line set of points generated by continuous
Hit-and-Run from x0 with the direction D̃ over S̃, i.e.,

L̃D̃(x0) = {x ∈ S̃⊆ H̃ : x = x0 +β D̃, β is a real scalar}.

The following theorem shows that as δ

R → 0 and R→ 0, the biwalk generated by Sphere
Biwalk converges to the direction vector generated by continuous Hit-and-Run.

Theorem 3 Consider Sphere Biwalk on the set Sδ contained in Hδ and R≥ δ . Given a cur-
rent point x0 ∈ Sδ , let D̃ be a unit continuous direction generated by Hit-and-Run, and let
DD̃

(R δ ) be the set of step length directions generated by Sphere Biwalk whose correspond-

ing unit continuous direction is D̃. Then as δ

R → 0 and R→ 0, the biwalk set SDD̃
(R δ )

(x0)

converges to the line set L̃D̃(x0), i.e.,

(i) for every subsequence of points {x(R δ )} such that x(R δ ) ∈ SDD̃
(R δ )

(x0) for all R and δ , if

{x(R δ )}→ x as δ

R → 0 and R→ 0, then x ∈ L̃D̃(x0).
(ii) for every x ∈ L̃D̃(x0), there is a sequence of points {x(R δ )} with x(R δ ) ∈ SDD̃

(R δ )
(x0) for

all R and δ , such that x(R δ )→ x as δ

R → 0 and R→ 0.

Proof See Appendix. �

Similar to Sphere Biwalk, under a particular rule of choosing maximum step length ci
for each dimension, the biwalk generated by Box Biwalk converges to a direction vector
of a version of continuous HR algorithm, that is generated uniformly in the interior of an
n-dimensional hyperrectangle.

Theorem 4 Consider Box Biwalk on the set Sδ contained in Hδ . For i = 1,2, . . . ,n, let ci be
an arbitrary real number between [1,ui− li], and let γδ be any value between

[
δ

mini=1,...,n ci
,1
]
.

Set the maximum step length cδ i associated with Box Biwalk to cδ i = γδ ci, for i = 1, . . . ,n.
Given a current point x0 ∈ Sδ , let D̃ = (d̃1, . . . , d̃n) be a continuous point generated uniformly
in the box [−c1,c1]×·· ·× [−cn,cn] and let V D̃

(γδ ) = (vD̃
(γδ )1, . . . ,v

D̃
(γδ )n) be the mixed continu-

ous/discrete lattice point obtained by rounding D̃, where vD̃
(γδ )i/d̃i = γδ for i = 1, . . . ,n. Also,

let DD̃
(γδ ) be the set of step length directions generated by Box Biwalk corresponding to V D̃

(γδ ).
As in Theorem 3, let SDD̃

(γ
δ

)
(x0) be the set of mixed continuous/discrete points contained

in Sδ that are on at least one of the biwalks generated from x0 with DD̃
(γδ ) and any permuta-

tion of the dimensions. Let L̃D̃(x0) be the line set of points generated by Hit-and-Run from
x0 with the direction D̃ over S̃, i.e.,

L̃D̃(x0) = {x ∈ S̃⊆ H̃ : x = x0 +β D̃, β is a real scalar}.

Then as δ

γδ
→ 0 and γδ → 0, the biwalk set SDD̃

(γ
δ

)
(x0) converges to the line set L̃D̃(x0), i.e.,
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(i) for every subsequence of points {x(γδ )} such that x(γδ ) ∈ SDD̃
(γ

δ
)
(x0) for all γδ and δ , if

{x(γδ )}→ x as δ

γδ
→ 0 and γδ → 0, then x ∈ L̃D̃(x0).

(ii) for every x ∈ L̃D̃(x0), there is a sequence of points {x(γδ )} with x(γδ ) ∈ SDD̃
(γ

δ
)
(x0) for all

γδ and δ , such that x(γδ )→ x as δ

γδ
→ 0 and γδ → 0.

Proof The proof is very similar to the proof for Theorem 3 and is not repeated. �

6 Finite time performance

We analyze the convergence rate of the discrete HR sampling with a target distribution π

using Sphere Biwalk and Box Biwalk over a finite domain S, where S is an n-dimensional
hyperrectangle integer lattice with S = H = {(x1,x2, . . . ,xn) ∈ Zn : li ≤ xi ≤ ui, with li <
ui, i = 1, . . . ,n}. We provide bounds on the rate of convergence to general π , and then
give specific bounds when π is uniform and when π is a Boltzmann distribution for Sphere
Biwalk (Corollary 1) and Box Biwalk (Corollary 2). Global optimization algorithms such
as Simulated Annealing often use a Boltzmann Metropolis filter associated with πT , the
Boltzmann T distribution on the function f over S, πT (x) = e− f (x)/T

∑z∈S e− f (z)/T in their cooling
schedules.

As the measure of convergence, we use the absolute version of the maximal relative
error introduced by Behrends [5] for irreducible, aperiodic, and reversible transition matrices
of Markov chains defined on a finite state space with stationary distributions. In order to
build this measure for the discrete HR sampling with pattern biwalks, we start with defining
P = {pxx′})x,x′∈S as the transition matrix of the Markov chain associated with discrete HR
with Sphere and Box Biwalk with Metropolis filter for target distribution π on a finite state
space S. Denote the kth transition matrix by P(k) = {p(k)

xx′}. We use the maximal absolute
error, denoted by d(k) to measure the distance of the kth transition of the Markov chain from
the stationary distribution, which is defined as

d(k) = max
x,x′∈S

|p(k)
xx′ −π(x′)|. (4)

Since the Markov chain associated with discrete HR with Sphere or Box Biwalk is ir-
reducible, aperiodic and it has a stationary distribution (from Theorem 1), then all of its
states are positive recurrent and it is ergodic [21, Theorem 4.3.3. p. 175]. Moreover, er-
godicity provides us with the property that P has real eigenvalues that can be ordered as
1 = λP1 > λP2 ≥ . . . ≥ λPn > −1 and the rate of convergence to the stationary distribution
is governed by the second-largest eigenvalue in absolute value, say λ ∗P [24]. A lower bound
for the number of iterations to limit the maximal absolute distance in an ε > 0 boundary is
provided by Lemma 2 below.

Lemma 2 Given ε > 0, if k ≥
ln
(

maxx∈S π(x)
minx∈S π(x)

)
−ln(ε)

1−λ ∗P
, then d(k) = maxx,x′∈S |p

(k)
xx′ −π(x′)| ≤ ε .

Proof In [5, Theorem 10.3 p. 81], a bound on the maximal relative error is given as

max
x,x′∈S

|p(k)
xx′ −π(x′)|

π(x′)
≥ λ ∗P

minx∈S πx
(5)
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We utilize this bound to get a bound for d(k). The relation between maximal absolute
and relative errors can be derived as

max
x,x′∈S

|p(k)
xx′ −π(x′)|

π(x′)
≥

maxx,x′∈S |p
(k)
xx′ −π(x′)|

maxx∈S π(x)
=

d(k)
maxx∈S π(x)

.

Thus, using the bound on maximal relative error,

d(k)≤

(
max
x,x′∈S

|p(k)
xx′ −π(x′)|

π(x′)

)
max
x∈S

π(x)≤ maxx∈S π(x)
minx∈S π(x)

λ
∗
P for all k. (6)

By assumption of the lemma, k ≥
ln
((

maxx∈S π(x)
minx∈S π(x)

)
/ε

)
1−λ ∗P

. Hence,

ln
(

ε/

(
maxx∈S π(x)
minx∈S π(x)

))
≥ (λ ∗P−1)k ≥ k(ln(λ ∗P)),

since 0 < λ ∗P < 1. Thus, (λ ∗P)k ≤ ε/
(

maxx∈S π(x)
minx∈S π(x)

)
. Then, by combining with (6), we get

d(k)≤ ε . �

As Lemma 2 shows, an upper bound on λ ∗P provides a bound on the rate of convergence
for a Markov chain. We next develop a bound on λ ∗P for Discrete Hit-and-Run with Sphere
Biwalk and Box Biwalk. Because the eigenvalues are ordered, λ ∗P will be either |λP2 | or
|λPn |. Therefore an upper bound on both |λP2 | and |λPn | provides a bound on λ ∗P . We first
develop a bound on |λPn |.

Lemma 3 Consider DHR with Metropolis filter π with Sphere Biwalk or Box Biwalk being
the candidate point generator over a finite state space S, where S is an n-dimensional hyper-
rectangle integer lattice, S = H. Let Q be the candidate transition matrix with eigenvalues
1 = λQ1 > λQ2 ≥ . . .≥ λQn >−1, and let P be the DHR transition matrix with eigenvalues
1 = λP1 > λP2 ≥ . . . ≥ λPn > −1, where P is determined by Q and π . Then both |λQn | and
|λPn | are bounded by

|λQn | ≤ 1− 2
n(L+1)

and |λPn | ≤ 1− 2
n(L+1)

(7)

where L = maxn
i=1(ui− li).

Proof The minimal holding probabilities as defined in [17], αQ,αP ∈ [0,1] for matrices Q
and Q respectively, provides that qxx ≥ αQ and pxx ≥ αP for all x ∈ S. Since Q and P are
reversible, the smallest eigenvalues satisfy the following relations:

−λQn ≤ 1−2αQ and −λPn ≤ 1−2αP, (8)

which are given in [17, p. 16]. According to the process of DHR, the probability of staying
at the same point only depends on the number of candidate points along the bidirectional
path, which implies qxx = pxx for all x ∈ S. It can also be shown that the points in any bidi-
rectional path generated by Sphere Biwalk or Box Biwalk are distinct and the number of
candidate points along the path is no more than n(L +1). Therefore, the one-step transition
probabilities qxx and pxx are not less than 1

n(L+1) . Thus,

αQ = αP ≥
1

n(L+1)
. (9)
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Combining (8) and (9), we get

λQn ≥−1+
2

n(L+1)
, and λPn ≥−1+

2
n(L+1)

, (10)

which implies |λQn | ≤ 1− 2
n(L+1) and |λPn | ≤ 1− 2

n(L+1) . �

Lemma 3 provides a bound on the smallest eigenvalues of candidate transition matrix Q
and transition matrix P. We next develop bounds on the second largest eigenvalue for both
Q and P respectively.

Lemma 4 Consider DHR with Metropolis filter π with Sphere Biwalk or Box Biwalk being
the candidate point generator over a finite state space S, where S is an n-dimensional hy-
perrectangle integer lattice, S = H. Let λQ2 and λP2 be the second largest eigenvalues of Q
and P respectively, as in Lemma 3. Then for DHR with either Sphere or Box Biwalk, λQ2 is
bounded by

|λQ2 | ≤ 1−4

(
min

x,y adjacent
qxy

)(
n(L+1)2)−1

,

and when π is a uniform distribution, λP2 = λQ2 . When π is a Boltzmann T distribution,

|λP2 | ≤ 1−2e−2(y∗−y∗)/T

(
min

x,y adjacent
qxy

)(
n(L+1)2)−1

,

where f ∗ = maxx∈S f (x), f∗ = minx∈S f (x), and L = maxn
i=1(ui− li).

Proof The proof for the bound on λQ2 uses the geometry bound on the second largest
eigenvalue of an irreducible, aperiodic, reversible Markov chain developed by Diaconis and
Strook [8] and a technique which was explored by Sinclair [24] called the method of the
canonical paths. The bound on λP2 follows directly from the relationship between λQ2 and
λP2 provided by Behrends in [5, Proposition 21.3, p. 210]. �

Now we are ready to provide the convergence rate of Discrete Hit-and-Run with Boltz-
mann Metropolis filter and using Sphere Biwalk and Box Biwalk candidate point generators
respectively. We start with an analysis of DHR with Sphere Biwalk.

Consider the Markov chain {Xk, k = 0,1,2, . . .} generated by DHR with Sphere Biwalk.
The following lemma provides a bound on the one step candidate transition probability
between two adjacent points in S.

Lemma 5 Consider DHR with Metropolis filter π with Sphere Biwalk and parameter R≥ 1
being the candidate point generator over a finite state space S, where S is an n-dimensional
hyperrectangle integer lattice, S = H. Let (x,z) be a pair of adjacent points in S. Then
the one step candidate transition probability qxz is bounded by qxz ≥ 1

n2(1+nL)(R+1) , where
L = maxi=1,...,n(ui− li).

Proof See Appendix. �
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By applying Lemma 5 to Lemma 3 and Lemma 4, the second largest eigenvalue modulus
λ ∗Q and λ ∗P are bounded by

λ
∗
Q = max{|λQ2 |, |λQn |} ≤ 1− 4

n3(1+nL)(L+1)2(R+1)
, (11)

λ
∗
P = max{|λP2 |, |λQn |} ≤ 1− 2e−2( f ∗− f∗)/T

n3(1+nL)(L+1)2(R+1)
. (12)

By providing the bounds on λ ∗Q and λ ∗P to Lemma 2, we can make the following conclu-
sion on the convergence rate of DHR with Sphere Biwalk to its target distribution.

Corollary 1 Consider DHR with Metropolis filter π with Sphere Biwalk and parameter
R ≥ 1 being the candidate point generator over a finite state space S, where S is an n-
dimensional hyperrectangle integer lattice, S = H. If the stationary distribution associated
with the Metropolis filter is a uniform distribution, then the number of iterations required for
the distribution of the chain to be within maximal absolute error ε of the uniform distribution
on S is at most,

(1/4)n3(1+nL)(L+1)2(R+1)ln(ε−1). (13)

If the stationary distribution associated with the Metropolis filter is a Boltzmann T distri-
bution, then the number of iterations required for the distribution of the chain to be within
maximal absolute error ε of the Boltzmann T distribution on S is at most,

(1/2)n3(1+nL)(L+1)2(R+1)e2( f ∗− f∗)/T
(

f ∗− f∗
T

− lnε

)
. (14)

Proof The bound on the convergence rate to a uniform distribution follows from (11),
Lemma 2 and the fact that the two probability transition matrices Q and P are equal when
the stationary distribution of P is a uniform distribution. The bound on the convergence rate
to a Boltzmann distribution follows from (12) and Lemma 2. �

Hence if S is the integer lattice of a hyperrectangle of dimension n, the Discrete Hit-and-
Run with Sphere Biwalk and with a uniform filter produces an approximately uniformly dis-
tributed sample point on S in polynomial time, O(n4); the Discrete Hit-and-Run with Sphere
Biwalk and with a Boltzmann T filter produces an approximately Boltzmann T distributed
sample point on S in polynomial time, O(n4), when holding the other parameters constant.

To show the difference between Box Biwalk and Sphere Biwalk, we now consider the
Markov chain generated by DHR with Box Biwalk. Let Q denote the candidate transition
matrix associated with the Box Biwalk. The following lemma provides a bound on the one
step candidate transition probability between two adjacent points in S.

Lemma 6 Consider DHR with Metropolis filter π with Box Biwalk and parameter 1 ≤
ci ≤ ui− li for all i = 1, . . . ,n being the candidate point generator over a finite state space
S, where S is an n-dimensional hyperrectangle integer lattice, S = H. Then the one step
candidate transition probability qxz is bounded by qxz≥ 1

n(1+nL)L , where L = maxi=1,...,n(ui−
li).

Proof See Appendix. �
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By applying Lemma 6 to Lemma 3 and Lemma 4 for DHR with Box Biwalk, the second
largest eigenvalue modulus λ ∗Q and λ ∗P are bounded by

λ
∗
Q = max{|λQ2 |, |λQn |} ≤ 1− 4

n2(1+nL)L(L+1)2 , (15)

λ
∗
P = max{|λP2 |, |λQn |} ≤ 1− 2e−2( f ∗− f∗)/T

n2(1+nL)L(L+1)2 . (16)

By providing the bounds on λ ∗Q and λ ∗P to Lemma 2, we can make the following conclu-
sion on the convergence rate of DHR with Box Biwalk to its target distribution.

Corollary 2 Consider DHR with Metropolis filter π with Box Biwalk and parameter 1 ≤
ci ≤ ui− li for all i = 1, . . . ,n being the candidate point generator over a finite state space
S, where S is an n-dimensional hyperrectangle integer lattice, S = H. If the stationary dis-
tribution associated with the Metropolis filter is a uniform distribution, then the number of
iterations required for the distribution of the chain to be within maximal absolute error ε of
the uniform distribution on S is at most,

(1/4)n2L(L+1)2(1+nL)ln(ε−1). (17)

If the stationary distribution associated with the Metropolis filter is a Boltzmann T distri-
bution, then the number of iterations required for the distribution of the chain to be within
maximal absolute error ε of the Boltzmann T distribution on S is at most,

(1/2)n2L(L+1)2(1+nL)e2( f ∗− f∗)/T
(

f ∗− f∗
T

− lnε

)
. (18)

Proof The bound on the convergence rate to a uniform distribution follows from (15),
Lemma 2 and the fact that the two probability transition matrices Q and P are equal when
the stationary distribution of P is a uniform distribution. The bound on the convergence rate
to a Boltzmann distribution follows from (16) and Lemma 2. �

Hence if S is the integer lattice of a hyperrectangle of dimension n, the Discrete Hit-
and-Run with Box Biwalk and with a uniform filter produces an approximately uniformly
distributed sample point on S in polynomial time, O(n3); the Discrete Hit-and-Run with Box
Biwalk and with a Boltzmann T filter produces an approximately Boltzmann T distributed
sample point on S in polynomial time, O(n3), holding the other parameters constant.

7 Computational Study

We tested and compared modified Improving Hit-and-Run with several candidate point gen-
erators: our new pattern biwalks, DHR with random biwalk [4] for discrete domain, separate
continuous HR and discrete HR with random biwalk for mixed domains, and the Step Func-
tion approach [20] for both discrete and mixed domains.

We solved 18 global optimization test problems which are used in [16] and given in
[1]. The problems are listed in Table 1, with dimensions and parameter settings we used.
The radius parameter (R) for Sphere Biwalk and box length parameter (c) for Box Biwalk
are determined according to the longest side of H and have three values: a small, medium
and large value. For the mixed continuous/discrete domain problems, we take half of the
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dimensions as continuous and the other half as discrete. We perform 5,000 iterations for 100
runs for each test case.

For each problem, we evaluate the runs according to the m-fold improvement (scaled dis-
tance to the optimal function function value f ∗ after a number of iterations) measure, which
is developed by Ali et al. [1] by modifying performance profile given by Dolan and Morè
[9]. Accordingly, the m-fold improvement of each method (with its parameter if needed) is:
f̂s− f ∗
fw− f ∗ where f̂s is the average incumbent function value after 5,000 iterations and fw is the
worst average incumbent function value of 100 runs obtained among the methods. Then,
we calculate the performance ratio for each method by dividing m-fold improvement by the
minimum of m-fold improvements. Then, the method/parameter setting that provides per-
formance ratio one can be seen as the best. The performance ratios for each test problem
and method/parameter setting are given in Table 2. For the problems with 20 dimensions,
we provide the graphs of the average incumbent function values for 5,000 iterations in Fig-
ure 1 for the discrete domains and Figure 2 for the mixed continuous/discrete domains. We
excluded the Rosenbrock function in 20 dimensions from the figures because the differences
among the methods are not visible in the graphs.

Table 1 Dimensions and Parameters (R for Sphere Biwalk, c for Box Biwalk) for Test Problems

Problems n Rs and cs Rm and cm Rl and cl

Ackley 20 2 30 60
Epistatic Michalewicz 5 1 2 3
Epistatic Michalewicz 10 1 2 3
Griewank 10 2 600 1,200
Griewank 20 2 600 1,200
Levy and Montalvo 2 10 2 5 10
Levy and Montalvo 2 20 2 5 10
Paviani 10 2 5 8
Rosenbrock 10 2 30 60
Rosenbrock 20 2 30 60
Salomon 10 2 100 200
Salomon 20 2 100 200
Schwefel 10 2 500 1,000
Shekel Foxholes 10 2 5 10
Sinusoidal, Centered (z = 0) 10 2 90 180
Sinusoidal, Centered (z = 0) 20 2 90 180
Sinusoidal, Shifted (z = 30) 10 2 90 180
Sinusoidal, Shifted (z = 30) 20 2 90 180

For the discrete and mixed domains, Sphere and Box Biwalks outperform Random Bi-
walk and the Step Function approach in almost all of the 36 test cases. We observe that
Sphere Biwalk with small R values and Box Biwalk with large c values performed better
than the other methods/parameter settings overall.

8 Conclusion

We introduce two new Markov chain Monte Carlo samplers for neighborhood generation
in global optimization algorithms. Sphere and Box Biwalks are motivated by the success
of Hit-and-Run and its discrete version, however they utilize the patterns for generating the



21

Table 2 Performance Ratios

Discrete Ran. Step Sphere Biwalk Box Biwalk
Problems n B. Fun. Rs Rm Rl cs cm cl

Ackley 20 3.78 1.86 1 2.29 2.68 1.65 3.67 1.27
E. Michalewicz 5 1 1.01 1 1 1 1 1 1
E. Michalewicz 10 1.02 1.17 1.02 1.05 1.08 1 1.2 1.25
Griewank 10 59.74 21.82 1 7.68 4.14 5.43 4.13 2.48
Griewank 20 12.01 13.29 1 10.22 9.7 10.07 2.35 2.15
Levy and M. 2 10 > 1000 > 1000 1 1 1 1 > 1000 1
Levy and M. 2 20 > 1000 > 1000 1 > 1000 > 1000 > 1000 > 1000 1
Paviani 10 1 3.03 1 1 1 1 1 1
Rosenbrock 10 7.14 2.36 1 1.38 1.72 1.51 2.51 1.1
Rosenbrock 20 21.76 5.28 1 4.71 7.69 3.7 15.98 1.75
Salomon 10 2.15 1.11 1 1.54 1.83 1.08 2.51 1.56
Salomon 20 1.93 1.26 1 1.46 1.67 1.22 2.1 1.39
Schwefel 10 174.13 171.43 1 57.1 49.7407 123.92 52.09 2.4
Shekel Foxholes 10 1 1 1 1 1 1 1 1.01
Sinusoidal Cen. 10 15 7.88 1 4.46 3.7 2.91 4.44 3.48
Sinusoidal Cen. 20 2.83 2.18 1.39 2.03 2.33 1.9 2.25 1
Sinusoidal Shi. 10 10.71 9.27 1 8.31 6.18 4.4 2.85 3.58
Sinusoidal Shi. 20 2.01 2 1.39 1.85 1.79 1.8 1.12 1

Mixed Sep. Step Sphere Biwalk Box Biwalk
Problems n Dom. Fun. Rs Rm Rl cs cm cl

Ackley 20 2.95 2.71 3.19 1.52 1.38 2.70 1.40 1
E. Michalewicz 5 1.00 1.35 1.07 1.01 1 1.01 1.08 1.00
E. Michalewicz 10 1.25 1.46 1.23 1.05 1.14 1 1.31 1.37
Griewank 10 5.29 1.52 1 1.65 1.98 3.12 4.58 4.12
Griewank 20 2.89 2.97 2.56 2.57 2.35 2.47 1.12 1
Levy and M. 2 10 99.45 12.25 1 2.08 2.55 4.89 5.39 6.58
Levy and M. 2 20 14.98 5.40 2.07 1 1.65 1.95 2.42 1.97
Paviani 10 1.00 2.94 1 1 1 1 1 1.03
Rosenbrock 10 14.66 1.39 1.11 1 1.52 1.01 4.83 3.97
Rosenbrock 20 27.79 1.24 1.09 1.34 1.93 1 10.61 4.32
Salomon 10 3.17 1.03 1.07 1.40 1.65 1 2.74 2.28
Salomon 20 2.27 1 1.19 1.17 1.34 1.01 1.85 1.59
Schwefel 10 9.78 11.68 9.72 4.44 4.08 10.77 4.11 1
Shekel Foxholes 10 1.02 1.02 1.02 1.01 1.01 1.01 1 1.01
Sinusoidal Cen. 10 3.25 1.37 2.36 1.91 1 1.76 2.11 2.01
Sinusoidal Cen. 20 1.85 1.02 1 1.28 1.06 1.17 1.44 1.31
Sinusoidal Shi. 10 2.07 1.92 1.74 1.80 1.53 2.06 1 1.25
Sinusoidal Shi. 20 1.60 1.52 1.37 1.30 1.37 1.41 1.01 1

biwalks in a more efficient way. In order to cover a wide range of real optimization prob-
lems, we also define Sphere and Box Biwalks for mixed continuous/discrete domains. We
show that the new pattern biwalks converge to essentially any target distribution when they
are used with a Metropolis filter. We provide the finite time performance for uniform distri-
bution and Boltmann T distribution and show it is polynomial for special discrete domains.
In addition, we prove that new candidate point generators are discrete and mixed analogies
of continuous Hit-and-Run. We tested Sphere and Box Biwalks within a modified Improv-
ing Hit-and-Run setting on several global optimization problems and the numerical results
support that they are successful against other sampling methods such as random biwalk, the
Step Function approach and separating the discrete and continuous domains.
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Fig. 1 Average Incumbent Values vs. Number of Iterations for Discrete Problems

Appendix

Proof (Theorem 3)
Consider Sphere Biwalk defined on the mixed continuous/discrete set Sδ ∈Hδ . Given R, δ and the continuous
unit direction D̃ = (d̃1, d̃2, . . . , d̃n), let V D̃

(R δ ) = (vD̃
(R δ )1, . . . ,v

D̃
(R δ )n) be the mixed continuous/discrete point

generated in Step 1.2. Therefore we have

vD̃
(R δ ) j = rd̃ j if j is a continuous dimension (19)

vD̃
(R δ ) j = Round

(
rd̃ j

δ

)
δ if j is a discrete dimension, (20)

for some r ∈ [−R,R], where Round(·) represents rounding to the nearest integer number. We also let DD̃
(R δ ) =

{DD̃
(R δ )1, . . . , DD̃

(R δ )n} be the set of step length directions, as determined in Step 1.3.
Let SDD̃

(R δ )
(x0) be the set of mixed continuous/discrete set points contained in Sδ that are on at least one

of the bidirectional paths generated from x0 with DD̃
(R δ ) and any permutation of the dimensions. Let SD̃(x0)
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Fig. 2 Average Incumbent Values vs. Number of Iterations for Mixed Continuous/Discrete Problems

be a set of points generated by continuous Hit-and-Run from x0 with the direction D̃ over S̃, i.e.,

SD̃(x0) = {x ∈ S̃⊆ H̃ : x = x0 +β D̃, β is a real scalar}.

To prove (i), we first prove that x ∈ S̃. Considering that x(R δ ) ∈ SDD̃
(R δ )

(x0), we have x(R δ ) ∈ Sδ . And

according to the supposition that {x(R δ )}→ x as δ

R → 0 and R→ 0 and the fact S̃ = limδ→0 Sδ , we can claim
that x ∈ S̃.

We next prove that x is a point on the line with direction D̃ passing through x0, L̃D̃(x0).
Given r ∈ [−R,R], considering (19), we have

vD̃
(R δ ) j

r
→ d̃ j as

δ

R
→ 0 for continuous dimensions j, (21)

and
|vD̃

(R δ ) j| → 0 as R→ 0 for continuous dimension j. (22)

In addition, (20) implies,(
rd̃ j

δ
−1
)

δ ≤ vD̃
(R δ ) j ≤

(
rd̃ j

δ
+1
)

δ for discrete dimensions j, (23)
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which is equivalent to

d̃ j−
δ

r
≤

vD̃
(R δ ) j

r
≤ d̃ j +

δ

r
for discrete dimensions j. (24)

Combining (24) with the fact that r is a scalar with arbitrary value in [−R,R] and (21), we conclude that

V D̃
(R δ )

r → D̃ as δ

R → 0. (25)

Now let I = {I1, I2, . . . , In} be any random permutation of n coordinate dimensions. Given x0, R, δ , D̃,
DD̃

(R δ ) and I, Sphere Biwalk generates a forward path and a backward path starting from x0 until stepping out
of Hδ . Without losing generality, assume the point x(R δ ) is located on the forward path. Let µR δ be the total
number of times the complete cycles of n coordinate dimensions, {I1, I2, . . . , In}, is repeated to generate the
forward path from x0 to x(R δ ). Then we have

µR δ

n

∑
j=1

DD̃
(R δ )I j

−
n

∑
j=1
|DD̃

(R δ )I j
| ≤ x(R δ )− x0 ≤ µR δ

n

∑
j=1

DD̃
(R δ )I j

+
n

∑
j=1
|DD̃

(R δ )I j
|,

which is equivalent to

rµR δ

V D̃
(R δ )

r
−Ṽ D̃

(R δ ) ≤ x(R δ )− x0 ≤ rµR δ

V D̃
(R δ )

r
+Ṽ D̃

(R δ ), (26)

where Ṽ D̃
(R δ ) = (|vD̃

(R δ )1|, . . . , |v
D̃
(R δ )n|). Applying (22) and (25) and the fact that {x(R δ )} → x as δ

R → 0 and

R→ 0, we have as δ

R → 0 and R→ 0,
(
{x(R δ )}− x0

)
→ (x− x0) = (rµR δ )D̃, and combining with the fact

that x ∈ S̃, we can conclude that x ∈ SD̃(x0) and x ∈ L̃D̃(x0).
Next we prove (ii). We first choose a proper sequence of points {x(R δ )}. Given R and δ , let Sm

DR δ
be a set

such that Sm
DR δ

= {xm
R δ
∈ Sδ : xm

R δ
= mV D̃

(R δ ) + x0, for m = {. . . ,−1,0,1, . . .}. It is obvious that Sm
DR δ
⊂ Sδ .

Choose x(R δ ) to be the point in Sm
DR δ

which is closest to point x, i.e., x(R δ ) ∈ Sm
DR δ

such that ‖x(R δ )− x‖ ≤
‖xm

(R δ ) − x‖ for all xm
(R δ ) ∈ Sm

DR δ
. Let m̂ be the integer associated with x(R δ ), i.e., x(R δ ) = m̂V D̃

(R δ ) + x0,
where m̂ ∈ {. . . ,−1,0,1, . . .}. Then we have

x(R δ )− x = m̂V D̃
(R δ ) + x0− x.

Considering that x ∈ L̃D̃(x0), we have x = βxD̃+ x0 for some βx ∈ R. Therefore

x(R δ )− x = m̂V D̃
(R δ )−βxD̃.

And considering (19) and (23), which can be combined as

vD̃
(R δ ) j−δ

r
≤ d̃ j ≤

vD̃
(R δ ) j +δ

r
, for all j = 1, . . . ,n,

and without losing generality, we assume βx ≥ 0, and then we have

m̂vD̃
(R δ ) j−βx

vD̃
(R δ ) j +δ

r
≤ x(R δ ) j− x j ≤ m̂vD̃

(R δ ) j−βx
vD̃
(R δ ) j−δ

r

for j = 1, . . . ,n, which is equivalent to

(m̂− βx

r
)vD̃

(R δ ) j−βx
δ

r
≤ x(R δ ) j− x j ≤ (m̂− βx

r
)vD̃

(R δ ) j +βx
δ

r
(27)

for j = 1, . . . ,n. And considering the fact that Sδ → S̃ as δ

R → 0 and R → 0, there exists small enough

ε such that for all δ

R < ε and R < ε , m̂ satisfies (m̂− βx
r ) < ∞ and (m̂vD̃

(R δ ) + x0) ∈ Sδ , which implies

(m̂vD̃
(R δ ) + x0) ∈ Sm

DR δ
. Now considering (27) and applying the fact that (m̂− βx

r ) < ∞ and applying the fact

that as δ

R → 0 and R→ 0, |vD̃
(R δ ) j| → 0 for j = 1, . . . ,n, we have (x(R δ )− x)→ 0 as δ

R → 0 and R→ 0, i.e.,

x(R δ )→ x as δ

R → 0 and R→ 0. �
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The following lemma is used to prove Lemma 5 and Lemma 6. The lemma states that any bidirectional
path generated in a hyperrectangle H by Sphere Biwalk or Box Biwalk needs no more than 1+nL steps.

Lemma 7 For any bidirectional path

W x = {W x
−m2

,W x
−m2+1, . . . ,W

x
−1,W

x
0 ,W x

1 , . . . ,W x
m1−1,W

x
m1
}

generated by Sphere Biwalk or Box Biwalk over a hyperrectangle H with

H = {(x1,x2, . . . ,xn) ∈ Zn : li ≤ xi ≤ ui, i = 1, with li < ui, i = . . . ,n},

the length of bidirectional path is no more than 1+nL, i.e., m1 +m2 +1≤ 1+nL, where L = maxi=1,...,n(ui−
li).

Proof Let {D1, . . . ,Dk, . . . ,Dn} be the set of discrete directions generated by Sphere Biwalk or Box Biwalk
associated with the continuous direction D̃, and let V D̃ = (vD̃

1 , . . . ,vD̃
k , . . . ,vD̃

n ) be the corresponding discrete
point.

First consider the forward path {W x
0 ,W x

1 , . . . ,W x
m1−1,W

x
m1
}. Let mi

1 be the number of forward path steps
that have been taken along coordinate i, where i = 1,2, . . . ,n. Then

n

∑
i=1

mi
1 = m1.

For the ending point W x
m1

= (W x
m1 ,1, . . . ,W

x
m1 ,n) and the starting point W x

0,1 = (W x
0,1, . . . ,W

x
0,n) on the forward

path, we have
W x

m1 ,i = W x
0,i +mi

1vD̃
i , for i = 1,2, . . . ,n.

Similarly, Let mi
2 be the number of backward path steps that have been taken along coordinate i, where

i = 1,2, . . . ,n. Then
n

∑
i=1

mi
2 = m2.

For the ending point W x
−m2

= (W x
−m2 ,1, . . . ,W

x
−m2 ,n) on the backward path and the starting point W x

0,1, we have

W x
−m2 ,i = W x

0,i−mi
2vD̃

i , for i = 1,2, . . . ,n.

Therefore, we have
|W x

m1 ,i−W x
−m2 ,i|= |(mi

1 +mi
2)v

D̃
i |, for i = 1,2, . . . ,n,

and considering that li ≤W x
m1 ,i,W

x
−m2 ,i ≤ ui for i = 1,2, . . . ,n, we have

|W x
m1 ,i−W x

−m2 ,i| ≤ ui− li, for i = 1,2, . . . ,n,

and hence
mi

1 +mi
2 ≤

ui− li
|vD̃

i |

if |vD̃
i | ≥ 1; and when vD̃

i = 0, mi
1 +mi

2 = 0. Therefore,

mi
1 +mi

2 ≤ (ui− li) for all i = 1,2, . . . ,n

Then,

m1 +m2 =
n

∑
i=1

(mi
1 +mi

2)

≤
n

∑
i=1

(ui− li)

≤ nL,

where L = maxi=1,...,n(ui− li), and considering that the length of the bidirectional path W x is m1 + m2 + 1,
we have m1 +m2 +1≤ 1+nL. �



26

Proof (Lemma 5)
Let {D1, . . . ,Dn} be the set of discrete directions generated by Sphere Biwalk associated with the continuous
direction D̃, and let V D̃ = (vD̃

1 , . . . ,vD̃
n ) be the corresponding discrete point generated by one iteration of

Hit-and-Run with rounding from the center of an n-dimensional ball with radius R.
Let {I1, . . . , In} be a random permutation of n coordinate dimensions. Given two adjacent points x,z ∈ S,

define the event Az
x as,

Az
x =

{
1 if the algorithm generates a bidirectional path from x going through z
0 if the algorithm generates a bidirectional path from x without going through z.

Recall that the Markov chain associated with Sphere Biwalk for candidate points consists of two main steps
to generate a candidate point from x, generating a bidirectional path from x and picking a point uniformly
along the path. The one step transition probability qxz can be written as

qxz = P(Z = z|Az
x = 1)P(Az

x = 1).

Considering that each bidirectional path generated from x can reach z by either the forward path or the
backward path, and according to the process of the algorithm, it is impossible for both of them to go through
z, we have,

P(Az
x = 1) = P(Az

x = 1 by the forward path)+P(Az
x = 1 by the backward path).

First consider the case that the path passes through z by the forward path. Considering that x and z are ad-
jacent, without losing generality, let x = (x1, . . . ,x j−1,x j,x j+1, . . . ,xn), z = (x1, . . . ,x j−1,x j +1,x j+1, . . . ,xn).
Obviously a path generated from x passes through z by the forward path if and only if the jth entry of D j

equals one and the jth dimension is the first nonzero dimension that Sphere Biwalk chooses to move to dur-
ing a forward path from x, i.e., vD̃

k = 1 and if Ik = j, then vD̃
Im = 0 for all m = 1,2, . . . ,k−1. To simplify the

notation, for i = 1,2, . . . ,n, define the event ai such that if the ith dimension is the first nonzero dimension
that Sphere Biwalk chooses to move to during a forward path from x, then ai = 1, i.e.,

ai =
{

1 if vD̃
I1 = · · ·= vD̃

Ik−1
= 0, Ik = i, for k = 1, . . . ,n, and |vD̃

i | ≥ 1
0 otherwise

Without loss of generality, we take vD̃
i ≥ 1, when ai = 1. Therefore, P(Az

x = 1 by forward path) = P(vD̃
j =

1 and a j = 1) = P(a j = 1|vD̃
j = 1)P(vD̃

j = 1). By the definition of a j , we have

P(a j = 1|vD̃
j = 1)≥ P(I1 = j|vD̃

j = 1) (28)

considering that the total number of nonzero-step length dimension is no more than n, we have

P(a j = 1|vD̃
j = 1)≥ 1

n
. (29)

Thus, P(Az
x = 1 by forward path)≥ 1

n P(vD̃
j = 1). Conditioning the probability P(vD̃

j = 1) on vD̃
j , since P(vD̃

j =

1|vD̃
j = 0) = 0, we get,

P(Az
x = 1 by forward path) ≥ 1

n
P(vD̃

j = 1|vD̃
j ≥ 1)P(vD̃

j ≥ 1) (30)

Next we will discuss P(vD̃
j ≥ 1) and P(vD̃

j = 1|vD̃
j ≥ 1) respectively.

Recall that a j = 1 represents the event that the first nonzero step length dimension is the jth dimension,
which implies that the discrete direction vD̃

j 6= 0. Thus one has,

P(vD̃
j ≥ 1)≥ P(a j = 1). (31)

Hence if we can find a lower bound on the probability P(a j = 1), it will provide a lower bound on P(vD̃
j ≥ 1).

By conditioning the probability P(a j = 1) on vD̃
j , we get

P(a j = 1) = P(a j = 1|vD̃
j ≥ 1)P(vD̃

j ≥ 1)+P(a j = 1|vD̃
j = 0) ·P(vD̃

j = 0) (32)

= P(a j = 1|vD̃
j ≥ 1)P(vD̃

j ≥ 1). (33)

What is the value of P(a j = 1|vD̃
j ≥ 1)? Intuitively, this value should be the same as P(ai = 1|vD̃

i ≥ 1) for all
i = 1,2, . . . ,n. To show this, for k = 1,2, . . . ,n, define a set SvD̃

k
to be a collection of discrete points as follows,
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SvD̃
k

= {V D̃ = (vD̃
1 , . . . ,vD̃

k , . . . ,vD̃
n ) : vD̃

k ≥ 1 and ∑
n
i=1(v

D̃
i )2 ≤ R2}.

Note that SvD̃
k

is a finite set. Now consider ∀i, j ∈ {1,2, . . . ,n} and i 6= j. Without losing generality, assume that

i > j. Let V D̃ = (vD̃
1 , . . . ,vD̃

i−1,v
D̃
i ,vD̃

i+1, . . . ,v
D̃
j−1,v

D̃
j ,vD̃

j+1, . . . ,v
D̃
n ) be any discrete point in set SvD̃

i
. By exchang-

ing vD̃
i and vD̃

j , we get another discrete point Ṽ D̃ = (vD̃
1 , . . . ,vD̃

i−1, ṽ
D̃
i = vD̃

j ,vD̃
i+1, . . . ,v

D̃
j1, ṽ

D̃
j = vD̃

i ,vD̃
j+1, . . . ,v

D̃
n ).

Obviously, Ṽ D̃ ∈ SvD̃
j
. On the other hand, for any Ṽ D̃ = (ṽD̃

1 , . . . , ṽD̃
i , . . . , ṽD̃

j , . . . , ṽD̃
n ) ∈ SvD̃

j
, one has V D̃ =

(ṽD̃
1 , . . . ,vD̃

i = ṽD̃
j , . . . ,vD̃

j = ṽD̃
i , . . . , ṽD̃

n )∈ SvD̃
i

. Hence for any such pairs of V D̃ and Ṽ D̃, V D̃ ∈ SvD̃
i

iff Ṽ D̃ ∈ SvD̃
j
,

and for any discrete point in set SvD̃
i

there is a corresponding discrete point in set SvD̃
j

and visa versa. Given

such a pair of V D̃ and Ṽ D̃, where V D̃ ∈ SvD̃
i

, Ṽ D̃ ∈ SvD̃
j

and is obtained from V D̃ by exchanging the position of

vD̃
i and vD̃

j in V D̃, let m(V D̃) denote the total number of nonzero coordinates of the point V D̃ and let m(Ṽ D̃)

denote the total number of nonzero coordinates of the point Ṽ D̃. Obviously, m(V D̃) = m(Ṽ D̃). Hence,

P(ai = 1|V D̃) = 1
m(V D̃)!

= 1
m(Ṽ D̃)!

= P(a j = 1|Ṽ D̃),

which implies

P(ai = 1|vD̃
i ≥ 1) = ∑

∀V D̃∈S
vD̃
i

P(ai = 1|V D̃) (34)

= ∑
∀Ṽ D̃∈S

vD̃
j

P(a j = 1|Ṽ D̃) (35)

= P(a j = 1|vD̃
j ≥ 1). (36)

Next, consider the probability P(vD̃
j ≥ 1). Recall that the discrete direction V D̃ is generated by operating one

iteration of Hit-and-Run algorithm with rounding in the hypersphere domain with radius R and with the origin
O as the center of the hypersphere, we have,

P(vD̃
j ≥ 1) =

∫
A(vD̃

j ≥1) f (u|O)du,

where A(vD̃
j ≥ 1) denotes the continuous subset of the hypersphere domain such that any point in A(vD̃

j ≥ 1)

will round to a discrete point V D̃ = (vD̃
1 , . . . ,vD̃

n ) with vD̃
j ≥ 1, i.e., V D̃ ∈ SvD̃

j
, and f (z|O) is the density function

with the form [25],

f (u|O) = 1
Sn(ru)Rr

,

where ru is the distance from u to the origin O, Sn(ru) denotes the surface of hypersphere with radius ru and
Rr = Round(R). By the observation that the density function f (z|O) just depends on the distance between O
and z and the fact that the hypersphere domain is symmetric, we claim that,

P(vD̃
j ≥ 1) =

∫
A(vD̃

j ≥1)
f (z|O)dy =

∫
A(vD̃

i ≥1)
f (z|O)dy = P(vD̃

i ≥ 1). (37)

By applying equations (34) and (37) to equation (32), we get that for any i, j ∈ {1,2, . . . ,n} and i 6= j, one has

P(a j = 1) = P(a j = 1|vD̃
j ≥ 1)P(vD̃

j ≥ 1) = P(ai = 1|vD̃
i ≥ 1)P(vD̃

i ≥ 1) = P(ai = 1).

Combining this with the fact that ∑
n
j=1 P(a j = 1) = 1, we conclude that for any j ∈ {1,2, . . . ,n}, P(a j = 1) =

1
n . Thus, by applying the conclusion to the (31), we have,

P(vD̃
j ≥ 1)≥ 1

n
. (38)

The next step is to find the lower bound of P(vD̃
j = 1|vD̃

j ≥ 1). It can be done by proving that, for any

k1,k2 ∈ {1,2, . . . ,Rr}, if k1 < k2, P(vD̃
j = k1|vD̃

j ≥ 1) > P(vD̃
j = k2|vD̃

j ≥ 1). The proof is as follows. For
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k ∈ {1,2, . . . ,Round(R)}, let A(vD̃
j = k) be the continuous subset of the hypersphere domain with radius R

such that any point in A(vD̃
j = k) will round to a discrete point V D̃ = (vD̃

1 , . . . ,vD̃
n ) with vD̃

j = k. Consider

k1,k2 ∈ {1,2, . . . ,Round(R)} such that k1 < k2. Let y = {y1, . . . ,y j, . . . ,yn} be any point in A(vD̃
j = k2), i.e.,

Round(y j) = k2. one has for any point Consider the point y′ = {y1, . . . ,y
′
j = y j − (k2 − k1), . . . ,yn}, i.e.,

Round(y
′
j) = k1. Since y is a point in the hypersphere with radius R and k1 < k2, which implies y′ is also a

point in the same hypersphere, and therefore, y′ ∈ A(vD̃
j = k1). Since r′y < ry, one has Sn(r′y) < Sn(ry). Hence,

P(vD̃
j = k2|vD̃

j ≥ 1) =
P(vD̃

j = k2)

P(vD̃
j ≥ 1)

=

∫
A(vD̃

j =k2)
1

Sn(ry)Rr
dy

P(vD̃
j ≥ 1)

<

∫
A(vD̃

j =k1)
1

Sn(r′y)Rr
dy′

P(vD̃
j ≥ 1)

=
P(vD̃

j = k1)

P(vD̃
j ≥ 1)

= P(vD̃
j = k1|vD̃

j ≥ 1)

Thus, P(vD̃
j = 1|vD̃

j ≥ 1)> P(vD̃
j = 2|vD̃

j ≥ 1)> · · ·> P(vD̃
j = Rr|vD̃

j ≥ 1). Considering the fact that ∑
Rr
k=1 P(vD̃

j =

±k|vD̃
j ≥ 1) = 1, and P(vD̃

j = k|vD̃
j ≥ 1) = P(vD̃

j =−k|vD̃
j ≥ 1) for k = 1,2, . . . ,Rr , one has,

P(vD̃
j = 1|vD̃

j ≥ 1) = P(vD̃
j =−1|vD̃

j ≥ 1) >
1

2Rr
. (39)

By applying (38) and (39) to (30), we get,

P(Az
x = 1 by forward path) ≥ 1

Rr2n2

Similarly, we can prove that P(Az
x = 1 by backward path)≥ 1

Rr2n2 . Thus,

P(Az
x = 1) = P(Az

x = 1 by forward path)+P(Az
x = 1 by backward path)

≥ 1
Rrn2

Hence for any two adjacent points x,z ∈ S, one has qxz = P(Z = z|Az
x = 1)P(Az

x = 1), which is greater than
equal to

P(Z = z|Az
x = 1)

1
Rrn2 .

And applying Lemma 7 which proving an upper bound on the number of candidate points along a bidirec-
tional path, we have

qzx ≥
1

(1+nL)
1

Rrn2

and considering that Rr = Round(R)≤ R+1, we have

≥ 1
(1+nL)

1
(R+1)n2

where L = maxi=1,...,n(ui− li). �
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Proof (Lemma 6)
Given two adjacent points x,z ∈ S, without losing generality, let x = (x1, . . . ,x j, . . . ,xn) and z = (x1, . . . ,x j +
1, . . . ,xn). Define the event Az

x as,

Az
x =

{
1 if the algorithm generates a bidirectional path from x going through z
0 if the algorithm generates a bidirectional path from x without going through z.

As in the proof of Lemma 5, each bidirectional path generated by Box Biwalk from x can reach z by either
the forward path or the backward path, and it is impossible for both of them to go through z. Thus, according
to the process of Box Biwalk, if the jth entry of the n-dimensional vector D j is not equal to one, there is no
chance for the forward path starting from x to reach z. The probability of this step-direction choice is 1

2c j
.

Given the jth entry of D j is one, the point z will be reached by the forward path from x if the permutation of
n coordinate dimensions, I = {I1, . . . , In}, satisfies I1 = j. The probability of choosing I1 = j is 1/n. Thus the
probability of generating a forward path from x that reaches z is bounded by 1

2nc j
. By the same argument, it

is also true that the probability of generating a backward path from x that reaches z is bounded by 1
2nc j

. And

considering that c j ≤ u j− l j ≤ L, where L = maxi=1,...,n(ui− li), we have P(Az
x = 1)≥ 1

nL . Therefore

qxz = P(Z = z|Az
x = 1)P(Az

x = 1)

≥ P(Z = z|Az
x = 1)

1
nL

and applying Lemma 7 which provides an upper bound on the number of candidate

points along a bidirectional path, we have

≥ 1
(1+nL)

1
nL

.

�
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