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Abstract. We consider a general deterministic infinite horizon optimization problem over discrete time with
time-varying, i.e., non-stationary, data. Our formulation requires only that action spaces be compact, including

both continuous and discrete controls. In the event that all total costs diverge, i.e., no least total cost optimum

exists, we investigate the existence of efficient optima. (An infinite horizon feasible solution is efficient if it is
optimal to each of the states through which it passes.) We show that the mapping from controls to states (i.e.

state transition function) being open is a sufficient condition for existence of efficient solutions. In this event, we

also give a necessary and sufficient condition for there to exist a unique efficient optimum. Our results are then
applied to an infinite horizon production planning problem with no backlogging.

1. Introduction

We consider a general infinite horizon optimization problem, formulated as a dynamic programming
problem over discrete time, with deterministic, time-varying data. It is clear that even in the presence of
discounting, the total cost of the infinite streams of cost flows associated with feasible decision sequences
may all be infinite, i.e., it may be that no least total cost optimal solution exists. In such cases, we require
an optimality criterion other than minimum total cost and there are many such criteria; see, for example, [3]
and [ 11]. In recent papers, [13] have considered the notion of optimality called efficiency or finite optimality
[5]). A feasible solution is efficient if it is least-cost optimal to each of the states through which it passes. In
this paper, we give a sufficient condition for the existence of efficient solutions in the presence of compact
action spaces. Hence, continuous as well as discrete action spaces are allowable. If an efficient solution exists,
then we give sufficient conditions for it to be unique.

It is worth noting that we will not make any reachability, differentiability, or convexity assumptions
here, as is often the case. Moreover, by the familiar device of replacing decisions by policies to construct a
deterministic equivalent, stochastic infinite horizon problems can be modeled within our framework as well.
Our modeling framework includes for example production planning under non-stationary demand, parallel
and serial equipment replacement under technological change, capacity planning under nonlinear demand,
and optimal search in a time-varying environment.

In section 2, we formulate the state-transition and cost structures for our problem. In section 3, we present
our main results on the existence and uniqueness of efficient solutions. Finally, in section 4, we apply our
main results to a general problem in production planning.
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2. Problem Formulation

Consider the problem of making a sequence of decisions, where each decision is made at the beginning of
each of a series of equal time periods, indexed by j = 1, 2, . . . . The set of all feasible decisions available in
period j is contained in Yj . The feasibility of a decision depends on the past decisions made. We assume
that each Yj is a compact, non-empty metric space.

Our dynamic system is governed by the state transition equation sj = fj(sj−1, yj), ∀j = 1, 2, . . . , where
we assume that
• s0 is the fixed and given initial state of the system (beginning period 1),
• sj is the state of the system at the end of period j, i.e., beginning period j + 1,
• yj is the feasible action (or control) selected in period j with knowledge of the state sj−1,
• Sj is the compact metric space of all feasible states ending period j (with S0 = {s0}), so that sj ∈ Sj ,
• Yj(sj−1) is the given closed, non-empty subset of Yj consisting of the feasible actions available in period j
when the beginning state is sj−1 ∈ Sj−1 (so that yj ∈ Yj(sj−1) ⊆ Yj), with Y1(s0) = Y1,
• Dj is the graph of the compact-valued set mapping sj−1 → Yj(sj−1) in the compact space Sj−1 × Yj , i.e.,

Dj = {(sj−1, yj) ∈ Sj−1 × Yj : yj ∈ Yj(sj−1)}, ∀j = 1, 2, . . . , and

• fj is the given continuous state transition function in period j, where fj : Dj → Sj .
Note that the non-emptiness of Yj(sj−1), for sj−1 ∈ Sj−1, is equivalent to the assumption that all finite
horizon feasible solutions can be feasibly continued from state sj−1 in period j. We assume that our problem
has the following closed graph property: for each j, if sn

j−1 → sj−1 in Sj−1, and yn
j → yj in Yj , as n → ∞,

where yn
j ∈ Yj(sn

j−1), ∀n, then yj ∈ Yj(sj−1). Then each graph Dj is closed (hence, compact) in Sj−1 × Yj .
We also require that Sj = fj(Dj), ∀j = 1, 2, . . . , so that, in particular, S1 = f1(D1), where D1 = {s0}×Y1.
Thus, each Sj is precisely the set of all feasible, i.e., attainable, states in period j.

For each j, consider the set-valued mapping sj−1 → Yj(sj−1) of Sj−1 into the compact, non-empty subsets
of Yj . Let

Yj(Sj−1) = ∪{Yj(sj−1) : sj−1 ∈ Sj−1},

so that Yj(Sj−1) ⊆ Yj , ∀j. Note that the actions Yj\Yj(Sj−1) (set difference) will never be used. Moreover,
by the closed graph property, this set-valued mapping is upper semi-continuous [10, p.61]. Thus, Yj(Sj−1)
is compact by [2, p.110]. Consequently, without loss of generality, we may assume that Yj(Sj−1) = Yj , ∀j.

The product set Y =
∏∞

j=1 Yj of all potential decision sequences, or infinite horizon strategies, is then a
compact topological space relative to the product topology, i.e., the topology of component-wise convergence.
The product topology on Y is well-known to be metrizable.

Now fix a positive integer N and let (y1, . . . , yN ) ∈ Y1 × · · · × YN . Then (y1, . . . , yN ) is feasible through
period N if yj ∈ Yj(sj−1), where sj = fj(sj−1, yj), for all j = 1, 2, . . . , N . Denote all such finite horizon
strategies by FN , which is thus a closed, compact, non-empty subset of Y1×· · ·×YN . In particular, F1 = Y1.
Note that if (y1, . . . , yN ) is feasible through period N , then (y1, . . . , yN−1) is feasible through period N − 1,
i.e., FN ⊆ FN−1 × YN . Moreover, y ∈ Y is a feasible strategy if (y1, . . . , yN ) is feasible through period N ,
for each N = 1, 2, . . . . We define the feasible region X to be the subset of Y consisting of all those y ∈ Y
which are feasible through each period N , i.e., (y1, . . . , yN ) ∈ FN , ∀N . We define XN to be the set of all
arbitrary extensions of FN in Y , i.e.,

XN = FN ×
∞∏

j=N+1

Yj .

Then the non-empty, compact sets XN are decreasing subsets of Y and X = ∩∞N=1XN . This set is closed,
compact in Y and non-empty, since Yj(sj−1) is assumed to be non-empty, for all j , and all sj−1 ∈ Sj−1. In
fact, as a consequence of this assumption, if (y1, . . . , yN ) is feasible through a given period N , then it may
be feasibly extended over all remaining periods.

For (y1, . . . yN ) ∈ FN , we may define σN : FN → SN by

σ1(y1) = f1(s0, y1),

σ2(y1, y2) = f2(σ1(y1), y2),
...

σN (y1, . . . , yN ) = fN (σN−1(y1, . . . , yN−1), yN ),

so that σN (y1, . . . , yN ) ∈ SN . We will refer to each such σN (y1, . . . , yN ) as the state which (y1, . . . , yN )
attains at the end of period N . Thus, for each N , the mapping σN : FN → SN is onto since SN consists of
all feasible states. Consequently, FN is partitioned into equivalence classes of the form σ−1

N (s), for s ∈ SN .
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2.1 Lemma. For each N , the mapping σN of FN onto SN is continuous and closed. Hence, the topology
of SN is contained in the quotient topology on the equivalence classes FN/σN = {σ−1

N (s) : s ∈ SN} in FN

defined by σN .

Proof. The continuity of the σN follows from the continuity of the fj . Since σN is continuous, the topology
of SN is contained in the quotient topology of SN [7, p. 95]. The remaining property follows from the
compactness of the Yj , as well as Theorem 8 of [7, p.95]. �

2.2 Lemma. For each N , the quotient topological space FN/σN is homeomorphic to SN .

Proof. The resulting quotient mapping σN : FN/σN → SN is continuous, one-to-one and onto. Since
FN/σN is compact, σN is also open. �

Turning to the objective function, we allow the cost of a decision made in period j to also depend
(indirectly) on the sequence of previous decisions, or more directly, on the state resulting from these decisions.
Specifically, we let cj(sj−1, yj) be the cost of decision yj in period j, when sj−1 is the state beginning period
j. We thus obtain cost functions cj : Dj → R which we require to be continuous. Thus, each cj attains its
extrema. We assume that any discount factor has been absorbed into the period costs.

For each positive integer N and (x1, . . . , xN ) ∈ FN , we define the associated total N -horizon cost by

CN (x1, . . . , xN ) =
N∑

j=1

cj(σj−1(x1, . . . , xj−1), xj).

Thus, CN : FN → R is a continuous function, for each N . For each x ∈ X, also define

C(x) =
∞∑

j=1

cj(σj−1(x1, . . . , xj−1), xj),

so that the function x → C(x) is extended-real valued in general. The classical least-total-cost optimization
problem is then given by minx∈X C(x) which may have no optimal solutions, i.e., C(x) = ∞, ∀x ∈ X. In
this event, our main objective is to ensure the existence of a feasible strategy which is efficient.

3. Existence of Efficient Optima

The state-space construction introduced above associated a unique state at the end of each time period
with every finite horizon feasible strategy. Feasible strategies x ∈ X which have the property of optimally
reaching each of the states σN (x1, . . . , xN ) through which they pass have been called efficient strategies.
(See [11,12,13] for early introductions of this concept.) This efficiency of movement through the state space
suggests efficient solutions as candidates for optimality.

Efficiency (Finite Optimality): Let x ∈ X. Then x is efficient if, for each N , and each (y1, . . . , yN ) ∈ FN

such that σN (y1, . . . , yN ) = σN (x1, . . . , xN ), we have CN (x1, . . . , xN ) ≤ CN (y1, . . . , yN ). Also known as
finite optimality, this criterion was originally introduced in a special case by Halkin in [5], who called it finite
horizon clamped end-point optimality.

Let Xe denote the subset of X consisting of efficient strategies. It was shown in [13, Lemma 3.5] that
efficient strategies exist in our context, provided each of the spaces Yj and Sj−1 is discrete. We next show that
efficient solutions exist for our problem under the more general assumption that the period state mappings
σN are open, thus allowing for the presence of continuous action and state spaces Yj and Sj .

Fix N , and for each s ∈ SN , let ΦN (s) denote the set of N -horizon feasible strategies which attain state
s at the end of period N , i.e.,

ΦN (s) = σ−1
N (s) = {(x1, . . . , xN ) ∈ FN : σN (x1, . . . , xN ) = s}.

(The collection {ΦN (s); s ∈ SN} is a partition of FN .) Since σN is continuous, we thus obtain a sequence
of set-valued mappings ΦN of SN into FN with compact, non-empty values. For each N , let K0(FN ) denote
the collection of all compact, non-empty subsets of FN . Then ΦN is a mapping of SN into K0(FN ).

Now, for each N and s ∈ SN , consider the least-total-cost optimization problem

min{CN (x1, . . . , xN ) : (x1, . . . , xN ) ∈ ΦN (s)}.

If we let Φ∗N (s) denote the set of optimal solutions to this problem, then this set is a closed, compact non-
empty subset of FN . We thus obtain another compact-valued set mapping of Φ∗N : SN → K0(FN ). If we
define

F e
N =

⋃
s∈SN

Φ∗N (s), and Xe
N = F e

N ×
∞∏

j=N+1

Yj ,
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then the Xe
N are non-empty, nested downward and Xe =

⋂∞
N=1 Xe

N .
Next we give a Dynamic Programming formulation of our problem and a corresponding inductive descrip-

tion of the F e
N . For each N , define qN (s, t) to be the minimum cost of transitioning from state s at the start

of period N − 1 to state t at the start of period N , if this is possible, so that

qN (s, t) = min
{

cN (s, yN ) : yN ∈ YN (s) and t = fN (s, yN )
}

, ∀s ∈ SN−1, ∀t ∈ SN .

Otherwise, define qN (s, t) = ∞. Also define QN (s) to be the minimum cost of transitioning from state s0 to
state s ending period N , i.e.,

QN (s) = min
{

CN (x1, . . . , xN ) : (x1, . . . , xN ) ∈ FN and σN (x1, . . . , xN ) = s

}
= min

{
CN (x1, . . . , xN ) : (x1, . . . , xN ) ∈ ΦN (s) = σ−1

N (s)
}

, ∀s ∈ SN .

By the Principle of Optimality, we have the following forward recursion:

QN (t) = min
s∈SN−1

(
QN−1(s) + qN (s, t)

)
, ∀t ∈ SN ,

with Q0(s0) = 0. Consequently, F e
N may be determined inductively as follows:

F e
1 =

{
x1 ∈ F1 : C1(x1) = c1(s0, x1) = Q1(σ1(x1))

}
,

F e
N =

{
(x1, . . . , xN ) ∈ FN : (x1, . . . , xN−1) ∈ F e

N−1 and CN (x1, . . . xN ) = QN (σN (x1, . . . , xN ))
}

,

for N > 2.
For each N and feasible strategy (x1, . . . , xN ) ∈ FN , let ΓN (x1, . . . , xN ) be the set of all N -horizon

feasible strategies that attain the same state at the end of period N as (x1, . . . , xN ), i.e. ΓN : FN → K0(FN )
where

ΓN (x1, . . . , xN ) = ΦN (σ(x1, . . . , xN )) = σ−1
N (σN (x1, . . . , xN ).

Let A ⊆ FN . Define the weak saturation of A in FN [6, p.22] to be

Γw
N (A) =

{
(x1, . . . , xN ) ∈ FN : ΓN (x1, . . . , xN ) ∩A 6= ∅

}
= σ−1

N (σN (A)),

so that, in particular, ΓN (x1, . . . , xN ) is the weak saturation of (x1, . . . , xN ). Note that Γw
N (A) is the union

of those classes which intersect A. Also define the strong saturation of A in FN [6, p.22] to be the complement
in FN of the weak saturation of FN\A (set difference), i.e.,

Γs
N (A) =

{
(x1, . . . , xN ) ∈ FN : ΓN (x1, . . . , xN ) ⊆ A

}
= FN\(σ−1

N (σN (FN\A))).

Note that Γs
N (A) is the union of those classes which are contained in A, and Γs

N (A) ⊆ A ⊆ Γw
N (A), in general.

3.1 Lemma. For each N , and each open subset A of FN , the strong saturation Γs
N (A) of A is open in FN .

The weak saturation Γw
N (A) of A is open in FN if and only if the mapping σN is open.

Proof. This follows from Theorem 10 of [7, p. 97], together with the fact that each σN is a closed mapping.
�

For various notions of continuity for set-valued mappings, see [1,2,6,8,9,10]. In particular, observe that
the mapping ΓN : FN → K0(FN ) is:
• lower semi-continuous if and only if, for each open A ⊆ FN , the weak saturation Γw

N (A) of A is open in
FN .
• upper semi-continuous if and only if, for each open A ⊆ FN , the strong saturation Γs

N (A) of A is open in
FN .
• continuous if and only if it is both upper and lower semi-continuous.
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3.2 Lemma. For each N , the set mapping ΓN : FN → K0(FN ) is upper semi-continuous. Thus, the
mapping ΓN is continuous if and only if it is lower semi-continuous, i.e., the mapping σN is open. This
holds, for example, if SN is discrete.

Proof. The result follows from the definitions and Lemma 3.1, as well as, for example, Theorems 7.1.4 and
7.1.7 of [8, pp. 74-75]. �

For each N , we have the continuous function CN : FN → R and the upper semi-continuous set mapping
ΓN : FN → K0(FN ). Let C∗N (x1, . . . , xN ) denote the (attained) minimum value of CN on ΓN (x1, . . . , xN )
and let Γ∗N (x1, . . . , xN ) denote the set of (y1, . . . , yN ) ∈ ΓN (x1, . . . , xN ) which attain this minimum value.
This set is compact and non-empty. We thus obtain mappings C∗N : FN → R and Γ∗N : FN → K0(FN ). Note
that these mappings are constant on equivalence classes, i.e., they may be viewed as mappings defined on
SN . In particular, we obtain the set mapping Φ∗N ◦ σN which satisfies

Φ∗N (σN (x1, . . . , xN )) = Γ∗N (x1, . . . , xN ), ∀(x1, . . . , xN ) ∈ FN .

3.3 Lemma. Suppose the set mapping ΓN is lower semi-continuous. Then the function C∗N is continuous
and the set mapping Γ∗N is upper semi-continuous.

Proof. These properties follow immediately from the previous lemma and the (minimum version of the)
Maximum Theorem of [2, p. 116]. See also Corollaries 9.2.6 and 9.2.7 of [8]. �

3.4 Lemma. Suppose the set mapping ΓN is lower semi-continuous. Then the subset F e
N of FN is compact

and non-empty.

Proof. By the previous lemma, Γ∗N is upper semi-continuous. From Theorem 3 of [2, p.110], we have that
the subset Γ∗N (FN ) of FN given by

Γ∗N (FN ) = ∪
{

Γ∗N (x1, . . . , xN ) : (x1, . . . , xN ) ∈ FN

}
=

⋃
s∈SN

Φ∗N (s)

is compact. It is also non-empty. But F e
N = Γ∗N (FN ), ∀N. This completes the proof. �

The following is our first main result. It generalizes Lemma 3.5 of [13] and in particular includes continuous
action spaces.

3.5 Theorem. Suppose that there exists a subsequence {ΓNk
}∞k=1 of the sequence {ΓN}∞N=1 for which each

ΓNk
is lower semi-continuous, i.e., σNk

is open. Then efficient solutions exist for our problem, i.e., the set
Xe is a non-empty, compact subset of X.

Proof. Since

Xe
Nk

= F e
Nk

×
∏

j=N+1

Yj ,

it follows that the Xe
Nk

are also compact and non-empty in Y . But they are also monotonically decreasing.
Hence, their intersection is non-empty, i.e.,

Xe =
∞⋂

N=1

Xe
N =

∞⋂
k=1

Xe
Nk

is compact and non-empty. �

3.6 Lemma. Suppose that for each j, we have that Yj(sj−1) = Yj , ∀sj−1 ∈ Sj−1. Then

Fj = Fj−1 × Yj =
j∏

i=1

Yi, and Dj = Sj−1 × Yj , ∀j.

Proof. Proceed by induction. �

The following is our second main result. It shows that Xe is non-empty in an important special case.
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3.7 Theorem. Suppose that, for each j, Yj(sj−1) = Yj , ∀sj−1 ∈ Sj−1. If each fj is open on Dj, then
each σj is open on Fj, and the set Xe is a non-empty, compact subset of X.

Proof. For j = 1, we have that σ1(x1) = f1(s0, x1), so that σ1 is open on F1 = Y1, since f1 is open. Now
suppose σj−1 is open. By Lemma 3.6, Fj = Fj−1×Yj , ∀j. In this event, σj is the composition of σj−1×1j

followed by fj , where 1j is the identity map on Yj . If U is an arbitrary open subset of Y1 × · · · × Yj−1, and
V is an arbitrary open subset of Yj , then U × V is an arbitrary basic open subset of Y1 × · · · × Yj , and

Fj ∩ (U × V ) = (Fj−1 × Yj) ∩ (U × V ) = (Fj−1 ∩ U)× (Yj ∩ V ) = (Fj−1 ∩ U)× V

is an arbitrary basic open subset of Fj . Moreover,

(σj−1 × 1j)
(
(Fj−1 × Yj) ∩ (U × V )

)
= σj−1(Fj−1 ∩ U)× V,

where Fj−1 ∩ U is a typical open subset of Fj−1. Since σj−1 is an open mapping on Fj−1, we have that
σj−1(Fj−1 ∩U) is an open subset of Sj−1. Hence, Dj ∩ (σj−1(Fj−1 ∩U)×V ) is an open subset of Dj . Since
fj is an open mapping on Dj by hypothesis, it follows that σj is also open. This completes the proof by
induction. �

Remark. Note that if Yj(sj−1) = Gj , ∀sj−1 ∈ Sj−1, where Gj is a closed subset of Yj , then there is no
loss of generality in assuming Gj = Yj , since the decisions Yj\Gj will not be used.

In view of the previous discussion, and the needs of what follows, it is desirable to have a general sufficient
condition for an onto mapping to be open - for example, each σj . Let V and W be first-countable topological
spaces and g : V → W an onto mapping. Let {An}∞n=1 be a sequence of non-empty subsets of V . Define
lim supn An to be the (closed) subset of V which is the set of all cluster points of the An, i.e., v ∈ lim supn An

if and only if there exists a subsequence {Ank
}∞k=1 of {An}∞n=1, and a corresponding sequence {vk}∞k=1 in V

such that vk ∈ Ank
∀k, and limk→∞ vk = v. Analogously, define lim infn An to be the (closed) subset of

V which is the set of all limit points of the An, i.e., v ∈ lim supn An if and only if there exists a sequence
{vn}∞=1 in V such that vn ∈ An, ∀n, and limn→∞ vn = v. In general, lim infn An ⊆ lim supn An. We write

lim
n

An = A ⊆ V if lim inf
n

An = lim sup
n

An = A, i.e., lim sup
n

An ⊆ lim inf
n

An = A

[9,10].

3.8 Theorem. The mapping g is open if, for each convergent sequence limn→∞ wn = w in W , we have
g−1(w) ⊆ lim supn g−1(wn).

Proof. Suppose g is not open. Then there exists an open subset U of V for which g(U) is not open in W ,
i.e., W\g(U) is not closed in W . Then there exists a convergent sequence limn wn = w in W such that
wn /∈ g(U), ∀n, while w ∈ g(U). Since w ∈ g(U), there exists v ∈ U such that g(v) = w, i.e. v ∈ g−1(w).
By hypothesis, g−1(w) ⊆ lim supn g−1(wn). Thus, there exists a subsequence {wnk

}∞k=1 of {wn}∞n=1, and
corresponding sequence {vk}∞k=1 in V such that vk ∈ g−1(wnk

), ∀k, and limk vk = v. Then vk /∈ U, ∀k; if
not, vk ∈ U implies wnk

= g(vk) ∈ g(U), which is a contradiction. Since V \U is closed and vk ∈ V \U, ∀k,
it follows that v ∈ V \U , i.e., v /∈ U , a contradiction. �

Next, we turn to the question of uniqueness in the presence of existence. Since each Yj is a compact
Hausdorff space, it is metrizable. Similarly for each Sj . Let dj ≤ 1 denote such a metric, for each j, and let
0 < βj < 1 be such that

∑∞
j=1 βj < ∞, with β = (β1, β2, . . . ) and βN = min1≤j≤N βi. Then the product

space admits the metric d given by

dβ(x, y) =
∞∑

j=1

βjdj(xj , yj).

Note that, for each N , the induced metric dN
β on Y1 × · · · × YN is given by

dN
β

(
(x1, . . . , xN ), (y1, . . . , yN )

)
=

N∑
j=1

βjdj(xj , yj),

which is equivalent to the metric dN on Y1 × · · · × YN given by

dN
(
(x1, . . . , xN ), (y1, . . . , yN )

)
=

N∑
j=1

dj(xj , yj),

since βNdN ≤ dN
β ≤ dN . Furthermore, let diamβ(A) denote the diameter of subset A ⊆ Y with respect to

dβ . If A ⊆ Y1 × · · · × YN , let diamN (A) denote the diameter of A with respect to dN , and let diamN
β (A) the

diameter with respect to dN
β .
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3.9 Lemma. If limN→∞ diamN (F e
N ) = 0, then limN→∞ diamβ(Xe

N ) = 0.

Proof. Since

Xe
N = F e

N ×
∞∏

N+1

Yj ,

we have that

diamβ(Xe
N ) = diamN

β (F e
N ) +

∞∑
j=N+1

βj , ∀N,

which completes the proof, since limN→∞ diamN
β (F e

N ) = 0, if this is the case for diamN (F e
N ). �

3.10 Theorem. Suppose Xe 6= ∅. Then there exists a unique efficient optimum for our problem, i.e., Xe

is a singleton, if limN→∞ diamN (F e
N ) = 0.

Proof. Suppose the condition of the theorem holds. Then, by Lemma 3.9 and [6, p. 14], Xe is a singleton.
�

We next give an algorithmic procedure for constructing the unique efficient strategy, if such is the case.
Let K0(Y ) the set of non-empty, compact subsets of Y . Since Y is compact with metric dβ , the corresponding
Hausdorff metric Dβ is defined on K0(Y ), which is compact in the resulting metric topology [1, Theorem
3.2.4]. Moreover, metric convergence in K0(Y ) is equivalent to Kuratowski set convergence [10, p. 49]. Since
the XN , Xe

N ∈ K0(Y ) are descending with intersections equal to X, Xe ∈ K0(Y ) respectively, it follows
that limN→∞XN = X and limN→∞Xe

N = Xe in the sense of Kuratowski [9], i.e.,

lim sup
N

XN = lim inf
N

XN = X and lim sup
N

Xe
N = lim inf

N
Xe

N = Xe.

Consequently, limN→∞Dβ(Xe
N , Xe) = 0. Thus, every element z of Xe is the componentwise limit of some

sequence chosen from the Xe
N . In particular, if there is a unique efficient strategy, i.e., Xe = {z}, then z is

the componentwise limit of every sequence {zN}∞N=1 chosen from the Xe
N , for all j, i.e., zN

j → zj in Yj , as
N →∞.

Recall that
Xe

N = F e
N × YN+1 × YN+2 × · · · , ∀N,

and the F e
N can be determined by the DP procedure discussed above. For each N , let (zN

1 , . . . , zN
N ) be any

element of F e
N . Then, for each j, zj is the limit of the sequence {zN

j }∞N=j . In this way, we may successively
approximate z1, z2, . . . .

Finally in this section, under certain additional hypotheses, we obtain a measure of the rate of convergence
of XN to X. By definition, the Hausdorff metric Dβ is given by

Dβ(A,B) = max
(

max
x∈A

dβ(x,B), max
x∈B

dβ(x, A)
)

, ∀A,B ∈ K0(Y ).

Since X ⊆ XN , ∀N , it follows that dβ(x,XN ) = 0, ∀x ∈ X. Thus,

Dβ(XN , X) = max
x∈XN

dβ(x, X)), ∀N.

Now let x ∈ XN , so that x = (x1, . . . , xN , xN+1, . . . ), with (x1, . . . , xN ) ∈ FN . Since all finite horizon
strategies are infinitely feasibly extendable, there exists xN ∈ X such that (xN

1 , . . . , xN
N ) = (x1, . . . , xN ).

This implies that

dβ(x,X) = min
y∈X

dβ(x, y) ≤ dβ(x, xN ) =
∞∑

j=N+1

βjdj(xj , x
N
j ), ∀x ∈ XN .

Recall that

(i) for each j, Yj = ∪{Yj(sj−1 : sj−1 ∈ Sj−1}, i.e., every available decision in period j is feasible for some
feasible state ending period j − 1.

For the remainder of this section, we make the following additional assumptions:

(ii) for each j, and sj−1 ∈ Sj−1, the mapping fj(sj−1, ·) : Yj(sj−1) → Sj is one-to-one with range given by
some Sj(sj−1) ⊆ Sj , and inverse mapping fj(sj−1, ·)−1;
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(iii) for each j, the mappings {fj(sj−1, ·)−1 : σj−1 ∈ Sj−1} satisfy a uniform Lipschitz condition of the form

dj

(
fj(sj−1, ·)−1(sj), fj(s′j−1, ·)−1(s′j)

)
≤ λj(ρj−1(sj−1, s

′
j−1) + ρj(sj , s

′
j)

)
,

for all sj−1, s′j−1 ∈ Sj−1, ∀sj , s′j ∈ Sj , where λj > 0, ρj is the metric on Sj and the right hand side defines
the corresponding metric ρj−1 × ρj on Sj−1 × Sj .

Since, xN ∈ X, it follows that sN
j−1 = σj−1(xN

1 , . . . , xN
j−1) ∈ Sj−1, ∀j > N + 1. However, in general,

xj is just an arbitrary element of Yj , ∀j > N + 1. By property (i), there exists sj−1 ∈ Sj−1 such that
sj−1 = σj−1(x1, . . . , xj), ∀j > N + 1. Hence, (sj−1, xj), (sN

j−1, x
N
j ) ∈ Dj , with

sj = fj(sj−1, xj) ∈ Sj and sN
j = fj(sN

j−1, x
N
j ) ∈ Sj , ∀j > N + 1.

By property (ii),

xj = fj(sj−1, ·)−1(sj) and xN
j = fj(sN

j−1, ·)−1(sN
j ), ∀j > N + 1,

and, by property (iii),

dj(xj , x
N
j ) = dj

(
fj(sj−1, ·)−1(sj), fj(sN

j−1, ·)−1(sN
j )

)
≤ λj

(
ρj−1(sj−1, s

N
j−1) + ρj(sj , s

N
j )

)
≤ λj

(
diam(Sj−1) + diam(Sj)

)
.

Hence,

dβ(x, xN ) ≤
∞∑

j=N+1

βjλj

(
diam(Sj−1) + diam(Sj)

)
≤

∞∑
j=N+1

βjλj

(
diam(Sj−1) + diam(Sj)

)
, ∀N.

Consequently,

Dβ(XN , X) = max
x∈XN

dβ(x, X)

≤ max
x∈XN

(
min
y∈X

dβ(x, y)
)

≤ max
x∈XN

dβ(x, xN )

≤
∞∑

j=N+1

βjλj

(
diam(Sj−1) + diam(Sj)

)
, ∀N.

Since the βj are arbitrary, while the λj and the diam(Sj) are problem data, we may choose the βj such that

∞∑
j=1

βjλj

(
diam(Sj−1) + diam(Sj)

)
< ∞.

In particular, if supj diam(Sj) < ∞, then choose the βj such that
∑∞

j=1 βjλj < ∞. Finally, if supj λj < ∞,
then simply let βj = rj , for any choice of 0 < r < 1, ∀j.

Obviously, all the previous results hold for any problem in which the decision spaces are all finite and
discrete, in which case the mappings σN are automatically open, so that Xe 6= ∅. If it is also a singleton
z = (zj)∞j=1, we may successively construct the components zj precisely. In the next section, we apply our
results to a case where the action spaces are non-discrete.

4. Application to Production Planning

Consider a production planning problem involving a single product [4]. Suppose:

• there is no imposed maximum possible production level in each period j;
• there is no backlogging permitted in each period j;
• 0 ≤ dj ∈ R denotes the deterministic product demand level in period j;
• 0 ≤ xj denotes the production decision level in period j;
• 0 ≤ sj ∈ R denotes the resulting inventory level ending period j;
• the maximum allowable inventory in period j is bj > 0, so that 0 ≤ sj ≤ bj , ∀j;
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• there is zero inventory starting period 1;
• pj : R+ → R+ denotes the production cost function in period j;
• hj : R+ → R+ denotes the inventory holding cost function in period j;

We will now employ the theory developed in the previous sections of this paper to establish the existence of
an efficient solution for this problem. Since efficient solutions are also average optimal under mild regularity
conditions [13], they enjoy strong properties of optimality for undiscounted problems. This existence proof
for an efficient solution to this production planning problem under continuous controls is the first we are
aware of for this model.

Clearly, for each j, the state space Sj = [0, bj ], ∀j, with state transition function given by

fj(sj−1, yj) = sj−1 + yj − dj .

Given inventory 0 ≤ sj−1 ≤ bj ending period j − 1, decision yj > 0 is feasible for sj−1 if and only if the
resulting inventory sj−1 + yj − dj satisfies 0 ≤ sj−1 + yj − dj ≤ bj . Thus, for 0 ≤ sj−1 ≤ bj , the set Yj(sj−1)
of feasible decisions for sj−1 is the set of all yj belonging to the compact interval[

max{0, dj − sj−1}, bj + dj − sj−1

]
,

and consequently, the set Yj of all feasible decisions in period j is the set of all yj belonging to the compact
interval [

max{0, dj − bj}, bj + dj

]
.

For each (y1, . . . , yj), the resulting ending state is given by

σj(x1, . . . , xj) =
j∑

i=1

xi −
j∑

i=1

di,

and (x1, . . . , xj) is equivalent to (y1, . . . , yj) if and only if

j∑
i=1

xi =
j∑

i=1

yi.

It follows that Fj is the set of all (y1, . . . , yj) satisfying

max{0, dj − σi−1(y1, . . . , yi−1)} ≤ yi ≤ bi + di − σi−1(y1, . . . , yi−1), ∀1 ≤ i ≤ j,

with σi−1(y1, . . . , yi−1) = 0, for i = 1. Alternately, since

σi(y1, . . . , yi) = σi−1(y1, . . . , yi−1) + yi − di, ∀2 ≤ i ≤ j,

and σ1(y1) = y1 − d1, the feasible region Fj is the set of all (y1, . . . , yj) such that yi > 0 and

0 ≤ σi(y1, . . . , yi) ≤ bi, ∀1 ≤ i ≤ j.

The feasible region F is determined analogously. Since the functions x → max{0, bj −x} and x → bj + d−x
are continuous, it follows that our production planning model has the closed graph property. The infinite
horizon optimization problem is then given by:

max
∞∑

j=1

[
pj(xj) + hj(σj−1(x1, . . . , xj−1))

]
subject to (x1, x2, . . . ) ∈ F.

4.1 Theorem. For each j, the mapping σj : Fj → Sj is open. Hence, there exists an efficient solution for
our production planning problem.

Proof. We apply Theorem 3.8. Fix j and let limk→∞ sk
j = sj be a convergent sequence in Sj = [0, bj ].

Then σ−1
j (sk

j ) ⊆ Fj , ∀k, and σ−1
j (sj) ⊆ Fj . We next show that σ−1

j (sj) ⊆ lim supk σ−1
j (sk

j ). Passing to a
subsequence if necessary, we may assume that sk

j ↓ sj or sk
j ↑ sj monotonically, as k →∞.

Let (y1, . . . , yj) ∈ σ−1
j (sj). Then σj(y1, . . . , yj) = sj and

0 ≤ σi(y1, . . . , yi) =
i∑

n=1

yn −
i∑

n=1

dn ≤ bj , ∀1 ≤ i ≤ j.
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Suppose sk
j ↓ sj , as k →∞. If sj = bj , then necessarily sk

j = bj , ∀k, so that σ−1
j (sk

j ) = σ−1
j (sj), ∀k,

and σ−1
j (sj) = lim supk σ−1

j (sk
j ) = σ−1

j (sk
j ), ∀k.

Now suppose 0 ≤ sj < bj . If there exists a subsequence of {sk
j }∞k=1 which is equal to sj , then proceed as

in the previous case. Thus, we may also assume that sk
j > sj , ∀k. Define yk

j = yj + sk
j − sj , ∀k. Then

max{0, dj − σi−1(y1, . . . , yj−1)} ≤ yk
j ≤ bj + dj − σi−1(y1, . . . , yj−1) and

σj(y1, . . . , yj−1, y
k
j ) =

j−1∑
i=1

yi + yk
j −

j∑
i=1

di =
j∑

i=1

yi + sk
j − sj −

j∑
i=1

di = sk
j , ∀k,

where 0 ≤ sj ≤ sk
j ≤ bj . Since

0 ≤ σi(y1, . . . , yi) =
i∑

n=1

yn −
i∑

n=1

dn ≤ bj , ∀1 ≤ i ≤ j − 1,

also, it follows that (y1, . . . , yj−1, y
k
j ) ∈ σ−1

j (sk
j ), ∀k. Clearly, limk→∞(y1, . . . , yj−1, y

k
j ) = (y1, . . . , yj−1, yj),

for the resulting subsequence, so that (y1, . . . , yj−1, yj) ∈ lim supk σ−1
j (sk

j ).
Next suppose sk

j ↑ sj , as k → ∞. The proof here is similar to that of the previous case. We leave the
details to the interested reader.

�

Theorem 4.1 assures the existence of an efficient solution to the production planning problem under very
general conditions, including essentially arbitrary cost and demand profiles.

Finally, observe that, for this case, the Lipschitz constants λj = 1, ∀j, so that

Dβ(XN , X) ≤
∞∑

i=N+1

ri, ∀0 < r < 1.
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