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Abstract

We consider the problem of sampling a point from an arbitrary distribution π over an arbitrary

subset S of an integer hyper-rectangle. Neither the distribution π nor the support set S are assumed

to be available as explicit mathematical equations but may only be defined through oracles and in

particular computer programs. This problem commonly occurs in black-box discrete optimization as

well as counting and estimation problems. The generality of this setting and high-dimensionality of S

precludes the application of conventional random variable generation methods. As a result, we turn

to Markov Chain Monte Carlo (MCMC) sampling, where we execute an ergodic Markov chain that

converges to π so that the distribution of the point delivered after sufficiently many steps can be made

arbitrarily close to π. Unfortunately, classical Markov chains such as the nearest neighbor random walk

or the co-ordinate direction random walk fail to converge to π as they can get trapped in isolated regions

of the support set. To surmount this difficulty, we propose Discrete Hit-and-Run (DHR), a Markov

chain motivated by the Hit-and-Run algorithm known to be the most efficient method for sampling from

log-concave distributions over convex bodies in Rn. We prove that the limiting distribution of DHR is π

as desired, thus enabling us to sample approximately from π by delivering the last iterate of a sufficiently

large number of iterations of DHR. In addition to this asymptotic analysis, we investigate finite-time

behavior of DHR and present a variety of examples where DHR exhibits polynomial performance.

1 Introduction

We are interested in the Monte Carlo problem of sampling a point distributed according to a general

distribution over an arbitrary subset of an integer hyper-rectangle [2, 4, 9, 10, 27, 35]. Given H, a

bounded hyper-rectangular subset of the n dimensional integer lattice Zn, a membership oracle O [14]

for a finite set S ⊆ H, and a point x0 ∈ S, our aim is to sample a point from S distributed approximately

according to a distribution π > 0 on S. The oracle O receives a point y ∈ H as input and returns YES if

y ∈ S and NO otherwise. It is standard practice (see [14]) to assume knowledge of an initial feasible point

x0 in complexity analyses of algorithms that use membership oracles. In fact, a membership oracle is

typically defined to ‘come with’ one feasible point. In practice, an initial feasible point is usually available

through domain-specific information about the physical system that is under consideration. The target

distribution π is assumed to be defined by an evaluation oracle, which receives a point y ∈ S as input

and returns π(y) (or a number proportional to π(y)) as output.

One important situation where this problem arises is black-box discrete optimization. For example,

Simulated Annealing (SA) [2, 4, 17] attempts to sample points from the feasible region S of the opti-
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mization problem according to Boltzmann distributions parameterized by the so-called ‘temperature’ T .

For SA, the target distribution π(x) is proportional to exp(−f(x)/T ), where f is the objective function

of the optimization problem. The idea is to decrease the temperature parameter T gradually to a very

small value since a point sampled from a low-temperature Boltzmann distribution is highly likely to be

an optimal solution to the problem. In several science, engineering and economic optimization models,

S and f (and hence π) are only available through computer programs rather than explicit formulas or

equations [24, 35], making it crucial to allow for the generality of both membership and evaluation or-

acles. For example, (i) in structural engineering, the performance of a bridge or a building subject to

earthquake shocks may be available only through computer code that performs extensive finite element

calculations, (ii) in biology, the potential energy of a protein may be available through computer code

running molecular computations, (iii) in manufacturing, the performance of an assembly line is typically

obtained by running a computer simulation, and finally, (iv) in cancer treatment by radiation therapy,

radiation dose delivered to various organs by a specific intensity profile is available through the so-called

dose-calculation programs. A compilation of several case studies attempting to optimize a wide range of

challenging models including cellular mobile network design, robot design, composite structure design,

assembly line design, chemical process optimization, water resource systems, radiation therapy planning,

and virus structure determination is presented in [24].

Beside optimization, modified versions of the sampling problem occur in counting and estimation

[15, 27]. For example, several derivative pricing techniques in computational finance increasingly depend

on discrete lattice approximations of stochastic processes representing fluctuations of the underlying

security. When a large lattice is used for high accuracy, enumeration of nodes becomes impractical

and sophisticated techniques are required to sample from nodes to estimate the price of the derivative

instrument [10]. Similarly, several canonical problems in statistical mechanics involve estimation of the

so-called ‘partition function’ of a system with a large number of interacting particles, often achieved by

sampling from a distribution proportional to this function [30].

Unfortunately, the Alias method [32, 33] cannot be used to sample points from π because S is known

only through the oracle O. Even if it were applicable, its complexity would be O(|S|) [28], making it

highly inefficient when S is a large set. Inverse transformation methods are also not applicable since π is

known only through an evaluation oracle. Our approach is to design an ergodic Markov chain with state

space S and stationary distribution π. Since the k-step distribution of an ergodic chain converges to π

pointwise as k →∞, the distribution of the ‘last’ state delivered by the chain is arbitrarily close to π in
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variation distance if we simulate the chain long enough. More interestingly, the probability that the last

state is distributed exactly according to π can be made arbitrarily close to 1 (see Coupling Lemma [23],

page 275). The reader is referred to [3, 4, 9, 23, 31] for detailed descriptions of Markov chain sampling

methods.

Designing an ergodic Markov chain that converges quickly to a general distribution over a finite, high-

dimensional integer set given by a membership oracle is a challenging problem for a variety of reasons.

First and foremost, no a priori information is available about S other than an initial point x0 ∈ S and a

bounded hyper-rectangle H with S ⊆ H ⊂ Zn. If the volume of S is exponentially smaller than that of

H, an n dimensional rejection technique is extremely inefficient even if π is a relatively simple distribution

known explicitly. For example, consider the case when S is a hyper-rectangle (given by a membership

oracle) whose sides are half those of H (see Figure 1 (a) for example), a point x0 ∈ S is given and π is

the uniform distribution on S. Of course, if the coordinates of S were known, a uniform point could be

sampled by direct methods, but since they are not (as S is given by a membership oracle), a rejection

technique on H is a straightforward way to generate a uniformly distributed point in S. In particular, we

would generate a uniformly distributed point x in H and output it as a uniformly distributed point in S if

the membership oracle returns YES when queried by sending x as input. However, the expected number

of uniformly distributed points in H that need to be generated until the membership oracle returns YES

is 2n. Interestingly, we show (see Corollary 4.5) that the approach proposed in this paper samples an

approximately uniformly distributed point from a box within a box in polynomial time. Similar arguments

hold for a wedge inside a box (see Figure 1 (b) and Corollary 4.6). More generally, S might have isolated

regions (see Figure 1 (c)) preventing use of traditional Markov chains such as the nearest neighbor walk,

which moves from a feasible point to one of its feasible nearest neighbors, i.e., a point that differs by

exactly one in exactly one co-ordinate, chosen randomly. In particular, for sets S such as Figure 1 (c),

the nearest neighbor random walk gets trapped in an isolated region, resulting in a reducible Markov

chain. Even worse, for sets such as Figure 1 (d), the nearest neighbor random walk cannot leave its initial

point x0 ∈ S. On the other hand, we show (see Corollaries 4.7 and 4.8) that our approach samples an

approximately uniform point from n-dimensional versions of sets in Figure 1 (c) and (d) in polynomial

time. Moreover, both the nearest neighbor random walk and the co-ordinate direction random walk (that

moves to a feasible point a random distance away along a direction chosen randomly from the co-ordinate

directions) get trapped in the initial point when applied to sets as in Figure 1 (e). However, our approach

can in fact sample an approximately uniform point from n-dimensional versions of the set in Figure 1 (e).
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(a) (c) (d) (e)(b)

Figure 1: H is shown as a square grid. S is shown by black dots. (a) S is a box within a box. An
n dimensional rejection applied to uniformly distributed points on H is exponentially inefficient. (b)
A wedge within a box. An n dimensional rejection applied to uniformly distributed points on H is
exponentially inefficient. (c) S includes four isolated regions. A nearest neighbor random walk that starts
in any one of these regions cannot leave it and hence cannot be applied to sample points from S. (d)
Every point in S is isolated. A nearest neighbor random walk will be trapped in the point it starts out at
and hence cannot be applied to sample points from S. (e) Again, every point in S is isolated. Both the
nearest neighbor random walk and the co-ordinate direction random walk get trapped in the point they
start out at, and hence cannot be applied.

These examples show that if one employs the nearest neighbor random walk or the coordinate direction

random walk to the problem at hand, it must be modified so that it can leave isolated regions or points

of S and explore ‘remote corners’ of H. However, a naive modification amounts to an n-dimensional

rejection technique on H, which is exponentially inefficient even for the simplest cases as described above.

In light of this discussion, our goal is two-fold: (i) to design a Markov chain sampler that converges

asymptotically to any arbitrary distribution π given by an evaluation oracle over any S ⊆ H given by a

membership oracle, and hence can be employed for approximate sampling from π over S, and (ii) compute

finite-time performance bounds for this Markov chain sampler for some special cases of S and π.

The approach proposed in this paper is motivated by the success of the Hit-and-Run algorithm intro-

duced by Smith [29] to generate a sequence of points that asymptotically converges in total variation to

a uniform distribution on an arbitrary bounded open subset S of Rn. It was later shown that Hit-and-

Run with a Metropolis filter [25], or alternatively using a conditional version [6] can be used to generate

arbitrary continuous multivariate distributions. Hit-and-Run is a Markov chain sampler whose simplest

version makes a transition from a point x ∈ S to another point y ∈ S by generating a direction vector

uniformly on the surface of an n-dimensional hypersphere from x, followed by generating a point y uni-

formly distributed on the line segments created by the intersection of a line along this direction and S

(this is accomplished by employing a one-dimensional rejection method on the line segment intersected

by the line with an enclosing hyper-rectangle). This version of Hit-and-Run was shown to be the fastest

method for generating an asymptotically uniform point from a convex body in Rn [18] assuming that

the initial distribution of the Hit-and-Run Markov chain is not far from uniform, i.e., a ‘warm start’.
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This assumption was later relaxed [21] making Hit-and-Run the only known random walk that converges

efficiently to a uniform distribution starting from any point inside a convex body. These results were

later extended to log-concave distributions over convex bodies [19]. The Hit-and-Run sampler has found

many applications such as identifying non-redundant constraints [7], global optimization [25, 34], convex

optimization [8, 16], and computing the volume of convex bodies [20]. The algorithm described in this

paper is in essence an analogous version of Hit-and-Run that works for finite sets S ⊆ H ⊂ Zn, and hence

the name Discrete Hit-and-Run (DHR).

Every one-step transition of DHR has three components. The first step involves running an indepen-

dent pair of nearest neighbor random walks on H that start at the current state of the Markov chain

and stop when they step out of H. The term Biwalk will be used to refer to this pair of random walks.

Moreover, one of these two random walks will be called the forward walk and the other the backward walk

(the choice of which walk to call ‘forward’ is arbitrary without loss of generality). The ordered sequence

of points visited by the Biwalk will be called the list in this paper. In particular, the list is formed by

listing the points visited by the backward walk in the reverse order followed by the points visited by the

forward walk in their actual order (the initial state of the Biwalk is either listed in the forward walk or

the backward walk but not both). In the second step, a candidate point is chosen uniformly from the

multiset of points in the list that are also in S. This is implemented in a manner similar to Hit-and-Run

where a point is generated uniformly from the list and sent to the oracle to determine whether the point

is in S. These two steps are referred to as the candidate generator Markov chain. In the third step, the

candidate point is then accepted or rejected by a Metropolis filter with respect to the target distribution

π to complete the state transition of DHR. Figure 2 illustrates a Biwalk on a square where S is given

by black dots. The reason for employing two independent nearest neighbor walks instead of one and for

working with the ordered sequence of points as opposed to the set of points visited is to ensure symme-

try of the candidate generator Markov chain. See Theorem 2.1 for a proof of symmetry. It is easy to

construct examples where symmetry fails if we employ one nearest neighbor random walk and/or use the

set of points visited. In addition, note that the candidate generator chain is globally reaching, i.e., for

any two points x, y ∈ S, there is a positive probability that y will be chosen as a candidate point from x.

Hence, the DHR candidate generator is irreducible and aperiodic. This together with symmetry implies

that its limiting distribution is uniform over S. The limiting distribution of DHR with the Metropolis

filter is the target distribution π as desired (see Theorem 2.3).

At this point, it is instructive to notice an analogy between continuous Hit-and-Run and DHR. DHR
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Figure 2: Illustration of a Biwalk starting from x in two dimensions. Set S is shown with black dots, and
is a subset of an integer square shown as a grid.

generates a list (instead of a line) followed by a point randomly chosen from the intersection of this

list with S (instead of from the line segments associated with the line). Moreover, just like continuous

Hit-and-Run, the candidate generator of DHR is globally reaching, which in part distinguishes it from

the more standard random walks. See [5, 13, 16] for benefits of employing globally reaching candidate

generators for optimization.

The remainder of this paper is organized as follows. In the next section, we formally introduce

DHR and state two basic properties of its candidate generator chain. Then, we review well-known ideas

regarding mixing times of ergodic Markov chains in the third section. These concepts are then used in

the fourth and fifth sections to derive finite-time performance bounds for DHR for special cases of S and

π. We conclude in the sixth section.

2 Discrete Hit-and-Run

In this section, we formally present the DHR algorithm introduced in Section 1 and state two results that

will be useful in analyzing its finite-time performance in Sections 4 and 5.

Discrete Hit-and-Run (DHR) Algorithm

To make a transition from x to y for any x, y ∈ S

1. Generate a Biwalk by running two independent, nearest neighbor random walks in Zn that start

at x and end when they step out of H. One of these two random walks is called the forward walk

7



and the other one is called the backward walk. The Biwalk may have loops but has finite length

with probability one. The sequence of points visited by the Biwalk is stored in an ordered list.

2. Generate a candidate point z by choosing a point uniformly distributed from the multiset of

points in the list that are also in S. This multiset is called the segment.

3. Apply the Metropolis filter to complete the transition to y where,

y =

 z with probability min(1, π(z)/π(x))

x otherwise.

Note that the nearest neighbor random walks in step 1 are implemented on Zn and hence the probability

that any such random walk jumps from its current state i to its neighbor j is 1/(2n). In particular, the

boundary of hyper-rectangle H does not affect this probability. If point i is on the boundary, and if a

nearest neighbor random walk jumps to a neighbor j /∈ H, then the random walk is terminated at i. Let

Q = {qij} denote the transition matrix of the candidate point generator Markov chain in steps 1 and

2 of DHR. As noted in the introduction, the candidate generator of DHR is irreducible, and aperiodic.

Theorem 2.1 concludes that it is also symmetric.

Theorem 2.1. The transition matrix Q of the DHR candidate generator Markov chain is symmetric,

i.e., the probability qij that the Biwalk starting at i ∈ S generates j ∈ S as the candidate is the same as

the probability qji that the Biwalk starting at j ∈ S generates i ∈ S as the candidate.

The proof requires some notation and a lemma. We use B = {i1, i2, . . . , imB} to denote an ordered

list as generated by the Biwalk in step 1 of the DHR algorithm, where mB is the total number of points

in list B. Note that a list generated by a Biwalk is characterized by the following two properties; (i) i1

and imB are on the boundary of H (since the backward walk must terminate at i1 whereas the forward

walk must terminate at imB ) and (ii) ik+1 and ik are nearest neighbors for every k (a point j ∈ Zn is a

nearest neighbor of, or adjacent to, i ∈ Zn if i and j differ in exactly one coordinate and exactly by one).

The set of all possible lists with these two properties is denoted by B, Bi denotes the set of all lists that

include i ∈ H, and Bij denotes the set of all lists that include i, j ∈ H. Note that Bij is the same as Bji

and is a subset of both Bi and Bj . Let PB(r) be the probability that Biwalk B is generated if we start a

Biwalk at the point occupying the rth position of B, i.e., ir. More precisely, PB(r) is the probability that

forward walk ir, ir+1, . . . , imB in Zn and backward walk ir, ir−1, . . . , i1 in Zn are generated if we start a

Biwalk at ir.
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Lemma 2.2. PB(r) is invariant over r, that is,

PB(r) = PB(s), ∀r, s ∈ {1, 2, . . . ,mB}.

Proof. Let p(i) be the probability that a nearest neighbor random walk steps out of H in one step given it

is at i ∈ H. If we start a Biwalk at ir, the probability that forward walk ir, ir+1, . . . , imB in Zn is generated

is (1/2n)mB−r p(imB ) since steps of the forward walk are implemented independently of each other and

the probability of jumping from any point in a forward walk in Zn to one of its nearest neighbors in Zn

is 1/2n. Similarly, if we start a Biwalk at ir, the probability that backward walk ir, ir−1, . . . , i1 in Zn is

generated is (1/2n)r−1 p(i1). Since the forward and the backward walks are generated independently, we

have

PB(r) = p(i1)
(

1
2n

)r−1( 1
2n

)mB−r

p(imB ) = p(i1)
(

1
2n

)mB−1

p(imB )

= p(i1)
(

1
2n

)s−1( 1
2n

)mB−s

p(imB ) = PB(s).

In view of this lemma, we use PB to denote the probability that list B was generated by a Biwalk

starting at the point in any position in B.

Proof of Theorem 2.1 Let i, j ∈ S ⊂ H. For B ∈ Bi, let Pi(B) be the probability that the list B is

generated if we start our Biwalk at point i. Let mB(i) be the number of occurrences of point i in B.

Then, we have Pi(B) = mB(i)PB by Lemma 2.2. For B ∈ Bj , let P (j|B) be the probability of generating

candidate point j uniformly from the segment of B in S as in step 2 of the DHR algorithm given that list

B was generated in step 1. We use mBS
to denote the number of feasible points in B, i.e., points also in

S. Then, P (j|B) = mB(j)/mBS
. We have

qij =
∑

B∈Bij

Pi(B)P (j|B) =
∑

B∈Bij

mB(i)PB
mB(j)
mBS

=
∑

B∈Bji

mB(j)PB
mB(i)
mBS

= qji,

because Bij = Bji. This completes the proof.

The DHR candidate generator Markov chain is symmetric (from Theorem 2.1), irreducible and aperiodic.

Thus, its limiting distribution is uniform over S. Moreover, the transition matrix of DHR, denoted
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P = {pij}, is obtained by applying the Metropolis filter to the candidate generator, and hence, is reversible

with respect to π (see [4]). As a result, the limiting distribution of DHR is π (see [4] and the beginning

of Section 3). This is precisely stated as

Theorem 2.3. The DHR Markov chain is ergodic with limiting distribution π. In particular, the k-step

distribution of its state converges pointwise to π regardless of the initial state as k →∞.

More specifically, if we simulate the DHR Markov chain ‘long enough’, the distribution of its state

arbitrarily well-approximates π. It is crucial to realize the importance of this result in view of the fact

that random walks such as the nearest neighbor walk or the coordinate direction random walk fail to

converge to a uniform distribution over some of the sets illustrated in Figure 1. The above theorem shows

that DHR meets the first goal outlined in Section 1.

The rest of this article focuses on the second goal, i.e., obtaining finite-time performance bounds for

DHR for special cases of S and π. In particular, we are interested in deciding how long we have to

simulate DHR in order to be ‘close’ to π. We need the following notation. Let a = (a1, . . . , an) ∈ Zn and

b = (b1, . . . , bn) ∈ Zn be the lower and upper bounds of the hyper-rectangle H, that is,

H = {x = (x1, . . . , xn) ∈ Zn : ai ≤ xi ≤ bi for all i = 1, . . . , n}. (1)

Let Li = bi − ai + 1 for i = 1, . . . , n be the number of discrete points along the ith coordinate of the

hyper-rectangle. Let L = max{Li : i = 1, . . . , n} be the length of the longest side of H. We only consider

non-trivial cases where bi > ai for at least one i implying L ≥ 2.

The proposition below provides a (uniform) upper bound on the expected length of the forward (or the

backward) walk generated in step 1 of the DHR algorithm starting at any point x ∈ S.

Proposition 2.4. Let Wx be the random variable for the number of steps of the forward walk (or backward

walk) that starts at x ∈ H and stops when it steps out of H. Then

E[Wx] ≤ n(L + 2)2/4, (2)

which is in turn bounded above by nL2 for all non-trivial cases L ≥ 2.

Proof. To prove the proposition, we first recall the symmetric gambler’s ruin problem. In the gambler’s

ruin problem there are two players with initial non-negative fortunes c and d dollars respectively. They

each wage a dollar to repeatedly play a competitive game where they each have an equal probability of
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winning. Let N(c, d) denote the random variable representing the number of plays of this game until one

of the players has lost all of his money. It is easy to verify that E[N(c, d)] = cd.

Now consider the forward walk of the Biwalk starting at x ∈ H. As there are 2n faces of the hyper-

rectangle, there are 2n ways that the random walk can step out of H. For any coordinate j ∈ {1, . . . , n},

the walk exits H if either xj−aj +1 net decrementing steps or bj−xj +1 net incrementing steps are made

in the jth coordinate. Thus, if each coordinate, j, is considered as a gambler’s ruin with initial fortunes

xj − aj + 1 and bj − xj + 1 respectively, then the problem of bounding the number of steps until the walk

exits H amounts to finding the coordinate j gambler’s ruin that terminates first. However, each step of the

random walk amounts to independently and uniformly choosing one of the n gambler’s ruin problems. By

the pigeonhole principal, after kn steps of the random walk, there is a gambler’s ruin problem, label it j∗k ,

that has been chosen at least k times. Thus, if the coordinate j∗k gambler’s ruin problem has terminated

within k iterates, then the random walk on the integer lattice has terminated within kn iterates. Hence,

for the coordinate j∗k gambler’s ruin problem at iteration nk, if N(xj∗k
− aj∗k

+ 1, bj∗k
− xj∗k

+ 1) ≤ k, then

Wx ≤ kn. Hence,

P (Wx > kn) ≤ P
(
N(xj∗k

− aj∗k
+ 1, bj∗k

− xj∗k
+ 1) > k

)
. (3)

The right hand side examines a gambler’s ruin problem in which the total fortune of the two players is

bj∗k
− aj∗k

+ 2. Suppose that this fortune is distributed evenly between the players at the beginning of the

game. Let J be the number of plays before one of the players has a fortune of xj∗k
− aj∗k

+ 1. Note that J

is a random variable with positive integer values and is finite almost surely. Hence,

P
(
N
(⌊bj∗k

− aj∗k
+ 2

2

⌋
,
⌈bj∗k

− aj∗k
+ 2

2

⌉)
> k for some j∗k ∈ {1, 2, · · · , n}

)
= P

(
N(xj∗k

− aj∗k
+ 1, bj∗k

− xj∗k
+ 1) > k − J

)
≥ P

(
N(xj∗k

− aj∗k
+ 1, bj∗k

− xj∗k
+ 1) > k

)
. (4)

Finally, it is noted that by endowing both players with additional initial fortunes, L ≥ bj∗k
− aj∗k

+ 1, the

left side of Equation (4) is bounded above by

P
(
N
(⌊L + 1

2

⌋
,
⌈L + 1

2

⌉)
> k

)
. (5)
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Combining Equation (3), Equation (4), and Equation (5),

P (Wx > kn) ≤ P
(
N
(⌊L + 1

2

⌋
,
⌈L + 1

2

⌉)
> k

)
. (6)

Thus,

E[Wx] =
∑
j≥0

P (Wx > j) =
∑
k≥0

n−1∑
i=0

P (Wx > kn + i) ≤
∑
k≥0

nP (Wx > kn)

= n
∑
k≥0

P (Wx > kn) ≤ n
∑
k≥0

P
(
N
(⌊L + 1

2

⌋
,
⌈L + 1

2

⌉)
> k

)
(7)

= nE
[
N
(⌊L + 1

2

⌋
,
⌈L + 1

2

⌉)]
= n

(⌊L + 1
2

⌋⌈L + 1
2

⌉)
≤ n(L + 2)2/4, (8)

where Equation (7) follows from Equation (6) and the last inequality in Equation (8) follows from the

mean time of a gambler’s ruin and the mean geometric inequality. The right hand side in (8) is in turn

bounded by nL2 for all non-trivial cases L ≥ 2.

The main utility of the above proposition is in proving the following crucial result.

Proposition 2.5. Let i = (i1, . . . , in) and j = (j1, . . . , jn) be two points in S. Let d(i, j) denote the

Manhattan or l1 distance between i and j; d(i, j) =
n∑

t=1
|it − jt|. Then, for all non-trivial cases L ≥ 2, the

transition matrix Q of the DHR candidate generator satisfies

qij ≥
1

2d(i,j)+2nd(i,j)+1L2
.

Proof. Recall that the Biwalk is comprised of a forward walk and a backward walk on H starting at a point

i ∈ S and ending when the walk steps out of H. A transition is made to j, if both j is in the Biwalk list and

it is the point chosen as the uniform sample from the segment of the list contained in S. Let B1 be the event

that the forward walk takes a specific shortest route from i to j. It is clear that P (B1) = 1/(2n)d(i,j).

Let B2 be the event that j is chosen as the uniform sample from the Biwalk. Then qij is equal to

P (B2|B1)P (B1) + P (B2|not B1)P (not B1), which is at least P (B2|B1)P (B1) = 1
(2n)d(i,j) P (B2|B1).

Now denote the lengths of the forward and the backward random walks by X1 and X2 respectively.

As i is the starting point in each of these walks, the Biwalk has length X = X1 + X2 − 1. If the Biwalk

goes through j and has length k, then the probability that j is chosen is bounded below by 1/k, and

then P (B2|X = k, B1) ≥ 1/k. Also denote X ′
1 as the remaining length of X1 starting at j conditional
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on event B1. Thus, X ′
1 = X1 − d(i, j). Hence, qij ≥ 1

(2n)d(i,j) P (B2|B1) = 1
(2n)d(i,j)

∑
k≥1 P (B2|X =

k, B1)P (X = k|B1), which is bounded below by 1
(2n)d(i,j)

∑
k≥1

1
kP (X = k|B1) = 1

(2n)d(i,j) E
[

1
X

∣∣∣B1

]
=

1
(2n)d(i,j) E

[
1

X1+X2−1

∣∣∣B1

]
. The last term is simply equal to 1

(2n)d(i,j) E
[

1
X′

1+X2+d(i,j)−1

∣∣∣B1

]
. Since X ′

1 is the

length of the forward walk starting from j and X2 is the length of the backward walk starting at i, both

are independent of B1. Then the above term is equal to 1
(2n)d(i,j) E

[
1

X′
1+X2+d(i,j)−1

]
, which is at least

1
(2n)d(i,j) E

[
1

X′
1+X2+nL

]
. Jensen’ inequality then yields the lower bound 1

(2n)d(i,j)
1

E(X′
1)+E(X2)+nL

. The last

term is at least 1
(2n)d(i,j)

(
1

2nL2+nL

)
by applying Proposition 2.4 for non-trivial cases L ≥ 2. The final

expression is bounded below by 1
(2n)d(i,j)

(
1

3nL2

)
, which in turn is at least 1

2d(i,j)+2nd(i,j)+1L2 .

For any two points i = (i1, . . . , in) and j = (j1, . . . , jn) in S, we define ∂(i, j) as the number of co-ordinates

in which points i and j differ. Mathematically, ∂(i, j) = |{r ∈ {1, . . . , n} : ir 6= jr}|. Note that d(i, j)

is independent of n if and only if ∂(i, j) is independent of n. This leads to a Corollary that provides

sufficient conditions under which qij is bounded below by an inverse polynomial, and in particular, is not

exponentially small.

Corollary 2.6. Let i, j ∈ S.

1. Suppose i and j are nearest neighbors, i.e., d(i, j) = 1. Then qij ≥ 1
(8n2L2)

, i.e., qij is at least inverse

polynomial.

2. More generally, suppose points i and j are along one co-ordinate axis, i.e., ∂(i, j) = 1, and let

d(i, j) = d ≤ L for some constant d. Then qij ≥ 1
(2d+2nd+1L2)

, i.e., qij is at least inverse polynomial.

3. Even more generally, suppose i and j are such that ∂(i, j) = c where c is independent of n. Then

qij ≥ 1
(2cL+2ncL+1L2)

, i.e., qij is at least inverse polynomial.

Further analysis of DHR is based on well-known results on rates of convergence of Markov chains that

we briefly review in Section 3. The reader is referred to [4, 11, 12, 26, 27] for details.

3 Review of Rapid Mixing Markov Chains

We digress from our problem setting and review relevant material for general finite state Markov chains.

Let S be any finite set, and M = M(x, y) be the transition matrix of a discrete-time Markov chain on

state space S. Suppose that M is irreducible and reversible with respect to a probability distribution µ
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on S, i.e., it satisfies the detailed balance equations

R(x, y) ≡ µ(x)M(x, y) = µ(y)M(y, x) ∀x, y ∈ S.

This then implies that µ satisfies µM = µ, i.e., µ is a stationary distribution forM. IfM is also aperiodic,

the distribution of the state at time t converges to µ as t → ∞, and the chain is said to be ergodic. If

we simulate M for a sufficiently long time and observe the final state, we have an algorithm for sampling

elements of S from a distribution arbitrarily close to µ.

We can identify a reversible Markov chain M with its transition graph, which is a weighted, undirected

graph G with vertex set S. The edge set E is given by edges of weight R(x, y) connecting vertices x, y ∈ S

if and only if R(x, y) > 0.

It is well-known [26] that M has real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ . . . λN−1 ≥ −1, where N is the

cardinality of S and λN−1 > −1 since M is ergodic. For an ergodic chain, the second largest eigenvalue in

absolute value, denoted λ∗, governs the rate of convergence to µ. Let x be the state of the chain at time

k = 0. Let Mk(x, ·) denote the state distribution at time k. The variation distance at time k with initial

state x is given by ∆x(k) = 1
2

∑
y∈X

|Mk(x, y)− µ(y)|. The rate of convergence of M to µ is characterized

using the function τx(ε) defined for any ε > 0 by τx(ε) = min{k : ∆x(k′) ≤ ε for all k′ ≥ k}. This

function is called the mixing time of the Markov chain M, and it is the smallest time k such that the

variation distance is less than ε for all time steps including and after k. The mixing time is well defined

because the variation distance is nonincreasing in k (see [23], Theorem 11.4, page 280). The variation

distance has a nice interpretation that follows from the Coupling Lemma ([23] page 275): if we observe

the state of a Markov chain at a time step when the variation distance is at most ε, the probability that

the sampled state is distributed exactly according to µ is at least (1 − ε). The mixing time is related to

λ∗ as follows (see [26], Proposition 1).

Proposition 3.1. The mixing time τx(ε) satisfies τx(ε) ≤ 1
1−λ∗ log 1

µ(x)ε and max
x∈S

τx(ε) is at least

λ∗

2(1−λ∗) log 1
2ε .

Note that the first inequality gives an upper bound on the time required to reach near stationarity from a

given initial state x. The second inequality asserts that convergence cannot be rapid unless λ∗ is bounded

away from 1. In particular, rapid mixing can be identified with a large value of the spectral gap (1− λ∗),

i.e., a small value of 1/(1−λ∗). It is customary (see [4], [26], [27]) to ignore the smallest eigenvalue λN−1

by following a simple approach: add a stalling probability of 1
2 to every state, i.e., modify M to 1

2(I +M),
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where I is the N ×N identity matrix. In that case, all eigenvalues are non-negative and the gap (1− λ1)

is decreased only by a factor of 2. We can then focus on finding an upper bound on 1/(1 − λ1). This

modified Markov chain is called the lazy chain. We follow this approach when analyzing DHR.

Various methods have been proposed in the literature for estimating λ1. These include the conductance

approach [26, 27], Poincaré inequality approach [11], canonical path approach [26], and combinatorial

approach [22]. In this paper, we mainly employ the canonical path approach as in [26]. The idea in this

approach is to construct a canonical path γxy in the transition graph G between each ordered pair of

distinct states x and y. The collection of these paths is denoted by Γ = {γxy}. Then one employs the

quantity ρ̄(Γ) defined below to get a bound on λ1. Mathematically,

ρ̄(Γ) = max
e∈E

1
R(e)

∑
γxy3e

µ(x)µ(y)|γxy|, (9)

where |γxy| is the length (number of edges) of path γxy, and R(e) = R(u, v) for edge e = (u, v). The

following relation between ρ̄(Γ) and λ1 is well-known (see [26] Theorem 5).

Theorem 3.2. For any reversible Markov chain, and any choice of canonical paths Γ, the second eigen-

value λ1 satisfies 1
1−λ1

≤ ρ̄(Γ).

We say that the canonical path γxy ∈ Γ meets edge e = (i, j) ∈ E if e lies on γxy. We use Sij(Γ) to denote

the set of pairs (x, y) ∈ S × S such that the canonical path γxy ∈ Γ meets edge (i, j) ∈ E.

We now employ these ideas to analyze the mixing time of DHR. We start with the uniform distribution.

4 DHR Mixing Time When π is Uniform

Suppose the target distribution π is uniform over S. In that case, every candidate point generated by the

DHR candidate generator Q in step 2 is accepted by the Metropolis filter in step 3. In other words, step 3

has no effect on the evolution of the DHR Markov chain. As mentioned earlier, the limiting distribution

of the candidate generator Markov chain Q is uniform over S. Thus it suffices to analyze finite time

performance of the candidate generator. Let G ≡ G(S, E) denote the Markov transition graph for the

DHR candidate generator Markov chain with state space S and transition matrix Q. Suppose Γ is any

prescription of canonical paths and let Sij(Γ) be the set of pairs (x, y) ∈ S×S such that the canonical path

γxy ∈ Γ meets edge (i, j) ∈ E. For given u ∈ S, we define Eu(S, Γ) as the set of points v ∈ S for which

there exist distinct nodes x, y in S such that the path γxy ∈ Γ meets edge (u, v) in E. Mathematically,
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Eu(S, Γ) = {v ∈ S : ∃x, y ∈ S such that γxy ∈ Γ meets (u, v)}. Moreover, let I(S, Γ) be the maximum l1

distance between any points u and v in S for which there exists a path prescribed by Γ that meets edge

e = (u, v), i.e.,

I(S, Γ) = max
u∈S

max
v∈Eu(S,Γ)

d(u, v). (10)

Theorem 4.1. Let Γ = {γxy} be any prescription of canonical paths in the transition graph G(S, E) of

the DHR candidate generator Markov chain Q over S as described above. Let γ(S, Γ) = max
x,y∈S

|γxy| be

the length of the longest path prescribed by Γ in G(S, E), S(Γ) = max
(u,v)∈E

|Suv(Γ)| be the cardinality of set

Suv(Γ) for the edge (u, v) that meets the most number of paths in Γ. Then for any initial state x ∈ S and

any ε > 0, the ε mixing time of the DHR candidate generator Markov chain Q is bounded as follows:

τx(ε) ≤ 2I(S,Γ)+2nI(S,Γ)+1L2γ(S, Γ)S(Γ)
|S|

log
|S|
ε

. (11)

Proof. Let ρ̄Q(Γ) denote the quantity defined in Equation (9) for the special case of transition matrix Q.

Proposition 3.1, Theorem 3.2 and π(x) = 1/|S| since π is uniform imply that τx(ε) ≤ ρ̄Q(Γ) log |S|
ε . We

show that ρ̄Q(Γ) ≤ 2I(S,Γ)+2nI(S,Γ)+1L2γ(S,Γ)S(Γ)
|S| to complete the proof. Equation (9) implies that ρ̄Q(Γ) is

= max
(u,v)∈E

1
π(u)quv

∑
γxy3(u,v)

π(x)π(y)|γxy| = max
(u,v)∈E

1
|S|quv

∑
γxy3(u,v)

|γxy| ≤ max
(u,v)∈E

γ(S, Γ)
|S|quv

∑
γxy3(u,v)

1

= max
(u,v)∈E

γ(S, Γ)|Suv(Γ)|
|S|quv

≤ γ(S, Γ)S(Γ)
|S|

max
(u,v)∈E

1
quv

=
γ(S, Γ)S(Γ)

|S|
max
u∈S

max
v∈Eu(S,Γ)

1
quv

≤ γ(S, Γ)S(Γ)
|S|

max
u∈S

max
v∈Eu(S,Γ)

2d(u,v)+2nd(u,v)+1L2 =
2I(S,Γ)+2nI(S,Γ)+1L2γ(S, Γ)S(Γ)

|S|
,

where the last inequality follows from Proposition 2.5 and the last equality from the definition of I(S, Γ).

This completes the proof.

In order to use this theorem, we need to (i) estimate |S|, (ii) choose a prescription of canonical paths

Γ that works for S, and (iii) compute (upper bounds on) γ(S, Γ), S(Γ) and I(S, Γ). Since |S| is known to

be at most Ln, the logarithm on the right hand side of Equation (11) is at most n log L + log(1/ε) and

hence grows at most linearly with n. In our experience (see, for example, the sets analyzed in Section 4),

for most prescriptions of canonical paths Γ on subsets S of n-dimensional integer hyper-rectangles H of

sides at most L, γ(S, Γ) is at most Ln. When that is true, the polynomiality of the mixing time of the
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DHR candidate generator crucially depends on the ratio S(Γ)/|S| and the number I(S, Γ). In particular,

when the former is polynomial in n and the latter is independent of n, the DHR candidate generator

mixes in polynomial time. Although estimating the above quantities can be challenging in general, we

successfully compute them for the five cases illustrated in Figure 1. We derive polynomial upper bounds

on the mixing time of the DHR candidate generator for the first four examples but are able to obtain only

exponential bounds for the fifth. We introduce some simple terminology that will be used in the sequel.

Definition 4.2. We say that

1. A point i ∈ S is an isolated point if it has no nearest neighbors in S.

2. Hence S has no isolated points if every point in S has at least one nearest neighbor in S.

It is useful to contrast a set without any isolated points with a path connected set defined below.

Definition 4.3. A staircase path between two points x and y of the integer lattice Zn is a finite sequence of

points (x = i1, i2, ..., im = y) ∈ Zn such that ik and ik+1 are nearest neighbors on Zn for k = 1, 2, . . . ,m−1.

We say that S is path connected if there exists a staircase path between any two points x, y ∈ S that

lies in S.

Notice that a path connected set has no isolated points but the converse is not true. The sets in Figures 1

(a) and (b) have no isolated points and are path connected, the set in Figure 1 (c) has no isolated points

but is not path connected, and finally, every point in the sets in Figures 1 (d) and (e) is isolated and

hence they are not path connected.

4.1 Box Inside a Box

Suppose R ⊆ H is a hyper-rectangular subset of H whose sides (oriented along sides of H) have lengths

r1, r2, . . . , rn respectively, and let r = max{r1, . . . , rn} ≤ L be the length of the longest side of R. Refer

to Figure 3 (a) for an example. We choose the coordinate direction prescription of canonical paths [4],

denoted Γ0. This prescription constructs a path between any two points x, y in a bounded, hyper-

rectangular subset of Zn by increasing or decreasing the first component of x each time by one until it

matches the first component of y, then repeats this for the second component of x, and so on. Thus, it

follows a ‘lowest index first’ rule. We begin with a lemma.

Lemma 4.4. For any (i, j) ∈ E with S = T , the cardinality |Sij(Γ0)| satisfies

|Sij(Γ0)| ≤
(r1 × r2 × · · · × rn)× r

4
. (12)
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(a) (b)

Figure 3: Illustration of a box inside a box and a wedge inside a cube. The set H consists of all the grid
points. Set S is shown with black dots. (a) Box inside a box: S = R with L1 = 10, L2 = 6, r1 = 5,
r2 = 3. (b) Wedge inside a box: S = W (2, 3, 6).

As a result, S(Γ0) is at most (r1×r2×···×rn)×r
4 .

Proof. Let R be such that its side along the kth coordinate is given by integer lattice points {xk
1, . . . , x

k
rk
}.

When i and j are not adjacent nodes in the integer lattice, |Sij(Γ0)| = 0 since no path prescribed by Γ0

meets edge (i, j). In that case, the upper bound in Equation (12) holds trivially. Now suppose that i and

j are adjacent nodes in the integer lattice. Without loss of generality, suppose that jβ = iβ + 1 for some

β ∈ {1, . . . , n} and ik = jk for k 6= β. Then a canonical path γst passes through the directed edge (i, j) if

and only if (s, t) is of the form,

((α1, . . . , αβ−1, i
−
β , iβ+1, . . . , in), (i1, . . . , iβ−1, j

+
β , αβ+1, . . . , αn)), (13)

where αk ∈ {xk
1, . . . , x

k
rk
} for k /∈ β and i−β ≤ iβ < iβ + 1 = jβ ≤ j+

β . Hence there are at most

(r1 × · · · × rβ−1)(iβ − xβ
1 + 1)(xβ

rβ
− iβ)(rβ+1 × · · · × rn) =

= (r1 × · · · × rβ−1)(iβ + 1− xβ
1 )((xβ

rβ
+ 1)− (iβ + 1))(rβ+1 × · · · × rn)

≤ (r1 × · · · × rβ−1)
(xβ

rβ − xβ
1 + 1

2

)2
(rβ+1 × · · · × rn) (14)

possible pairs (s, t) whose γst meet (i, j). Equation (14) follows from the mean-geometric inequality. Hence

the number of canonical paths, γst, that meet the edge (i, j) is bounded above by (r1 × · · · × rn) × r/4,

which does not depend on (i, j).

In addition, it is easy to see that |γxy| ≤ rn for any path γxy prescribed by Γ0, implying γ(R,Γ0) ≤ rn.
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Moreover, a path prescribed by Γ0 passes through an edge e = (u, v) only if u and v are nearest neighbors

in S, meaning d(u, v) = 1. As a result, I(R,Γ0) = 1. Finally, |R| = (r1 × · · · × rn) ≤ rn. In view of

Theorem 4.1, this discussion leads to the following corollary.

Corollary 4.5. The ε mixing time for the DHR candidate generator on R is at most (2n3r2L2(n log r +

log
(

1
ε

)
)) regardless of the initial state.

Notice for example that when (L/r) = 2, implying R has exponentially smaller volume than H, the

Biwalk is exponentially faster than an n dimensional rejection technique. The intuitive reason for this

is that the Biwalk performs a one dimensional rejection on the list to compute the segment.

4.2 Wedge Inside a Cube

In this section we assume that H is a hyper-cube of side L, denoted C(n, L). Let C(n, M) ⊆ C(n, L) be

another hyper-cube of side M ≤ L, whose sides are oriented along those of C(n, L). Moreover, let S be

the wedge formed by removing the lattice points of C(n, M) that lie strictly above one of its symmetric

hyperplanes (see Figure 1 (b) and [1] for a classification of hyperplanes in hyper-cubes). We denote such

a wedge by W (n, M, L). Figure 3 (b) shows the wedge W (2, 3, 6). Note that the coordinate direction

prescription of canonical paths Γ0 described above also works for the wedge. Specifically, the upper bound

in Lemma 4.4 holds implying that |Sij(Γ0)| ≤ Mn+1/4. It is easy to see that |γxy| ≤ Mn for any path γxy

prescribed by Γ0 implying γ(W (n, M, L),Γ0) ≤ Mn. In addition, recall that no Γ0 paths meet edge e =

(u, v) if d(u, v) 6= 1 implying I(W (n, M, L),Γ0) = 1. Finally, observe that Mn ≥ |W (n, M, L)| ≥ Mn/2.

Theorem 4.1 then implies

Corollary 4.6. The ε mixing time for the DHR candidate generator on W (n, M, L) is at most

4n3M2L2

(
n log M + log

(
1
ε

))

regardless of the initial state.

Note that conventional random walks such as the nearest neighbor random walk and the co-ordinate

direction random walk also mix in polynomial time on the two sets analyzed above. Therefore we now

present more interesting examples where one or both of these walks get stuck in isolated regions of S and

fail to converge to a uniform distribution.
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1

2

i

j

Figure 4: Co-ordinate direction prescription with hops shown with dotted arrows from point i to point j
in C ′(2, 2, 6). The co-ordinate directions are shown with arrows next to the picture.

4.3 Multiple Cubes Inside a Cube

Again, let H be the n-dimensional hyper-cube of side L, denoted C(n, L). Consider the case where S

consists of 2n n-dimensional cubes each of side M < L/2 embedded in the 2n corners of C(n, L). We denote

such an S by C ′(n, M, L). The set shown in Figure 1 (c) is a special case of this situation where n = 2,

L = 6 and M = 2. Note that C ′(n, M, L) is not path connected but has no isolated points (unless M = 1,

in which case every point is isolated). The prescription Γ0 does not work here. We introduce the co-

ordinate direction prescription with hops, denoted Γ1. As the name suggests, this prescription is identical

to Γ0 except that it allows jumps of size more than one if and only if they are needed (see Figure 4). It

is easy to see that the result of Lemma 4.4 for an n-dimensional hyper-cube of side 2M continues to hold

for prescription Γ1. In other words, we have |Sij(Γ1)| ≤ (2M)n+1/4 when S = C ′(n, M, L). In addition,

|γxy| ≤ 2Mn for any path γxy prescribed by Γ1 implying that γ(C ′(n, M, L),Γ2) ≤ 2Mn. Moreover,

if a path prescribed by Γ1 meets an edge e = (u, v) then u and v differ in exactly one co-ordinate and

d(u, v) ≤ (L−2M)+1 implying that I(C ′(n, M, L),Γ2) = (L−2M)+1. Finally, |C ′(n, M, L)| = (2n)(Mn).

Then Theorem 4.1 yields

Corollary 4.7. The ε mixing time for the DHR candidate generator on C ′(n, M, L) is at most

2L−2M+3nL−2M+3M2L2

(
n log(2M) + log

(
1
ε

))

regardless of the initial state.
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4.4 A Box with Isolated Points

Now consider the case where S is an n-dimensional box-shaped subset of H oriented along its sides

however this time every point of S is isolated (an n-dimensional generalization of Figure 1 (d)). Let

r1, r2, . . . , rn be the numbers of lattice points along the n sides of S with r = max
i=1,...,n

{ri}. We denote

such an S by R̃. For any point x ∈ R̃, let Nx(R̃) be the set of points that differ from x in exactly one

co-ordinate and δ(R̃) = max
x∈R̃

max
y∈Nx(R̃)

d(x, y), i.e., the biggest Manhattan distance between any two points

in R̃ that are located on the same co-ordinate axis. The set illustrated in Figure 1 (d) with n = 2, has

r1 = r2 = r = 3 and δ(R̃) = 3. We again use the co-ordinate direction prescription with hops denoted Γ1

to analyze the DHR candidate generator. It is easy to see that the bound developed in Lemma 4.4 holds

here. Therefore, R̃(Γ1) ≤ (r1 × . . .× rn)× r/4. In addition |γxy| ≤ rn for any path γxy prescribed by Γ1

implying γ(R̃,Γ1) ≤ rn. Finally, I(R̃,Γ1) = δ(R̃), and |R̃| = (r1 × . . . × rn) ≤ rn. Then Theorem 4.1

implies

Corollary 4.8. The ε mixing time for the DHR candidate generator on R̃ is at most

2δ(R̃)nδ(R̃)+2r2L2

(
n log r + log

(
1
ε

))

regardless of the initial state.

4.5 Diagonal of a Cube

Again, let C(n, L) be the n-dimensional hyper-cube of side L and S be the set of points along C(n, L)’s

diagonal. This S is denoted D(C(n, L)) and |D(C(n, L))| = L. The set shown in Figure 1 (e) is a special

case of this situation. First notice that none of the prescriptions of canonical paths discussed thus far

work for this case. We introduce the diagonal prescription of canonical paths Γ2. According to this

prescription, a path is constructed from node i to node j in the transition graph of the DHR candidate

generator Markov chain on D(C(n, L)) by moving along the diagonal step-by-step. Refer to Figure 5. In

order to estimate Sij(Γ2) when S = D(C(n, L)), we denote the points in D(C(n, L)) as a linearly ordered

set L = {1, . . . , L}. With this nomenclature, note that a diagonal path γxy from x ∈ L to y ∈ L for x > y

meets an edge e = (u, v) in the transition graph for u, v ∈ L if and only if u > v, u − v = 1, x ≥ u, and
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i

j

Figure 5: Diagonal prescription of canonical paths.

v ≥ y. As a result, for u− v = 1, we have

|Suv(Γ2)| =
L∑

x=u

v∑
y=1

1 ≤
L∑

x=1

L∑
y=1

1 = L2.

Moreover, for any x, y ∈ L, |γxy| is at most L implying γ(D(C(n, L)),Γ2) ≤ L. In addition, if a path

prescribed by Γ2 meets an edge e = (u, v) then d(u, v) = n. Therefore, I(D(C(n, L)),Γ2) = n. Then

Theorem 4.1 implies

Corollary 4.9. The ε mixing time for the DHR candidate generator on D(C(n, L)) is at most

2n+2nn+1L4 log
(

L

ε

)

regardless of the initial state.

Unlike earlier examples, our upper bound on mixing time of DHR on the diagonal of a cube is

exponential. As a result, this example hints at a rule of thumb for the practitioner - the DHR candidate

generator is likely to exhibit poor finite-time performance when points in S ‘are highly isolated’. We

quantify this notion through a concept we call isolation index .

Definition 4.10. The isolation index of a point x ∈ S, denoted Ix(S), is defined as its l1 distance

from a point y ∈ S \{x} that is closest to x. That is, Ix(S) = min
y∈S\{x}

d(x, y). The isolation index of set

S, denoted I(S), is the isolation index of a point with the highest isolation index, i.e., I(S) = max
x∈S

Ix(S).

Clearly, the higher the isolation index of a set, the more isolated its points are. The importance of isolation

index I(S) stems from its relation to I(S, Γ) defined in Equation (10). In particular, for any prescription

of canonical paths Γ,

I(S) = max
x∈S

min
y∈S\x

d(x, y) ≤ max
x∈S

min
y∈Ex(S,Γ)

d(x, y) ≤ max
x∈S

max
y∈Ex(S,Γ)

d(x, y) = I(S, Γ), (15)
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since Ex(S, Γ) ⊆ S \ x. Specifically, when I(S) is increasing in n, so is I(S, Γ), which is likely to make

the right hand side in Equation (11) exponential in n. For example, when S = D(C(n, L)), the diagonal

of a cube analyzed above, I(S) = I(S, Γ2) = n leading to a poor performance bound in Corollary 4.9.

Equation (15) is especially critical for the practitioner since I(S, Γ) depends on the choice of canonical

paths (which is a somewhat abstract notion) whereas I(S) is solely a geometric property of set S.

As another example where the DHR candidate generator performs poorly, consider the case where S

is constructed ‘randomly’ by choosing k + 1 i.i.d. uniformly distributed points in H, the n dimensional

cube of side L. Suppose k << Ln so that the points of S are spread out over H and highly isolated. The

expected length of the Biwalk that starts at any point i ∈ S is at most nL2 according to Proposition

2.4 for L ≥ 2. Thus, the probability that this Biwalk does not visit any other point of S is roughly(
1− nL2

Ln

)k
≈
(
1− knL2

Ln

)
. In particular, the probability that this Biwalk visits at least one point of S

is roughly knL2

Ln , which is exponentially small when k = (L/2)n, i.e., when S has as many points as an n

dimensional cube of side L/2. This shows that the performance of the DHR candidate generator depends

not only on the cardinality of S but also on the isolation index of S. We now extend the ideas presented

in this section to arbitrary target distributions.

5 DHR Mixing Time When π is Arbitrary

Recall that Q denotes the transition matrix of the DHR candidate generator and P denotes the transition

matrix of the DHR Markov chain after employing the Metropolis filter in step 3 of the DHR algorithm.

Moreover, the limiting distribution of Q is uniform over S, whereas the limiting distribution of P is π. Let

aπ denote
min
i∈S

π(i)

max
i∈S

π(i) for brevity and λ1(P ) be the second eigenvalue of the transition matrix P . Notice that

the transition graphs for Q and P are structurally identical but with different edge weights. Therefore,

any prescription of canonical paths Γ for the transition graph G(S, E) of Q also works for the transition

graph of P . Let ρ̄Q(Γ) and ρ̄P (Γ) be the quantities defined by Equation (9) for these two transition

graphs. Let γ(S, Γ) and S(Γ) be as defined in Theorem 4.1. Then using this notation, we have

Theorem 5.1. For any initial state x ∈ S and any ε > 0, the ε mixing time of the DHR Markov chain

P is at most 1
a2

π
ρ̄Q(Γ) log

(
1

π(x)ε

)
, which is in turn bounded by

1
a2

π

2I(S,Γ)+2nI(S,Γ)+1L2γ(S, Γ)S(Γ)
|S|

log
(

1
π(x)ε

)
.
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Proof. Equation (9) implies that ρ̄P (Γ) is equal to

max
(u,v)∈E

∑
γxy3(u,v)

π(x)π(y)|γxy|

π(u)puv
= max

(u,v)∈E

∑
γxy3(u,v)

π(x)π(y)|γxy|

π(u)quv min{1, π(v)/π(u)}
≤ max

(u,v)∈E

∑
γxy3(u,v)

π(x)π(y)|γxy|(
min
x∈S

π(x)
)

quv

≤ max
(u,v)∈E

(
max
x∈S

π(x)
)2

(
min
x∈S

π(x)
)

quv

∑
γxy3(u,v)

|γxy| = max
(u,v)∈E

(
max
x∈S

π(x)
)

aπquv

∑
γxy3(u,v)

|γxy|

= max
(u,v)∈E

|S||S|
(

max
x∈S

π(x)
)

aπquv

∑
γxy3(u,v)

|γxy|
|S||S|

=
|S|
(

max
x∈S

π(x)
)

aπ
max

(u,v)∈E

|S|
quv

∑
γxy3(u,v)

|γxy|
|S||S|

=
|S|
(

max
x∈S

π(x)
)

aπ
ρ̄Q(Γ) ≤

(
max
x∈S

π(x)
)

(
min
x∈S

π(x)
)

aπ

ρ̄Q(Γ) ≤
ρ̄Q(Γ)

a2
π

≤ 1
a2

π

2I(S,Γ)+2nI(S,Γ)+1L2γ(S, Γ)S(Γ)
|S|

where the last inequality follows from the bound on ρ̄Q(Γ) derived in the proof of Theorem 4.1. The claim

then follows from Proposition 3.1 and Theorem 3.2.

We now specialize this result to Boltzmann distributions as they are an important component of

optimization algorithms akin to SA as discussed in Section 1. Let f be a real valued function defined over

S. Let T > 0 be a ‘temperature’ parameter. The Boltzmann (T ) distribution on S is given by

πT (i) =
e−f(i)/T∑

k∈S e−f(k)/T
∀i ∈ S. (16)

Corollary 5.2. Suppose max
j∈S

f(j) −min
i∈S

f(i) ≤ A(log n) for some positive constant A independent of n,

i.e., the depth of the function is at most order log n, and ρ̄Q(Γ) ≤ BnC for some prescription of canonical

paths Γ, and constants B > 0, C > 0 that are independent of n. Then the mixing time of DHR Markov

chain P for sampling from a Boltzmann (T ) distribution over S is at most Bn(C+2A/T ) log
(

n(A/T )|S|
ε

)
.

Proof. Theorem 5.1 implies that starting at any x ∈ S and for any ε > 0,

τx(ε) ≤ (nA/T )2BnC log
(∑

y∈S exp(−f(y)/T )
exp(−f(x)/T )ε

)
≤ (nA/T )2BnC log

(
n(A/T )|S|

ε

)
.

This proves the claim.
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Note the condition that the depth of the function be at most order log n is restrictive since it essentially

requires the variation in function f to be very small relative to the cardinality of the hyper-rectangle H.

On the other hand, we do not expect polynomial bounds on DHR mixing time for general functions since

that includes problems from class NP.

6 Conclusions

In this paper, we introduced Discrete Hit-and-Run, a Markov chain for sampling approximately from

arbitrary distributions over arbitrary subsets of integer hyper-rectangles. Unlike other traditional Markov

chains such as the nearest neighbor random walk and the co-ordinate direction random walk, DHR does

not get trapped in isolated regions or points of the support set. It has a positive probability of moving from

one point to any other point in one step, i.e., it is globally reaching and hence irreducible and aperiodic.

Moreover, it is a reversible Markov chain on S, ensuring asymptotic convergence to any arbitrary target

distribution. We investigated finite-time performance of DHR and discussed several examples where it

mixes in polynomial time.
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