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Abstract

We discuss path planning in a direction-dependent environment illustrated by the fastest-
path problem with anisotropic speed function. The difficulty of optimal-path finding in a
direction-dependent medium comes from the fact that our travel-time function is asymmetric,
and in general, violates the triangle inequality. We present an analytical form solution for the
fastest-path finding problem in an obstacle-free domain without making any assumptions on the
structure of the speed function. Subsequently, we merge these results with visibility graph search
methods to develop an obstacle-avoiding fastest-path finding algorithm for an anisotropic speed
function. Optimal routing of a vessel in a stationary random seaway is discussed throughout
the paper to motivate and demonstrate application of our work.

1 Introduction

In this paper, we address a broad class of optimal path finding in anisotropic environment problems
where the cost function is direction-dependent. For ease of exposition, we focus our discussion on
fastest-path finding problems for direction-dependent speed functions; however, our analysis and
results can be easily extended to any anisotropic cost function. We are given the points of origin
and destination, and time and space homogenous speed function of heading. Our objective is to find
a path that minimizes the total travel time. Problems of optimal path finding in an obstacle-free
domain, as well as in the presence of polygonal obstacles, are addressed.

One of the applications for this type of problem is optimal short-range routing of vessels in a
seaway, which motivated this research. In the recent years, comprehensive seakeeping models have
been developed to accurately estimate the effects of waves on vessel performance. In [1], the average
added drag of the head and oblique waves is evaluated in a stationary random seaway. In addition,
a number of operability constraints, such as probability of wet deck and root-mean-squared roll
values, are computed for various vessel headings and sea states (i.e., wave-field distributions). The
integrated seakeeping model delivers the expected maximum attainable speed for a containership
as a function of its heading angle relative to the dominant wave direction. The resulting anisotropic
speed function has irregular structure that can not be evaluated analytically. Our analysis makes no
assumptions about the structure of the direction-dependent cost function and can be applied to the
very general set of problems, including the vessel routing problem presented here. Furthermore,
integration of obstacles into the path domain allows one to incorporate restricted sea regions,
presence of shallow waters, land and other vessels into the path planning process.

The difficulty of optimal-path finding in an anisotropic medium comes from the fact that our
travel-time function is asymmetric; that is, the time it takes to travel along a straight line path
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from a to b does not necessarily equal the time required to traverse the reversed path ba. Therefore,
our cost function is not a metric, which prevents us from using more traditional and established
approaches to solving optimal-path finding problems. Furthermore, the anisotropic cost, in general,
violates the triangle inequality, which is another key property exploited in Euclidean shortest-path
finding problems. In particular, it is not guaranteed that one of the ‘taut-string’ paths will be an
optimal obstacle-avoiding path. Thus, the traditional approach of searching among a finite number
of taut-string paths may fail to deliver an optimal solution.

It is important to note that the analysis and results presented in this paper apply to a wide range
of optimal path finding problems, and not only to the problems of minimum travel time. Despite
the fact that our discussion here is limited for ease of exposition to the direction-dependent speed
functions, it can be easily extended to other anisotropic cost functions, such as fuel and energy
consumption or agent’s motions.

Finally, while the work presented in this paper makes a restrictive assumption of time and
space homogenous environment, we relax this assumption in our forthcoming work and generalize
the problem. This paper and its results are the fundamental building blocks of the more general
models, and the analytical nature of this special case analysis is critical to fast and computationally
efficient algorithms developed for time- and space-dependent problems.

1.1 Related Work

The majority of the optimal path planning work to date concentrates on determining Euclidean
shortest paths (see survey [2]). A number of extensions have been considered (e.g., [3, 4]), yet
most work is restricted to isotropic metrics. Some shortest path finding problems discussed in the
literature [5, 6] introduce direction dependency by restricting the feasible paths to a fixed set of
orientations; however the resulting cost function retains its metric properties. Optimal path finding
problems in anisotropic media have been addressed for a few specific applications, and the solution
approach and results are often customized to the application at hand. For example, [7, 8] study
optimal path finding for a mobile agent (e.g., robot or vehicle) across hilly terrains, where a physical
model of friction and gravity forces is used to compute the anisotropic cost function for the agent.

In the area of optimal yacht sailing, Philpott et al. [9] create a mathematical programming
model that evaluates the vessel speed for a specified range of wind speeds and yacht heading
angles. The resulting data is used to find the yacht fastest path by applying dynamic programming
algorithms [10, 11, 12]. Alternatively, Sellen [13] studies the optimal sailing routing problems for
a more abstract scenario, and presents some results similar to ours by heuristically arguing that
an optimal path in an obstacle-free domain consists of at most two line segments. Sellen’s analysis
is limited to problems with very specific speed functions represented by piecewise-linear reciprocal
functions.

Some researchers have employed the calculus of variations and optimal control theory for optimal
vessel routing problems. References [14, 15, 16] employ Euler’s equations to characterize an optimal
path; while [17] establishes an analogy between a traveling light ray and an optimal path seeking
sailboat, and extends the use of optical principles to sailing strategies. These optimal-path finding
methods reduce to solving systems of differential equations, which can present a challenging task.
Moreover, researchers typically use a simplified form of the speed function in order to make the
analysis more manageable. From our experience of working on vessel routing problems [1], it is
clear that analytical functions cannot always accurately describe vessel movement through waves,
thus obliging us to look for alternative methods to solve the problem.

Reif and Sun [18] investigate a problem of time-optimum movement planning through a set of
polygonal regions, where anisotropy is introduced as a uniform flow assigned to each region. The



actual velocity of an object is defined to be the sum of a flow vector and a chosen control velocity.
While the resulting speed function does display the direction-dependent property, its structure is
very specific, and Reif and Sun’s analysis does not extend to more general problems addressed in
this paper.

In the most recent work on anisotropic movement, Cheng et al. [19] generalize the problem
studied by Reif and Sun, and look at shortest path finding in anisotropic regions where the direction-
dependency of the speed is not restricted to the effect of the uniform flow. Cheng et al. still limit
their research to the speed function with a very specific structure, referred to as a ‘convex distance
function’ (first discussed in [20]). Their convex distance function is equivalent to our case of a convex
linear path attainable region. The results presented in our work subsequently relax the convexity
assumption and deliver a closed form fastest path among obstacles for a general anisotropic speed
function. In addition, we provide rigorous proofs previously absent in the published work on convex
distance functions.

1.2 Overview of the Results

This paper presents solution to the fastest-path finding problem for any given anisotropic speed
function. We demonstrate that an optimal path in a general obstacle-free, time and space homo-
geneous medium is piecewise-linear with at most two line segments (i.e., one waypoint). Conse-
quently, we merge these results with the visibility graph search methods developed for Euclidean
shortest path problems [21, 22], to develop an obstacle-avoiding fastest-path finding algorithm for
anisotropic speed function. Our results provide computationally fast techniques for finding a closed
form solution to the very large class of applied problems discussed earlier.

While our main results make no assumptions about the structure of the speed function, we first
consider a special case of the problem where the speed polar plot (or the linear path attainable
region) encloses a convex region. This restricted scenario provides important insight and intuition
to the structure of an optimal path for the more general case. Subsequently, we relax the convexity
assumption to consider a case for a very general speed function. One of our main results is presented
in Theorem 3.4, which characterizes a fastest path for an arbitrary speed function in an obstacle-free
domain. Algorithm 3.1 describes a step-by-step procedure to construct such a path. In addition
to characterizing a fastest path, we also compute a bound on the improvement in travel time were
one to choose to follow an optimal path as opposed to traversing the simpler linear path between
the two points. This bound is an important tool for evaluating tradeoffs, as well as for proving our
key theorem.

We employ our findings for fastest path in an obstacle-free domain to the problems that consider
the presence of polygonal obstacles. For the speed functions corresponding to convex linear path
attainable regions, the straight line path is a fastest path in %2, and the triangle inequality holds
true in an obstacle-free domain. Consequently, fastest-path finding in a polygonal domain can be
restricted to a modified visibility graph, similarly to Euclidian shortest-path finding problems. The
triangle inequality might not hold true for a general speed function. In that case, an augmented
speed function corresponding to the convex hull of the original speed polar plot is used to find a
lower bound on the minimum travel time for our problem. We use the results for an optimal path
in the obstacle-free domain to construct an obstacle-avoiding path that achieves this lower bound,
thus establishing its optimality.

The rest of the paper is organized as follows. Section 2 provides the notation and a rigorous
statement of the problem. Section 3 develops and presents fastest paths for anisotropic speed
function in an obstacle-free domain. It also includes the description of Algorithm 3.1 that facilitates
the implementation of the presented results. The following Section 4 extends our analysis and



results to the obstacle-avoiding fastest-path finding problems in anisotropic domain. Algorithms
4.1 and 4.2 describe the fastest-path finding procedures corresponding to the case of a convex and
generalized linear path attainable regions, respectively. Section 5 concludes this paper with an
example of application of our results to the vessel routing problem, summarizes the findings and
contribution of the presented work, and describes the future directions to extend this work. For
conciseness and improved flow of the paper, some proofs are omitted from the text, and reader is
referred to technical report [23] for more detailed discussion.

2 Notation and Problem Statement

Let P C R denote a set of open polygonal obstacles such that their closures do not intersect, and
F := R?\P denote the free space where all the feasible paths mush lie. In the obstacle-free case
we set P = (). We define a set of feasible paths from s to ¢t as Py = {p : [0,1] — F such that
p(0) = s, p(1) = ¢, p is continuous and rectifiable}. Then, for any p € Py, let ¢(p) denote the
travel time for path p.

Let V(0) for 6 € [0,27] denote the maximum attainable speed for a given heading 6. Unless
otherwise specified, we assume that V(6) > 0, V0 € [0, 27]. The case where V(6) = 0 for some 0 is
discussed separately in Section 3.3. Note that, without loss of optimality, one always travels at the
mazimum attainable speed.

We define Ls(z) to be the linear path attainable region (LPAR) for a given point x € 2 and
time § > 0. That is, Ls(z) = {y € R? : ||y — z|| < 6V (0y—z)}, where 0,_, and ||y — x| denote the
angle and length of a vector y —x, respectively. Note that L1(0,0) is equivalent to a region enclosed
by a polar graph of the speed function V'(#), and is often referred to as the ‘speed polar plot’. Let
As(x) be the attainable region (AR), As(x) = {y : Ip € Py such that ¢(p) < 0}. In the presence of
obstacles (i.e., P # ) it is assumed that x ¢ P, and § is too small to reach any obstacles from z.

Finally, we let the function 7(z,5) : R2 x R2 — R+ denote the travel time from point z to point
y following the straight line path connecting these two points. We assume that {Az + (1 — Ay :
A€ [0,1]} NP =0. Then 7(z,y) = min{o : y € Ls(x), 6 > 0} or 7(x,y) = ||y — z||/V(0y—z). If
V(0y—z) =0, we set 7(z,y) = oo.

Problem statement: For a given speed function V(6) : [0, 2n] — R*, a starting point s € F, and
a target point t € F, find a fastest path from s to ¢ that lies in F. That is, our objective is to find
p* € Py such that t(p*) < t(p) for all p € Pg.

3 Fastest-Path Finding in an Obstacle-Free Domain

In this section we study the fastest-path finding problems in an obstacle-free domain, that is, P = ()
and F = 12 .

3.1 Fastest Path for a Convex Linear Path Attainable Region

We first analyze a problem restricted to the convex LPAR and assume that Ls(x) is convex for all
r and 0. Let m(z) := inf{r : T € L1(0,0),7 > 0}. Observe that since L1(0,0) is a closed set, the
infimum is achieved and the definition can we rewritten as m(z) := min{r : £ € L1(0,0),r > 0}
as long as z # (0,0). Also, note that since L1(0,0) = Ly,(;)(0,0)/m(z) is a convex set in R? and
(0,0) is its interior point, m(x) is the Minkowski functional. We then know from [24] that the
Minkowski functional m(.) satisfies the inequality m(x1 + x2) < m(x1) + m(z2) for all 1,22 € R2.
A couple of algebraic manipulations lead to the fact that m(z) reduces to the straight line travel
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Figure 1: Theorem 3.1 counter example for a non-convex linear path attainable region.

z)r(s,xz)

time function 7(.), that is, 7(z,y) = m(y — ) for all x,5 € R2. Then we can show that the
equivalent inequality holds true for the travel time function 7. That is, for any z,y,z € R2, we
have 7(z,y) < 7(z,z) + 7(2,y). We can use this triangle inequality to show that the straight line
path between two points is a fastest path for a convex LPAR, Ls(x). Furthermore, the convexity of
an LPAR is also a necessary condition for the straight line path to be optimal, both of which facts
are established in Theorem 3.1 (see Figure 1). (Reader is referred to [23] for this and following
omitted proofs.)

Theorem 3.1. A fastest path in %2 from an arbitrary start point s € R? to any other point in R?
is a path along the straight line connecting the two points if and only if the linear path attainable
region Ls(x) is a convex set for all x € R2.

It is important to acknowledge that earlier work on ‘convex distance functions’ [25, 20, 19]
have stated some results similar to Theorem 3.1. However, none of the found literature provides a
rigorous proof in its entirety.

3.2 Fastest Path for an Arbitrary Linear Path Attainable Region

Next, we relax the convexity assumption for the linear path attainable region, Ls(z), and analyze
the problem for a general time and space homogeneous speed function. First, we analyze the
properties of LPAR, Ls(x), and the corresponding attainable region, As(z). Consider any two
points x1,z2 € Ls(x). Then, for any point y = Az1 + (1 — A)zg, for A € [0,1], we can construct
a piecewise linear path p consisting of segments (x, A\z1) and (x, (1 — A)z2) (see Figure 1). Since
the travel time for such path p is less than or equal to d, we can conclude that y € As(x). Thus,
the convex combination of any two points in Ls(x) is contained in As(x), i.e., Vxy, z9 € Ls(x) and
VA € [0,1], Az1 + (1 — N)xg € As(x). This leads to Theorem 3.2.

Theorem 3.2. Attainable region, As(x), is the convex hull of the corresponding linear path attain-
able region, Ls(x), i.e., As(x) = conv(Ls(x)).

Now, we can compute a bound on the decrease in the travel time from point z to point y by
following an optimal path instead of the straight line path, without actually knowing the optimal
path. Consider a non-convex linear path attainable region, L(%(x), corresponding to some speed
function V1(), and a new linear path attainable region defined as the convex hull of the original
LPAR, that is, L3(z) = conv(L}(z)). Let V2(6) be the maximum attainable speed function asso-
ciated with the new LPAR. From Theorem 3.1, we know that for L}(z), the fastest path from x
to y is along the straight line segment connecting these two points, I;,, with the total travel time
mo(x,y) = ||y — 2||/V?(0y—s). Since Li(z) C L(z), we know that V1(0) < V?(0),V6. Then, the



Figure 2: Computing a bound on the decrease in travel time for a non-convex linear path attainable
region, Lj(z).

smallest travel time from z to y for the linear path attainable region L}(x), denoted by tzl(m) (z,y),
8
is at least as much m(z,y), i.e., tzl(x) (z,y) > 72(x,y). Define k to be the point of intersection of
§
the line connecting points  and y, and the boundary of the linear path attainable region L}; (z),
ie., k=l Nbd(L}(z)). Similarly, we define k' := I, Nbd(L3(z)) (see Figure 2). Note that the sets
L}(x) and L3(z) are closed and therefore contain their boundaries. Also note that the travel time
along the straight line path from z to y corresponding to the linear path attainable region L%(x) is

T1(x,y) = 5”%:§H Set 8 := df,:ﬂh < 1. Then, we have the following bounds on tz}s(x) (z,y).

7-2(:1:73/) S 2%(1)(1‘7:‘/) §T1(:1:,y)

ly — x| ly — |
I LI < sy~
=l = ey =0Ty
ly — x| ly — |
LSNP * < gL 7
P2l S @Y STy
67_1('7;73/) S z%(x)(x’y) S Tl(x7y> (1)

From inequalities (1), we deliver the following proposition.

Proposition 3.3. The optimal travel time for a non-convexr LPAR is at most 3 times shorter than
following a straight line path from x to y, where § := d',f,fﬂ‘l‘. That is, the traveling time would at

most decrease by 100(1 — f3) percent, if one were to follow an optimal path instead of traveling along
the straight line.

This lower bound leads to Theorem 3.4, that establishes analytical characterization on a optimal

path of any direction depended speed function, by demonstrating that the proposed path is, in fact,
optimal.
Theorem 3.4. Consider a linear path attainable region Ls(x). For two arbitrarily given points
x,y € R2, let k denote the intersection point of the line connecting x and v, lzy, and the boundary
of the set Ls(x), i.e., k = lyy Nbd(Ls(x)). Similarly, let k' := Iy, N bd(conv(Ls(z))). Then, the
fastest path from x to y is described by one of the following two scenarios.

1. If k = K/, the fastest path from x to y is the straight line segment connecting these two points
(Figure 3, case y = y1).

2. If k # K/, the fastest path from x to y consists of two line segments: the straight line segment
from point x to point z = x + aX*(x1 — x) and the second line segment from point z to point

y, where o = d',f,:il‘ll and x1,x9 € Ls(x) s.t. IN* € [0,1] : k' = Nz 4+ (1 — X\*)xo. (See Figure
3, case y = ya2, and note that (y2 — z)||(x2 — x)).




Figure 3: Illustration of Theorem 3.4: scenario 1 (k = k' for y1) and scenario 2 (k # k’ for y2).

Proof. 1. Consider the case where k = k’. From inequalities (1), we have f7(z,y) < t25 (@) (z,y) <

7(z,y), where 8 := N:/:Zlh and tzé(z)(x,y) is the minimum travel time from x to y. Since

k =k, we have 8 = 1, and 7(z,y) < tzé(z)(m,y) < 7(z,y) = tzé(x)(x,y) = 7(z,y). This
means that the travel time from x to y along the straight line path equals the minimum travel
time, and hence, straight line path is a fastest path from x to y.

2. Now, we consider the case where k # k’. From definition of &/, we have that k' € conv(Ls(x)).
Then, 3\* € [0,1] and Jx1, 29 € Ls(x), such that A\*x1 + (1 — A\*)xe = k’. Note, that since
x1, T2 € Ls(x), we know that 7(z,z1) < ¢ and 7(z,x2) < 4.

: L . ly—al _ . . -
From inequalities (1), we have T s(@) (z,y) > 5‘%,_3&” = da, where t7 (z,y) is the minimum

travel time from x to y. Now, consider the following path p: from point  we follow vector
aX*(x1 — x), and then, continue on following vector a(1 — A\*)(xo — ). Note, that the first
part of the path is equivalent to following a straight line segment from point x to point
x+ aX*(x; —x) = z. And the second part of the path ends at point z + aX*(x1 — ) + a(1 —
M)z —2x) =+ a((A)(z1—2)+ (1= X)) (22 —2)) = x4+ (k' —x) = y. Hence, the proposed
path p is the same path as in the statement of the theorem. This proves the existence of the
path described in the theorem.

Next, we want to find the travel time along this path p, ¢(p). From the space and time
homogeneity property, we have t(p) = aX*7(z,z1) +a (1= )7(x,z2) < aX*-0+a(l—A*)-d =
«ad. Since travel time for path p is less than or equal to the lower bound on the minimum
travel time from z to y (i.e., t(p) < () (z,9)), t(p) must be equal to the minimum travel
time from x to y. Hence, our path p is, in fact, a fastest path from x to y.

O

It is worth noting that in the case when k # k' (corresponding to scenario 2 of Theorem 3.4)
the fastest path constructed in the theorem is not uniquely optimal. It is only one of the infinitely
many feasible paths with the same minimum travel time. Note that any zigzag path from z to
y restricted to the traveling directions of the vectors 1 — x and z2 — = would correspond to the
same minimum travel time. Furthermore, the straight line path in the case of k = k' might also
not be uniquely optimal. Depending on the structure of the speed function, it is possible that a
piecewise-linear path would have the same optimal travel time as the straight line.
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Figure 4: Example of a convex LPAR where V' (64) = 0; there is no feasible path from s to .

3.3 Problem Feasibility and Fastest-Path Finding for a Non-negative Speed
Function

Thus far we assumed that V' (6) > 0 for all # € [0, 27]. However in practice, the speed function V' (0)
can take on the value of zero for some headings, i.e., leading to a ‘stall’. For example, a vehicle
traveling across some hilly terrain might encounter impermissible headings due to overturn danger
or power limitations [7]. On another hand, a sailing boat can not travel in head sea corresponding to
a zero speed for that heading [11]. In this section, we discuss the case where V(0) > 0,V6 € [0, 2x].
To avoid the trivial case, we assume V' (6) > 0 for some 6.

Similarly to a positive speed function case, we first analyze the case where LPAR, Ls(s), is
convex. Observe that if V(0) = 0 for some 6 € [0, 27|, and the corresponding linear path attainable
region, Ls(s), is convex, then there exists a line passing through the starting point s such that none
of the points belonging to one of the half-planes created by this line can be reached (see Figure 4).
Combining this with Theorem 3.1 we establish Theorem 3.5 (Recall that 6 denotes the heading
angle of the vector t — s. ).

Theorem 3.5. Assume that LPAR, Ls(s), corresponding to some speed function V(0) > 0, is
convex. Then,

1. if V(0st) =0, a feasible path from s to t does not exist; and
2. if V(0s) > 0, a fastest path from s to t is along the straight line path st.

We now relax the convexity assumption and analyze optimal paths for a general Ls(s). In the
case when V(6s) > 0, the optimal path finding problem is always feasible, and when V(Ost)_: 0,
the feasibility condition can be established as follows. Assume V' (6y) = 0, and define 6 and 6 as

= inf{f* : V(0) = 0,V0 € [0%, 0]}, (2)
= sup{f*: V(0) =0,V0 € [0s,0"]}. (3)

| ID

In defining § and § we extend the domain of the speed function to [—m, 37|, by observing that
V(0) = V(0 + 27), V0, to guaranty the continuity of the interval. Then we can show (see [23]) that
a feasible path from s to ¢ does not exist if and only if V(0y;) = 0 and §—> 7. Finally, Theorem
3.6 delivers an optimal path from s to t for a general linear path attainable region.

Theorem 3.6. Consider V(0) > 0 for all § € [0,27], and let Ls(s) be the corresponding linear path
attainable region. Then,



Figure 5: An optimal path from s to ¢, szt.

1. if V(8s) = 0 and 0—0> 7, a feasible path from s to t does not exist; and

2. if V(Bs) > 0 or 0—0< m, then a fastest path from s to t is characterized the same way as in
Theorem 3.4, where x = s, y =1t and if V(0s) = 0 we set k = s. (See Figure 5.)

3.4 Fastest-Path Finding Algorithm

In this section, we discuss the implementation of the results presented in previous sections and
provide an algorithm that can be implemented by a computer program (e.g., on-board autonomous
navigation system) to find a fastest path from a given start point s € R? to a given target point ¢ €
2. We assume that the values of a speed function V() are given for a discrete set of equally spaced
heading angles, €, which we denote by the set of polar coordinates S = {(6o, V(6o), .., (0n, V(6n)},
(see Figure 6 for an example).

The first step in finding a fastest path is to construct a convex hull of the linear path attainable
region. We recommend the use of Graham’s Scan algorithm [26, 27] to accomplish this task, since
it uses a “rotational sweep” technique, processing vertices in the order of polar angles they form
with a reference vertex. The polar nature of our LPAR makes Graham’s Scan a favorable choice
as it forgoes the sorting procedure required for other algorithms.

After the construction of a convex hull, we obtain a subset S’ C S corresponding to the extreme
points of the resulting convex hull. Let [s; denote the straight line passing through points s and ¢,
and 04 the heading angle of the vector ¢t — s. Then, we need to find the point of intersection of [
with the boundary of L;(s), denoted by k, and the point of intersection of ls with the boundary
of a convex hull of L;(s), denoted by k’. To do so, we find between which two headings in sets S
and S’ our 0 falls. We label such headings as 6, and 6y, and 07, and 67, respectively (See Figure
6, L and U stand for the lower and upper headings). After some algebraic manipulations omitted
here, we compute the values of @ and A\*, as defined in Theorem 3.4 scenario 2, to be

e it slisingoy — 0,)
V(07)sin(0) — 0,

3

(4)

Then, we know that a fastest path is piecewise-linear with a single waypoint z = s+aX*(cos(6y;), sin(6y,)).
The following algorithm outlines a step-by-step procedure of finding the fastest path from s to
t.

Algorithm 3.1. Fastest Path from s to t in an Obstacle-Free Domain.

Step 1. Find § and 0 using equations (2) and (3).
If V(0st) = 0 and 6—6> w, STOP. The problem is infeasible.
FElse, go to step 2.



Figure 6: L1(s) and its convex hull: Zost = 0y, Zosg = 01, Zosh = 0y, Zosa = 07, and Losb = 6y;.

Step 2. Find the convex hull of the linear path attainable region L1(s).
Step 3. Find the heading angle 05 and compute the values of 01,0y, 0 and 0y;.

Step 4. If points (01,V(0L)), (0u,V (0v)), (07,,V(67)) and (6, V (0},)) are collinear (i.e., k =k'),
STOP. Straight line path st is an optimal path.
Else (i.e., k # k'), go to step 5.

Step 5. Compute aX* using equation (4).
Set z = s + aX*(cos(0};),sin(0};)) € R2. A fastest path from s to t is the two consecutive
straight line segments sz and then zt.

4 Obstacle-Avoiding Fastest-Path Finding

In this section we discuss obstacle-avoiding fastest-path finding by relaxing the assumption P = ().

4.1 Fastest Path for a Convex Linear Path Attainable Region

Similarly to the analysis of path finding problems in an obstacle-free domain, we first restrict our
attention to problems with convex LPARs. The visibility graph search method [2, 21, 22|, used
to solve Euclidean shortest-path finding problems with polygonal obstacles, exploits the triangle
inequality property of the distance function and restricts the optimal path search to the set of
‘taut strings’ connecting the points of origin and destination. In the case of minimizing Euclidean
distance, “an easy geometric argument shows that in general the shortest path between two points
must be a polygonal chain whose vertices are vertices of obstacles” [22]. A similar observation is
true for our anisotropic medium, and we can show (see [23]) that if a linear path attainable region
Ls(x) is convex, then there exists a fastest path from s to ¢ in F, which is piecewise-linear with
all its waypoints (vertices) corresponding to the vertices of obstacles in P. This implies that a
fastest-path search can be restricted to a directed visibility graph with the edge cost defined to be
the travel time along the straight line connecting its nodes. Henceforth, we adapt the shortest path
visibility graph approach to develop the algorithm below.

Algorithm 4.1. Obstacle-Avoiding Fastest Path for a Speed Function V(0) Corresponding to a
Conver LPAR.

Step 1. Construct a visibility graph VGyv as follows.

o The set of VGy wvertices is composed of all the vertices of the obstacles in P, as well as
points s and t.

10



Figure 7: Example of constructing a visibility graph illustrating all the visibility graph nodes and
edges

e The set of VG edges consists of all the straight line edges interconnecting these vertices
such that they do not intersect any of the obstacles in P (see Figure 7).

o The cost associated with an edge (i, j) is equal to the travel time (i, j) = |[j—i||/V (6;-).

Step 2. Find a minimum cost path in the constructed network VGy from node s to node t. The
resulting path is an obstacle-avoiding fastest path in F.

Note that unlike the case of Euclidean metric, our visibility graph has to be directed since the
cost of an arc (i,j) does not generally equal to the cost of an arc (j,1).

4.2 Fastest Path for an Arbitrary Anisotropic Speed Function

Subsection 4.1 discusses a direct extension of the shortest-path visibility graph approach to the
obstacle-avoiding fastest-path finding problems with convex LPAR. In general, the triangle in-
equality does not hold true for the travel time function 7(.), and we cannot restrict our fastest-path
search to the set of taut strings connecting s and ¢. Here, we relax the convexity assumption of an
LPAR, and analyze fastest-path finding problems for a general anisotropic speed function.

Consider an arbitrary speed function V(6) and the corresponding linear path attainable region
Ls(z). We introduce an augmented speed function V’(6), such that, its corresponding LPAR,
Ls(z), is the convex hull of Ls(z), ie., Li(xz) = conv(Ls(x)). By definition, L§(x) is convex.
Therefore, by constructing the visibility graph VGy as described in Algorithm 4.1, we can find an
obstacle-avoiding fastest path from s to ¢ corresponding to the new speed function V'(6). We let py-
represent this optimal path and ¢y/(py+) denote the travel time along the path py while traveling
with speed V’/(#). Then, the travel time along an optimal path, (py ), from s to ¢ corresponding to
the original speed function V() has to be greater than or equal to ty/(py), i.e., tv(py) > ty/(py/)
[23]. This provides a lower bound on the minimum travel time for our original problem, which we
use to demonstrate that a proposed path is optimal.

Since path py- lies in the visibility graph VGy-, it is piecewise-linear with the waypoints cor-
responding to the vertices of P, and points s and t. Consequently, the total travel time of the
path can be written as the sum of travel times along each individual link. Recall that the travel

time for each linear link (i,7) of the path py/ is equal to 7/(i,j) = % From Theorem 3.4,
Jj—1

our obstacle-free analysis describes a fastest path from i to j for an arbitrary speed function V()
with the optimal travel time equal to 7/(7,7). Applying the theorem to each linear link of the
path py+ and then combining them together results in a path corresponding to the original speed
function V'(€) with the travel time equal to the lower bound ¢y (py+). Recall that an optimal path
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Figure 8: A feasible zigzag path from z to y with the total travel time equal to 7/(z,y).

described in the second scenario of Theorem 3.4 is not unique, and we can construct a zigzag path
with minimum travel time by alternating the traveling directions between headings corresponding
to vectors 1 — x and xzo — x. Since we assume that the distance between any two obstacles is
greater than zero, we can construct a zigzag path close enough to the line xy, such that it does not
intersect with the neighboring obstacles. (See Figure 8.)

Algorithm 4.2. Obstacle-Avoiding Fastest Path for an Arbitrary Speed Function V (6).
Step 1. Find V'(0) for 6 € [0, 2n] such that L(x) = conv(Ls(x)).

Step 2. Use Algorithm 4.1 to find an optimal path corresponding to the speed function V'(6). Let
pyr denote the determined path, and let (ko, k1, ka, ..., kn) be the sequence of vertices path py-
is traversing. Note that kg = s and k, = t. Then the corresponding travel time along the path
py, denoted by ty/(py+), can we written as

tyr(pvr) = iy 7' (kiz1, ki) (5)

Step 3. For each pair of consecutive points in (ko, k1, ..., kn), apply Algorithm 3.1 to find a fastest
path between the two points corresponding to the speed function V(6). If a given one waypoint
path is infeasible due to the presence of obstacles, increase the number of waypoints in a zigzag
path as discussed above.

Step 4. Combine together the optimal paths found in Step 3. The resulting path has a travel
time equal to ty/(py+) and is therefore a fastest obstacle-avoiding path for an arbitrary speed

function V (6). (See Figure 9.)

5 Applications and Conclusion

5.1 Application: Optimal Short-Range Routing of Vessels in a Seaway

A fastest-path finding problem for the direction-dependent speed functions arises in a wide range
of applications. For example, the speed of a sail boat depends on the traveling heading angle it
makes with wind, and a vehicle speed varies as the agent traverses up and down a hill. Airplanes
have to deal with an anisotropic speed due to wind, while motor boats have similar effects caused
by waves. To demonstrate an application in more details, we analyze optimal short-range routing
of vessels in a seaway.

Any vessel traveling at a seaway encounters waves which add drag and affect the vessel’s perfor-
mance. In our collaboration with colleagues working on Optimal Vessel Performance in Evolving
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Figure 9: Example of a fastest path for speed function V’() (dashed line), and an optimal path
for speed V (#) (solid line).

Figure 10: “An example of linear path attainable regions for the S-175 corresponding to voluntary
speed loss at Sea State no.7” [1].

Nonlinear Wave-Fields project [1], we evaluate the added drag by computing the time average wave
force acting on the vessel in the longitudinal direction. Then, by superimposing the added drag on
the steady drag experienced by the moving ship in calm waters, we compute the maximum mean
attainable speed for each given sea state (which describes the distribution of the waves) and the
heading angles in the range from 0° to 180°. Figure 10, borrowed from [1], illustrates an example
of the linear path attainable region for the S-175 containership at Sea State no.7. Here, heading is
measured as the angle a vessel makes with the dominant wave direction, which is assumed to be in
the southerly direction.

For the given LPAR, we can use Theorem 3.4 to find a fastest path; Algorithm 3.1 describes
the step-by-step procedure to construct such an optimal path. As an example, we consider two
scenarios. In first case, let the target point ¢; lie directly east from the starting point s. This
example corresponds to the scenario 1 of Theorem 3.4, since the straight line st; intersects the
boundary of the linear path attainable region Ls(s) and the boundary of its convex hull at the
same point. Hence, we can conclude that the straight line path st; is a fastest path from s to t1,
illustrated in Figure 11.

In the second example, let the target point to lie south-west from the starting point s. Then,
the intersection points of the line sty with the boundary of Ls(s) and the boundary of Ls(s)’s
convex hull are not the same (i.e., k # k'), corresponding to the scenario 2 of Theorem 3.4; and
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Figure 11: Hlustration of the fastest paths from point s to points ¢; and to, paths st; and szto,
respectively.

a fastest path from s to to is piecewise-linear with one waypoint. Thus, to reach the point to as
fast as possible, the vessel should first travel SSE, or 30° clockwise from the south direction, and
then complete the travel heading 75° clockwise from south. This corresponds to the path szto,
illustrated on the Figure 11.

In addition to finding a fastest path from s to t2, we can use equations (1) to calculate how
much improvement in travel time a vessel observes as it follows the optimal path szts instead of
following a straight line path sty. By dividing the length of sk by the length of sk/, we find that
B = 0.688, which implies that by following an optimal path we can decrease our travel time at most
by approximately 31.2%. This kind of information is particulary useful in evaluating the tradeoffs
between following an optimal path as opposed to following a straight line.

In some applications seaway regions might be restricted for vessel’s use due to severe weather,
presence of land, other vessels, or imposed regulations. For such problems we approximate the
restricted regions with polygonal obstacles and apply Algorithm 4.2 to find an optimal obstacle-
avoiding path to the destination. In other applications the vessel’s speed is often maintained
constant by utilizing a greater amount of fuel and varying the engine thrust level. Our solution
approach easily extends to such problems. We redefine the linear path attainable region to represent
the set of points one can reach consuming a single unit of fuel. Then, by using the algorithms
presented in this paper we can find a path minimizing fuel consumption instead of traveling time.

5.2 Conclusion and Discussion

We find the solution to a fastest-path finding problem for a direction-dependent time and space
homogeneous speed function. We demonstrate that in an obstacle-free domain an optimal path is
piecewise-linear with at most two line segments, regardless of the underline structure of the speed
function. This analytical character of our results provides a computationally fast method for finding
an optimal path, making it suitable for online applications. We also provide a tight bound on the
improvement in travel time by following an optimal path as opposed to traversing a simpler straight
line path. Algorithm 3.1 presented in the paper facilitates a simple implementation of these results.

We also use these results to address the obstacle-avoiding fastest-path problems in anisotropic
media. We use the properties of speed functions with the convex polar plots to adapt the visibility
graph search method, traditionally used for Euclidean shortest-path problems, to find a solution
for our type of problems. We then address the case of an arbitrary speed function, by introducing
an augmented speed function such that its polar plot is the convex hull of the original speed
plot. Then, we apply fastest piecewise-linear paths between the nodes of the visibility graph and
construct a path with the travel time equal to its lower bound, thus establishing its optimality. We
present the algorithms that give the detailed steps to finding an optimal obstacle-avoiding path
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for the convex speed polar plots (Algorithm 4.1) and a general time and space homogeneous speed
function (Algorithm 4.2). We discuss the application of the results for optimal vessel routing in
a seaway. The numerical example demonstrates over 30% decrease in vessel travel time when our
path-finding algorithm is implemented instead of a straight line path.

While the presented work makes a restrictive assumption of time and space homogeneity of
the cost function, these results are critical components to our solution approach for more general
problem settings. In our forthcoming work, we relax the assumption of time and space homogeneity
and integrate the analytical results of this paper to deliver an efficient path-finding algorithm for
the generalized problem. We also extend these results to the problem of finding a fastest curvature-
constrained path in an anisotropic environment, where instantaneous hading change (e.g., waypoint)
is prohibited.
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