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Abstract

In this paper we investigate the properties of the sampled version of the fictitious play
algorithm, familiar from game theory, for games with identical payoffs, and propose a heuristic
based on fictitious play as a solution procedure for discrete optimization problems of the form
max{u(y) : y = (y1, . . . , yn) ∈ Y1 × · · · × Yn}, i.e., in which the feasible region is a Cartesian
product of finite sets Yi, i ∈ N = {1, . . . , n}. The contributions of this paper are two-fold.
In the first part of the paper we broaden the existing results on convergence properties of the
fictitious play algorithm on games with identical payoffs to include an approximate fictitious play
algorithm which allows for errors in players’ best replies. Moreover, we introduce sampling-based
approximate fictitious play which possesses the above convergence properties, and at the same
time provides a computationally efficient method for implementing fictitious play. In the second
part of the paper we motivate the use of algorithms based on sampled fictitious play to solve
optimization problems in the above form with particular focus on the problems in which the
objective function u(·) comes from a “black box,” such as a simulation model, where significant
computational effort is required for each function evaluation.
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1 Introduction

In this paper we investigate the properties of the sampled version of the fictitious play algorithm,
familiar from game theory, for games with identical payoffs, and propose a heuristic based on
fictitious play as a solution procedure for optimization problems of the form

max{u(y) : y ∈ Y},

where the feasible region Y is a Cartesian product of finite sets Y i, i ∈ N = {1, . . . , n}: Y =
Y1 × · · · × Yn. In view of this representation, this problem can be restated as

max{u(y) : y = (y1, . . . , yn) ∈ Y1 × · · · × Yn}. (1)

The contributions of this paper are two-fold. In the first part of the paper we broaden the existing
results on convergence properties of the fictitious play algorithm on games with identical payoffs
to include approximate fictitious play, which allows for errors in the players’ best replies. More-
over, we introduce sampling-based approximate fictitious play which retains the above convergence
properties, and at the same time provides a computationally efficient method for implementing
fictitious play. In the second part of the paper we illustrate the usefulness of the algorithm based
on sampled fictitious play to solve problems of the form (1). We will be particularly interested in
the instances of (1) in which the objective function u(·) does not possess a closed-form expression,
but instead comes from, in effect, a “black box,” such as a simulation model, and thus requires
significant computational effort for each function evaluation. We do not make any assumptions on
the objective function, or the problem in general, other than that the variables, or, more broadly,
decisions, can be partitioned in such a way that the feasible region becomes a Cartesian product,
as above.

Fictitious play, first introduced by Brown (1951) and Robinson (1951), is an iterative procedure
applied to a finite non-cooperative game in which each of the players is faced with selecting a strat-
egy from a finite set of available strategies. At every iteration of fictitious play, each player chooses
a strategy which is a best reply (with respect to that player’s payoff function) to the other players’
strategies, assuming they will be chosen based on the empirical probability distribution induced
by the historical frequency of their decisions in all previous iterations. Thus, fictitious play was
designed to mimic the behavior of the players learning each others’ strategies. Whether this pro-
cedure, proposed as an algorithmic way of finding mixed equilibria of the underlying game, indeed
converges to an equilibrium solution has been studied under various assumptions. In particular,
Monderer and Shapley (1996) demonstrated that fictitious play indeed converges to equilibrium for
games of identical interest, i.e., in which all players have identical payoff functions.

Fictitious play for a game with identical payoffs can be viewed as similar in spirit to coordinate-
search algorithms for optimization, in that the singe-variable (i.e., player) optimizations performed
at each iteration are the main tool of the algorithm. However, in the absence of additional assump-
tions on the payoff function, these single-player optimizations can become prohibitively expensive,
in the extreme requiring evaluations of the payoff for all combinations of strategies. This effec-
tively would result in a pure enumeration and evaluation of all feasible solutions. In this paper,
we describe a way to sidestep these difficulties by replacing exact best reply computations with an
approximation based on sampling. We show that the resulting error of approximation disappears
in the limit as the number of iterations grows, and thus convergence to equilibrium of the resulting
sampled fictitious play algorithm is maintained for games with identical payoffs.
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In the second part of the paper we discuss the merits of using sampled fictitious play as a
heuristic for solving optimization problems of the form (1), specifically in cases when the objective
function u(·) possesses no special properties and requires extensive computational effort for each
function call. Such complex general problems arising in a variety of applications present formidable
challenges, and a vast array of optimization heuristics already exists; we will not attempt to review
them here. Some of these are based on naturally self-optimizing systems. For example, simulated
annealing, which as its name implies, comes from an analogy to the annealing process of met-
als (Kirkpatrick, Gelatt and Vecchi, 1983), is used to solve discrete optimization problems. The
framework for genetic algorithms, which can be thought of as evolutionary processes, was first
proposed by Holland (1975) and Jong (1975), and has also been successfully applied to discrete
optimization (Goldberg, 1989). The metaphors, of course, do not by themselves establish the value
or effectiveness of the algorithms, although they did motivate in part their development. With
the success of these algorithms motivated by “natural” optimization methods, a natural direction
might be to examine a “behavioral” optimization method, such as fictitious play. With fictitious
play we animate the components of a system to play a non-cooperative game with identical payoffs,
representing the performance of the system.

To be more specific, we can view the optimization problem (1) as a game Γ in which n players,
each player i ∈ N having the finite set of strategies Y i, have identical payoffs, i.e., u1(y) = · · · =
un(y) = u(y). Note that every optimal solution of (1) corresponds to an assignment of pure
strategies that is an equilibrium of Γ. Conversely, every pure-strategy equilibrium of Γ is a local
optimum of (1) in the sense that no component yi can improve the objective function by unilaterally
changing to a different pure or mixed strategy. In the second part of this paper we will use sampled
fictitious play as an algorithmic device to obtain a Nash equilibrium of the mixed extension of Γ,
and as an optimization heuristic to guide the search of the feasible set of (1) .

The practical potential of a fictitious play approach to optimization has already been demon-
strated in Garcia, Reaume and Smith (2000). Their use of fictitious play to find system-optimal
routings in a large scale dynamic traffic network yielded substantial reductions in computational
requirements at no deterioration in quality of solution obtained. However, in their implementation,
simplifications were made in the fictitious play algorithm in order to ensure tractability. In the first
part of this paper we, in effect, establish a rigorous foundation for a version of fictitious play close
in spirit to that employed by them, which can be efficiently implemented as a heuristic for such
complex optimization problems. Additionally, we elaborate on properties of optimization problems
of the form (1) which support sampled fictitious play as a viable heuristic for their solution. As we
discuss in Section 5, problems in which we are able to solve single-variable optimization subprob-
lems (i.e., compute best replies) efficiently stand to benefit most from a fictitious play paradigm.
Additionally, in problems for which evaluations of the objective function require significant compu-
tational effort, parallel computation of best replies allows for a significant reduction in the running
time of the algorithm, as illustrated in the dynamic traffic routing problem above, and a protocol
selection problem for a situation awareness application, which we also summarize (see also Lambert
and Wang, 2003).

This paper is organized as follows: in Section 2 we review the notions of a game in strategic form,
a Nash equilibrium, and an approximate Nash equilibrium, as well as provide several preliminary
results. We end the section with the definition of εt-fictitious play, which provides a structured
way of studying approximate implementations of the fictitious-play algorithm as well as a way
to measure the quality of such approximations. Section 3 introduces sampled fictitious play as
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means for practical implementation of the fictitious play algorithm. This section contains the
main theoretical results of this paper. In particular, Theorem 4 gives conditions under which an
εt-fictitious play process converges in beliefs to equilibrium in finite games with identical payoffs.
This result is then used in Theorem 5 to show that every sampled fictitious play process, with
sample sizes growing sufficiently fast, converges in beliefs to equilibrium with probability 1 in finite
games with identical payoffs. Section 4 addresses the question of uniqueness of a limit point of the
sequence generated by the algorithm. Section 5 motivates and discusses the use of fictitious play
as an optimization tool, and in particular, Subsection 5.2 presents two computational examples.

2 Games in Strategic Form and Fictitious Play

Following Monderer and Shapley (1996), let Γ be a finite game in strategic form with the set
of players N = {1, 2, . . . , n}. We denote the finite set of strategies of player i ∈ N by Y i, and let
Y = Y1 × Y2 × · · · × Yn. The payoff, or utility, function of player i ∈ N is ui : Y → R, where R
denotes the set of real numbers.

For i ∈ N , let ∆i be the set of mixed strategies of player i. That is,

∆i =

f i : Y i → [0, 1] :
∑

yi∈Yi

f i(yi) = 1

 .

Each f i ∈ ∆i can be viewed as an assignment of probabilities, or beliefs, to the elements of Y i; in
particular, with a slight abuse of notation we identify the pure strategy yi ∈ Y i with the extreme
point of ∆i which assigns probability 1 to yi. Set ∆ = ∆1 ×∆2 × · · ·∆n.

For i ∈ N , we extend ui to be the payoff function of player i in the mixed extension of Γ. That
is, for any f ∈ ∆,

ui(f) = ui(f1, f2, . . . , fn) =
∑
y∈Y

ui(y1, y2, . . . , yn)f1(y1)f2(y2) · · · fn(yn), (2)

which can be interpreted as the expected payoff of player i with the players choosing their strategies
according to the probability distributions characterized by the beliefs f1, . . . , fn. Note that we have
assumed players choose their strategies independently.

Let g ∈ ∆, and let ε ≥ 0. We say that g is an ε-equilibrium if for each i ∈ N

ui(g) ≥ ui(f i, g−i)− ε ∀f i ∈ ∆i,

where (f i, g−i) = (g1, . . . , gi−1, f i, gi+1, . . . , gn). A Nash equilibrium is a 0-equilibrium, and will be
simply referred to as an equilibrium.

Denote by Kε the set of all ε-equilibria, and by K the set of all equilibria of Γ, and denote by
‖ · ‖ the Euclidean norm on the Euclidean space that may be viewed as containing ∆. For δ > 0
set

Bδ(K) = {g ∈ ∆ : min
f∈K

‖g − f‖ < δ}.

A belief path is a sequence (f(t))∞t=1 in ∆. We say that a belief path (f(t))∞t=1 converges to
equilibrium if each accumulation point of (f(t))∞t=1 is an equilibrium; that is, if for every δ > 0
there exists an integer T such that f(t) ∈ Bδ(K) for all t ≥ T .
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Two propositions below contain claims useful in studying convergence properties of belief paths.
These claims were made without proof in Monderer and Shapley (1996); for completeness, we
provide our proofs in the appendix.

Proposition 1 Suppose the belief path (f(t))∞t=1 is such that for every ε > 0 there exists an integer
T such that f(t) ∈ Kε for every t ≥ T . Then the belief path (f(t))∞t=1 converges to equilibrium.

We say that the belief path (f(t))∞t=1 converges to equilibrium in the Cesaro mean if

lim
T→∞

card ({1 ≤ t ≤ T : f(t) /∈ Bδ(K)})
T

= 0 for every δ > 0, (3)

where card(A) is the cardinality of the set A. Clearly, convergence to equilibrium implies conver-
gence to equilibrium in the Cesaro mean. The following proposition gives a sufficient condition for
a belief path converging to equilibrium in the Cesaro mean.

Proposition 2 Suppose the belief path (f(t))∞t=1 is such that for every ε > 0,

lim
T→∞

card ({1 ≤ t ≤ T : f(t) /∈ Kε})
T

= 0. (4)

Then the belief path converges to equilibrium in the Cesaro mean.

A path in Y is a sequence (y(t))∞t=1 of elements of Y. To each path (y(t))∞t=1 we naturally
associate a belief path (fy(t))∞t=1 by letting

fy(t) =
1
t

t∑
s=1

y(s) for every t ≥ 1. (5)

In (5) the y(s)’s should be viewed as elements of ∆. Note that for any integer k ≥ 0,

fy(t + k) = fy(t) +
1

t + k

t+k∑
s=t+1

(y(s)− fy(t)) . (6)

We say that a path (y(t))∞t=1 converges in beliefs to equilibrium (in the Cesaro mean) if the associated
belief path (fy(t))∞t=1 defined by (5) converges to equilibrium (in the Cesaro mean). The following
lemma establishes the equivalence of these two types of convergence.

Lemma 3 (Monderer and Shapley 1996) For every game in strategic form, a path (y(t))∞t=1

converges in beliefs to equilibrium if and only if it converges in beliefs to equilibrium in the Cesaro
mean.

This lemma was stated, with a sketch of a proof, by Monderer and Shapley (1996) for a subset of
paths that are fictitious play processes, to be defined shortly. The above statement emphasizes that
the result can be established for any path (y(t))∞t=1. For completeness, we provide a detailed proof
in the appendix.

We now formally define a fictitious play process. For i ∈ N and for f ∈ ∆, let

vi(f) = max{ui(gi, f−i) : gi ∈ ∆i}.
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That is, vi(f) is the payoff of player i’s best response to the other players’ strategies f−i. Notice
from the definition of ui(f) that vi(f) can always be attained by an extreme point of ∆i, i.e.,
max{ui(gi, f−i) : gi ∈ ∆i} = max{ui(yi, f−i) : yi ∈ Y i}. A path (y(t))∞t=1 is a fictitious play process
if for every i ∈ N ,

ui(yi(t + 1), f−i
y (t)) = vi(fy(t)) for every t ≥ 1, (7)

i.e., yi(t+1) is a best response of player i to the mixed strategies of the other players, as represented
by the beliefs f−i

y (t).
For a sequence of vectors (εt)∞t=1, where εt ∈ Rn and εt ≥ 0 for all t, we say that a path (y(t))∞t=1

is an εt-fictitious play process if for every i ∈ N ,

ui(yi(t + 1), f−i
y (t)) ≥ vi(fy(t))− εi

t for every t ≥ 2. (8)

The εi
t’s can be viewed as player errors in their respective optimizations (i.e., computations of best

replies). A standard fictitious play process can be characterized as an εt-fictitious play process with
εt = 0 for every t ≥ 1, i.e., the players make no errors.

As above, we say that a (εt-)fictitious play process (y(t))∞t=1 converges in beliefs to equilibrium
(in the Cesaro mean) if the associated belief path converges to equilibrium (in the Cesaro mean).

3 Approximate Fictitious Play and Sampled Fictitious Play Algo-
rithms

In this section we focus our attention on games with identical payoffs (also referred to as games
with identical interests, or common utility games), i.e., games in strategic form in which all the
players share a common payoff function u1(·) = · · · = un(·) = u(·). Monderer and Shapley (1996)
demonstrated that for every finite game with identical payoffs, every fictitious play process con-
verges to equilibrium. Based on this result, a straightforward algorithmic approach for computing
equilibria of any such game can be proposed in the following form:

Fictitious Play Algorithm

Initialization: Set t = 1 and select y(1) ∈ Y = Y1 × Y2 × . . .× Yn arbitrarily; set fy(1) = y(1).

Iteration t ≥ 1: Given fy(t), find

yi(t + 1) ∈ argmax
yi∈Yi

ui(yi, f−i
y (t)), i = 1, . . . , n. (9)

Set fy(t + 1) = fy(t) + 1
t+1(y(t + 1)− fy(t)) and increment t by 1.

However, a straightforward implementation of the above algorithm will usually be impracti-
cal. Performing the n individual player optimizations (9) in the iterative step of the algorithm
can be prohibitively expensive — in the extreme, if the vector fy(t) is strictly positive, computing
u(yi, fy(t)−i) can require evaluating the payoff function u(·) for all combinations of pure strategies!
We propose to sidestep these difficulties by replacing exact computations in (9) with an approxi-
mation based on sampling. We will later show that the resulting error of approximation disappears
in the limit as the number of iterations grows.
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3.1 Approximate Fictitious Play

We begin by showing that an εt-fictitious play process will converge to a Nash equilibrium
in finite games with identical payoffs, if the sequence (εt)∞t=1 converges to zero fast enough. The
following theorem is an extension of a theorem first proved by Monderer and Shapley (1996). The
original result applied to fictitious play processes (i.e., εt-fictitious play processes with εt = 0) in
finite games with identical payoffs, and thus is a special case of our Theorem 4. The proof of
Theorem 4 is in the same spirit as the proof of Monderer and Shapley.

Theorem 4 Let Γ be a finite game in strategic form with identical payoff functions u1(·) = · · · =
un(·) = u(·). Then any εt-fictitious play process with maxi{εi

t} = O
(

1
tα

)
, for some α > 0, converges

in beliefs to equilibrium.

Proof: Since the payoff functions in Γ are identical, the payoff functions ui in the mixed extension
of Γ defined by (2) are also identical, and will be denoted by u. Note that u is a multi-linear function;
in particular, for any player i ∈ N , if f ∈ ∆, gi ∈ ∆i, and λ ∈ [0, 1] then f i + λ(gi − f i) ∈ ∆i and

u(f i + λ(gi − f i), f−i) = u(f i, f−i) + λ(u(gi, f−i)− u(f i, f−i)). (10)

Let (fy(t))∞t=1 be the belief process associated with an εt-fictitious play process (y(t))∞t=1. Also,
let L = maxf∈∆ |u(f)|.

Equation (6) implies that

u(fy(t + 1)) = u

(
f1

y (t) +
1

t + 1
(y1(t + 1)− f1

y (t)), f2
y (t) +

1
t + 1

(y2(t + 1)− f2
y (t)),

. . . , fn
y (t) +

1
t + 1

(yn(t + 1)− fn
y (t))

)
.

Applying the multi-linearity property (10) repeatedly, we obtain

u(fy(t + 1)) =u(fy(t)) +
1

t + 1

n∑
i=1

[
u(yi(t + 1), f−i

y (t))− u(fy(t))
]

+
(

(3n − (2n + 1)) terms of the form± 1
(t + 1)j

u(g) with j ≥ 2, g ∈ ∆
)

.

Each of the latter terms is bounded below by − 1
(t+1)2

L, so by (8),

u(fy(t + 1))− u(fy(t)) ≥
1

t + 1

n∑
i=1

[
vi(fy(t))− u(fy(t))− εi

t

]
− 3nL

(t + 1)2
. (11)

For t ≥ 1, set

at =
n∑

i=1

[vi(fy(t))− u(fy(t))]. (12)

Notice that each term in the above summation is nonnegative, and, in particular, at ≥ 0 for every
t ≥ 1. By (11),

at

t
≤ t + 1

t
(u(fy(t + 1))− u(fy(t))) + 3nL

1
t(t + 1)

+
n maxi{εi

t}
t

. (13)
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We will establish that
∑∞

t=1 at/t = limT→∞
∑T

t=1 at/t < ∞. First, notice that

∞∑
t=1

1
t(t + 1)

=
∞∑

t=1

(
1
t
− 1

t + 1

)
= 1.

Next, consider

T∑
t=1

t + 1
t

(u(fy(t + 1))− u(fy(t)))

=
T−1∑
t=1

1
t(t + 1)

u(fy(t + 1)) +
T + 1

T
u(fy(T + 1))− 2u(fy(1)),

and hence
∞∑

t=1

t + 1
t

(u(fy(t + 1))− u(fy(t))) ≤ 4L.

Finally, since maxi{εi
t} → 0 at an asymptotic order of 1

tα for some α > 0, as t →∞,

∞∑
t=1

n maxi{εi
t}

t
< ∞,

since
∞∑

t=1

1
tα+1

≤ 1 +
∫ ∞

2

1
tα+1

dt < ∞ for α > 0.

Combining these bounds with (13), we conclude that

∞∑
t=1

at

t
< ∞. (14)

We next prove that

lim
T→∞

a1 + a2 + · · ·+ aT

T
= 0. (15)

For T ≥ 1, set bT =
∑∞

t=T (at/t). By (14), limT→∞ bT = 0. Therefore

lim
T→∞

b1 + b2 + · · ·+ bT

T
= 0,

which, via algebraic manipulation, implies

lim
T→∞

(
a1 + a2 + · · ·+ aT

T
+ bT+1

)
= lim

T→∞

b1 + b2 + · · ·+ bT

T
= 0.

Since limT→∞ bT+1 = 0, (15) follows.
Let ε > 0 be chosen arbitrarily. From (12) we conclude that if fy(t) /∈ Kε, then at ≥ ε.

Therefore,

card ({1 ≤ t ≤ T : fy(t) /∈ Kε}) ≤
1
ε

(a1 + a2 + · · ·+ aT ),
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and so
lim

T→∞

card ({1 ≤ t ≤ T : fy(t) /∈ Kε})
T

≤ 1
ε

lim
T→∞

a1 + a2 + · · ·+ aT

T
= 0.

Therefore (4) is satisfied, and the proof follows from Proposition 2 and Lemma 3.

Previous theorem guarantees convergence to the set of Nash equilibria as long as maxi{εi
t} → 0

at an asymptotic order of 1/tα, for some α > 0. This means the players need not start out as “good
optimizers” as long as they sufficiently improve over time. In the following subsection we propose
a mechanism based on statistical sampling which achieves this desired error reduction.

3.2 Sampled Fictitious Play

Recall that the components of the belief vector fy(t) can be viewed as components of a probabil-
ity distribution over the pure strategies of the players. From this perspective, the one-dimensional
optimization (9) can be viewed as

max
yi∈Yi

{EY −i(u(yi, Y −i))},

where Y −i is a random vector whose components, Y j , j 6= i, have probability distribution described
by f j

y (t), respectively.
We define the function Ū i

k(·, f−i
y (t)) : Y i → R by

Ū i
k(y

i, f−i
y (t)) =

k∑
j=1

ui(yi, Y −i
j (t))

k
, (16)

where Y −i
j (t), j = 1, . . . , k, are i.i.d. random vectors with the distribution given by f−i

y (t). Then
Ū i

k(y
i, f−i

y (t)) can be viewed as a sample mean (with sample size k) of player i’s payoff when using
strategy yi.

A typical iteration of the Sampled Fictitious Play Algorithm is as follows. At the beginning
of iteration t, a vector of beliefs fy(t) ∈ ∆ is given. For the sample size kt ≥ 1, we draw i.i.d.
random samples Yj(t), j = 1, . . . , kt, from the distribution given by fy(t), and let ūi

kt
(yi, f−i

y (t))
denote the resulting realization of Ū i

kt
(yi, f−i

y (t)) for i = 1, . . . , n. Each player chooses a “best
response” based on sample means (instead of the expectations), i.e., yi(t + 1) is chosen so that
yi(t + 1) ∈ argmax{ūi

kt
(yi, f−i

y (t)) : yi ∈ Y i}, and the belief vector is updated. Note that the
sampled mixed strategy will, by design, have a limited number of positive components, making the
computation of best replies an easier task.

The formal statement of the sampled fictitious play algorithm is presented below:

Sampled Fictitious Play Algorithm

Initialization: Set t = 1 and select y(1) ∈ Y = Y1 × Y2 × . . .× Yn arbitrarily; set fy(1) = y(1).

Iteration t ≥ 1: Given fy(t), select a sample size kt ≥ 1, and draw i.i.d. random samples Yj(t), j =
1, . . . , kt, from the distribution given by fy(t). Using the above sample, find

yi(t + 1) ∈ argmax
yi∈Yi

{ūi
kt

(yi, f−i
y (t))}, i = 1, . . . , n, (17)
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where ūi
kt

(yi, f−i
y (t)) is the realization of Ū i

kt
(yi, f−i

y (t)) as defined by (16). Set fy(t + 1) =
fy(t) + 1

t+1(y(t + 1)− fy(t)), increment t by 1 .

In the analysis of the above algorithm, the following consideration must be kept in mind: if
y(t) were defined by (9), (y(t))∞t=1 would be a deterministic sequence, assuming a deterministic tie
breaking rule for the single player optimizations, as would be the associated belief path (fy(t))∞t=1.
However, with sampling, (y(t))∞t=1 is now a stochastic process and we will denote the associated
(stochastic) belief process as (Fy(t))∞t=1. We will call the stochastic process (y(t))∞t=1 a sampled
fictitious play process. The reader should note that in equation (17) the sample mean was generated
conditional on F−i

y (t) = f−i
y (t).

The next theorem shows that it suffices to choose our sample sizes kt = dCtβe with β > 1
2 and

C > 0, where dCtβe is the smallest integer greater than or equal to Ctβ , to ensure convergence of
a sampled fictitious play process to equilibrium in a finite game with identical payoffs.

Theorem 5 Let Γ be a finite game in strategic form with identical payoffs. Then any sampled
fictitious play process y(t) with sample sizes kt = dCtβe for β > 1

2 and C > 0 converges in beliefs
to equilibrium with probability 1.

Proof: Let (y(t))∞t=1 be a sampled fictitious play process with sample sizes kt = dCtβe, and
(Fy(t))∞t=1 be the associated belief process. We begin by establishing a bound on the random
variable

Ū i
kt

(yi, F−i
y (t))− u(yi, F−i

y (t))

for an arbitrary yi ∈ Y i. Fix t, let yi ∈ Y i, and define

Xj(t) = u(yi, Y −i
j (t))− u(yi, F−i

y (t)), j = 1, . . . , kt,

where the Y −i
j (t) are random vectors with distribution F−i

y (t). The Xj(t)’s are not independent
random variables as they are described by functions of the same random variable F−i

y (t); also the
Y −i

j (t)’s are dependent both on F−i
y (t) and on each other. However, for a fixed value of t and

conditional on F−i
y (t) = f−i

y (t), vectors Y −i
j (t), j = 1, . . . , kt are i.i.d. with distribution f−i

y (t) and
u(yi, f−i

y (t)) is a constant. With such conditioning, therefore, X1(t), . . . , Xkt(t) are i.i.d. random
variables with mean 0 (by the law of the unconscious statistician).

Let L = maxf∈∆ |u(f)| and let A denote the event that F−i
y (t) = f−i

y (t). Then, E[Xj(t)4|A] ≤
(2L)4 and E[Xj(t)2|A] ≤ (2L)2 for all j = 1, . . . , kt.

Let S(t) =
∑kt

j=1 Xj(t). Then

E[S(t)4|A] = ktE[X1(t)4|A] +
(

4
2

)(
kt

2

)
E[X1(t)2X2(t)2|A]

≤ kt(2L)4 + (3kt
2 − 3kt)E[X2

1 |A]E[X2
2 |A] ≤ 3(2L)4kt

2.

Neither of the above bounds depended on f−i
y (t), therefore unconditionally,

E

[
S(t)4

kt
4

]
≤ 3(2L)4kt

2

kt
4 =

3(2L)4

dCtβe2
≤ 3(2L)4

C2t2β
. (18)
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By the Markov inequality, for any δ > 0,

P

{
S(t)4

kt
4 > δt0.5−β

}
≤

E
[

S(t)4

kt
4

]
δt0.5−β

.

Combining this with (18),

∞∑
t=1

P

{
S(t)4

kt
4 > δt0.5−β

}
≤

∞∑
t=1

E
[

S(t)4

kt
4

]
δt0.5−β

≤
∞∑

t=1

3(2L)4

C2δtβ+0.5
< ∞.

By the Borel-Cantelli lemma (which does not require independence of events, see Ross, 1996),
we have, with probability 1, (S(t)4/kt

4) → 0 at an asymptotic order of 1/tβ−0.5. The previous
argument implies that, with probability 1, (S(t)/kt) → 0 at an asymptotic order of 1/tα, where
α = (β − 0.5)0.25. Since

S(t)
kt

= Ū i
kt

(yi, F−i
y (t))− u(yi, F−i

y (t)),

we conclude that Ū i
kt

(yi, F−i
t ) − u(yi, F−i

y (t)) converges to 0 at an asymptotic rate of 1/tα, where
α = (β − 0.5)0.25, for any yi ∈ Y i, with probability 1.

For the sampled fictitious play process (y(t))∞t=1, define

εi
t = vi(Fy(t))− u(yi(t + 1), F−i

y (t)) ≥ 0

for i ∈ N and t ≥ 1. (As before, the vectors (εt)∞t=1 can be interpreted as the errors in the players
responses at iteration t as reflected by the utility function. In this case the errors are brought on
by the players optimizing the sample means of their payoff functions instead of the true payoff
functions, and hence form a stochastic process.) We will show that, with probability 1, for any
player i ∈ N , εi

t → 0 as t → ∞ at an asymptotic order of t−α, with α = (β − 0.5)0.25 > 0.
By Theorem 4 this would imply that the path (y(t))∞t=1 converges in beliefs to equilibrium with
probability 1.

Let ỹi ∈ argmaxyi∈Yi ui(yi, f−i
y (t)). Conditioning on the event F−i

y (t) = f−i
y (t),

0 ≤ εi
t = vi(fy(t))− u(yi(t + 1), f−i

y (t))

= u(ỹi, f−i
y (t))− u(yi(t + 1), f−i

y (t)) = u(ỹi, f−i
y (t))− ūi

kt
(ỹi, f−i

y (t))

+
(
ūi

kt
(ỹi, f−i

y (t))− ūi
kt

(yi(t + 1), f−i
y (t))

)
+

(
ūi

kt
(yi(t + 1), f−i

y (t))− u(yi(t + 1), f−i
y (t))

)
≤

(
u(ỹi, f−i

y (t))− ūi
kt

(ỹi, f−i
y (t))

)
+

(
ūi

kt
(yi(t + 1), f−i

y (t))− u(yi(t + 1), f−i
y (t))

)
,

where the last inequality follows since yi(t + 1) is chosen to maximize ūi
kt

(yi, f−i(t)). The above
bound did not depend on a particular realization f−i

y (t) of F−i
y (t); therefore, we have unconditionally

0 ≤ εi
t ≤

(
u(ỹi, F−i

y (t))− Ū i
kt

(ỹi, F−i
y (t))

)
+

(
Ū i

kt
(yi(t + 1), F−i

y (t))− u(yi(t + 1), F−i
y (t))

)
.

Applying the derived asymptotic rate of convergence to the two terms of the above bound, we
conclude that, with probability 1, εi

t converges to 0 at an asymptotic order of 1/tα, where α =
(β − 0.5)0.25, establishing the desired result.
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As a final note, observe that since the size of the sample taken increases with the iteration count,
the number of positive components in the sampled mixed strategies may increase. However, as the
probability distribution from which the sample is taken approaches its limit, the resulting sampled
mixed strategies will tend to have no more positive components than the limiting equilibrium
strategy.

4 Limiting Behavior of Belief Paths

Theorems 4 and 5 only stipulate that belief paths converge to equilibrium, i.e., all of their
accumulation points are contained in the set of Nash equilibria. In an algorithmic setting, however,
it is desirable to have a guarantee of uniqueness of the limit point of the sequence of iterates (for
example, having this guarantee typically leads to simpler and more reasonable stopping rules). In
this section we derive conditions under which a belief path associated with an arbitrary path that
converges in beliefs to equilibrium has a unique limit point which is a Nash equilibrium. Note that
the discussion in this section is applicable to any finite game in strategic form (not just a game with
identical payoffs) and arbitrary paths converging to equilibrium in beliefs. The application of these
results to fictitious play processes, or appropriately designed approximate and sampled fictitious
play processes, in games with identical payoffs is immediate in view of Theorems 4 and 5.

Recall that a set S in a metric space is perfect if it is closed and every point of S is an
accumulation point of S, i.e., if S is its accumulation points (see, for example, Munkres, 1975).

Lemma 6 Let Γ be a finite n-player game in strategic form. The set F of limit points of the belief
path associated with any path (y(t))∞t=1 ⊂ Y is a connected subset of ∆ under the Euclidean norm.
Moreover, F is either a singleton or a perfect set.

Proof: Let (y(t))∞t=1 be an arbitrary path, and (fy(t))∞t=1 be the associated belief process. Let F
be the set of all limit points of (fy(t))∞t=1.

Suppose F is disconnected, i.e., there exist two disjoint open sets A and B such that

(A ∩ F ) 6= ∅, (B ∩ F ) 6= ∅, and F ⊂ A ∪B. (19)

Let C = ∆ \ (A ∪ B). Then C is a compact subset of ∆ and C 6= ∅ (otherwise A ∪ B ⊇ ∆ which
would imply that ∆ is disconnected). We will show that C must contain a limit point of (f(t))∞t=1,
resulting in a contradiction.

By definition, both A and B contain an infinite number of points of the sequence (fy(t))∞t=1. In
particular, the sequence (fy(t))∞t=1 leaves the set A infinitely often. More precisely, there exists an
infinite subsequence (fy(ti))∞i=1 such that fy(ti) ∈ A, but fy(ti + 1) 6∈ A, i.e., either fy(ti + 1) ∈ B,
or fy(ti + 1) ∈ C. Note that if fy(ti + 1) ∈ B, then, since A ∩ B = ∅, the line segment connecting
fy(ti) and fy(ti + 1) contains at least one point f̃y(ti + 1) 6∈ A ∪B. By the convexity of the set ∆,
f̃y(ti + 1) ∈ ∆, and hence f̃y(ti + 1) ∈ C.

Consider the following infinite sequence: for each i, let

gi =

{
fy(ti + 1) if fy(ti + 1) ∈ C,

f̃y(ti + 1) otherwise,
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where f̃y(ti + 1) is an arbitrary point constructed as above. Note that (gi)∞i=1 ⊂ C, and hence
(passing to a subsequence if necessary) limi→∞ gi = g ∈ C. We will show that g is a limit point of
(fy(t))∞t=1, leading to a contradiction.

By construction,

‖fy(ti)− gi‖ ≤ ‖fy(ti)− fy(ti + 1)‖ =
1

1 + ti
‖y(ti + 1)− fy(ti)‖ <

M

ti
,

where M = maxf,g∈∆ ‖f − g‖. Therefore

‖fy(ti)− g‖ ≤ ‖fy(ti)− gi‖+ ‖gi − g‖ <
M

ti
+ ‖gi − g‖ → 0 as i →∞,

establishing the desired contradiction and thus proving the first statement of the lemma.
To establish the second claim, assume that the set F contains more than one element. Suppose

there exist d ∈ F which is not an accumulation point of F . Then for some δ > 0, Bδ(d) ∩ F = {d}
(here Bδ(d) denotes the open ball of radius δ centered at point d). Let A = B δ

2
(d), and let B be

defined as the complement of the closure of B δ
2
(d). Then the sets A and B are disjoint open sets

satisfying conditions (19). This implies that the set F is disconnected, resulting in a contradiction
— thus establishing the second claim of the lemma.

The following is an immediate corollary of the previous lemma.

Corollary 7 Let Γ be a finite n-player game in strategic form. The image under the payoff function
ui(f) of the set of limit points of the belief path associated with any path (y(t))∞t=1 ∈ ∆ is a closed
interval in R.

Proof: Since ui(f) is a continuous function, the image under ui(f) of a perfect connected set or
singleton is a perfect connected set or singleton (Munkres, 1975), which in R is a closed interval.
Combining this observation with Lemma 6 provides the desired result.

Using Lemma 6 we are able to give sufficient conditions under which the belief path associated
with a path will converge to a single point in the set of Nash equilibria.

Theorem 8 Let Γ be a finite n-player game in strategic form. If the set K = K(Γ) of Nash Equi-
libria has a finite set of accumulation points then for any path converging in beliefs to equilibrium,
the associated belief path will converge to a single point in the set of Nash equilibria.

Proof: By Lemma 6, for any path (y(t))∞t=1 ⊂ Y, the set F of limit points of the associated belief
path is either a singleton, or a perfect set. The case when F is a singleton is trivial. If F is a
perfect set, every element of F is an accumulation point of F , and hence F is an infinite set. On
the other hand, F ⊆ K, and hence every point of F is an accumulation point of K. Since K has
only finitely many accumulation points, we conclude that F must be a singleton.

It has been established in game theory literature (see, for example, Wilson, 1971, Rosenmuller,
1971 and Harsanyi, 1973) that, apart from certain degenerate cases, the number of equilibrium
points in any finite game is finite and odd, suggesting that the assertion of the theorem is satisfied
in most games.
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5 Fictitious Play and Optimization

5.1 Fictitious Play Paradigm in Optimization

Having defined and investigated the properties of the fictitious play algorithm and its variants
for games with identical payoffs, we will now discuss their use as an optimization heuristic. Recall
that we are considering the following optimization problem:

max{u(y) : y = (y1, . . . , yn) ∈ Y1 × · · · × Yn}, (20)

where the Y i, i ∈ N = {1, . . . , n} are finite sets.
We can associate with the optimization problem (20) an n-player game Γ with the players i ∈ N

having the finite set of strategies Y i and sharing identical payoffs, i.e., u1(y) = · · · = un(y) = u(y).
We can also define the mixed extension of Γ and the set of its Nash equilibria. Note that every
optimal solution of (20) corresponds to an assignment of pure strategies that is a Nash equilibrium
of Γ. Conversely, every pure-strategy equilibrium of Γ is a local optimum of (20) in the sense that
no component yi can improve the objective function by unilaterally changing to a different pure or
mixed strategy.

The above observation suggests the use of fictitious play as an optimization heuristic for solving
(20): an appropriately designed version of fictitious play can be used as an algorithmic way to
obtain a Nash equilibrium of the mixed extension of Γ. The obtained equilibrium will serve as a
surrogate for the optimal solution. In fact, an equilibrium is, by definition, a player-wise maximum
of the mixed extension of the payoff function. Thus by finding a Nash equilibrium we find a local
optimum of the mixed extension of (20), in the above sense, and if a pure-strategy equilibrium is
found, then it is a coordinate-wise optimum in the usual sense.

In the remainder of this section, we will use the terms “variable” and “player,” and “solution”
and “strategy” interchangeably, in view of the above association.

Certainly not every problem of the form (20) can be successfully approached by the (sampled)
fictitious play algorithm. As usual, before applying the algorithm to a specific problem, it is
worthwhile to consider whether the problem properties indicate that this heuristic will be a viable
solution approach. One possible consideration is the fact that computation of best replies is the
main component of the algorithm. Therefore, the fictitious play heuristic is an especially promising
method when this computation can be done efficiently, for example, when it can be formulated as
a well-solved subproblem.

Another promising scenario is if the number of strategies available to each player is relatively
small, and it is the large number of players and/or lack of favorable assumptions on the structural
properties of the function u(·) that make the problem difficult to solve. In this case, best reply for
each player can be computed by simply enumerating and comparing all possible strategies available
to that player. We noted in Subsection 3.2 that computing best replies to the sample of the other
players’ strategies is still relatively easy, even in this setting. Moreover, after the strategies of the
players have been sampled, the computation (17) of best replies for each player can be done in
parallel. The “wall-clock” time of this computation can thus be reduced to that of one best reply,
if a sufficient number of processors is available.

As we have mentioned already, fictitious play can be likened to coordinate search. It should be
noted, however, that while the coordinate search algorithm only updates the value of one variable
per iteration, the sampled fictitious play algorithm updates the mixed strategies of all the players
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(using the same amount of wall-clock time, if parallel computation is employed), and thus has the
potential of achieving greater progress at each iteration. Recall that we are particularly interested in
applying the algorithm to problems in which each function call requires that a simulation, or other
time consuming computation, is performed. Therefore, updating all the variables simultaneously,
and making the required function calls in parallel, is a beneficial feature of the sampled fictitious
play algorithm.

Finally, the quality and usability of the solution returned by the algorithm need to be addressed.
The limit points of the sequence generated by the algorithm as it is stated in this paper are only
guaranteed to be mixed-strategy equilibria of the identical payoff game that we associate with the
optimization problem (20), whose feasible solutions are precisely pure strategies. While the pure
strategy response structure of fictitious play favors pure strategy limiting behavior, simple (but,
perhaps, artificial) examples of games for which fictitious play converges to mixed strategy equilibria
can be readily constructed. In some applications a mixed strategy solution has a fairly natural
interpretation as a feasible solution of the underlying optimization problem (see the following
subsection for one such example); for such applications sampled fictitious play would be a natural
solution approach.

In the majority of applications, however, a pure strategy solution is required. Additionally,
in theory, the equilibrium found by the algorithm is not guaranteed to have an objective value
close to the optimum. There exist modifications to the fictitious play algorithm which guarantee
convergence to a pure-strategy equilibrium corresponding to an optimal solution of (20) in the limit
(see Lambert, 2002). As a simpler alternative, to address both of these issues when necessary, one
can use a technique common to many global optimization heuristics. Namely, the algorithm can be
modified to keep track of, and output at termination, the best pure strategy solution encountered in
the course of the algorithm. The fictitious play framework of the algorithm then serves as a search-
guiding tool, allowing for efficient exploration of promising solutions. The following proposition
implies that the value of the mixed extension of u(·) at the equilibrium point found by the algorithm
is in fact a lower bound on the value of the best encountered pure strategy.

Proposition 9 Let Γ be a finite n-player game in strategic form with identical payoffs u(·). Given
a mixed strategy equilibrium f = (f1, . . . , fn) ∈ ∆ there exists y = (y1, . . . , yn) ∈ Y such that
f i(yi) > 0, i = 1, . . . , n and u(y) ≥ u(f).

The proof relies on the interpretation of the payoff of a mixed strategy as a convex combination of
payoffs of pure strategies, and is left to the reader.

In the following subsection we briefly illustrate the use of sampled fictitious play through two
computational experiments. These examples illustrate some of the properties that make this al-
gorithm suitable for specific problems, as well as provide an indication that it is competitive with
existing algorithms in terms of solution quality and computational efficiency.

5.2 Computational Experience with Sampled Fictitious Play

5.2.1 Dynamic Traffic Routing Assignment

In Garcia, Reaume and Smith (2000), a version of our sampled fictitious play algorithm was
proposed as a way to approach the problem of finding system-optimal vehicle routes in dynamic
traffic networks. Their paper predated our work, and served as motivation for considering approx-
imate and sampled versions of the fictitious play algorithm. The problem considered in the paper
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possesses many of the properties that make fictitious play an effective heuristic, as discussed above,
and the empirical results obtained illustrate the quality of solutions that the methods can provide.

We begin by formally introducing the particular version of dynamic traffic assignment problem
considered. Let N = {1, 2, . . . , n} be the index set of the vehicles that wish to travel through the
given road network. Every vehicle i ∈ N is endowed with origin and destination locations in the
network and an origin departure time, and has a finite set of routes Y i (i.e., sequences of road
segments, or links, joining origins with destinations) which it can take; let Y =

∏
i∈N Y i. The time

it takes each vehicle to traverse a route is influenced by the traffic congestion on each road link
included in the route during the time the vehicle is travelling along the link, and thus depends on the
choices of routes made by the other vehicles in the network. We denote by ai : Y → R, i ∈ N the
assignment mappings, where ai(y) is the total travel time for vehicle i if vehicles follow the routes
specified by y ∈ Y. The objective of the dynamic traffic assignment problem is to find a system-
optimal assignment of routes, which is attained by minimizing the average trip time experienced in
the network, i.e., the function u(y) =

∑
i∈N

ai(y)
n , over all choices of y = (y1, . . . , yn) ∈ Y1×· · ·×Yn;

the problem is therefore of the form (20).
The system-optimal traffic assignment problem with flow dependent costs has been studied

extensively; see, for example, Potts and Oliver (1972) for an early survey. However, a crucial
distinguishing characteristic of this version of the problem is the dynamic, time-dependent, nature
of the congestion on the links in the network. The problem of finding a system-optimal assignment
of routes in a dynamic network is the subject of a great deal of research in the field of Intelligent
Transportation Systems; in particular, several versions of a pertinent subproblem of finding a
shortest path in a dynamic network has been successfully addressed (see, for example, Kaufman
and Smith, 1993 and Chabini, 1998). Specifically, for given routing decisions of all other vehicles
in the network, the dynamic (i.e., time-dependent) shortest path for one vehicle can be efficiently
computed if the network conditions are such that a single vehicle will have little effect on congestion,
and if some mild assumptions of the assignment mappings are satisfied.

Following the discussion in Subsection 5.1, fictitious play is an attractive method of approaching
the dynamic traffic assignment problem, with the individual vehicles acting as players. First, the
problem fits neatly in the format of (20). Second, given the routing choices of the other vehicles in
the network and the corresponding values of the assignment mappings ai, i ∈ N , the best routing
choice of a particular vehicle i ∈ N can be efficiently computed using a dynamic shortest path
algorithm. In particular, each vehicle is assigned to its feasible route minimizing the increase of
total system travel time, corresponding to the best-reply computations with respect to the mixed
extension of utility function u(·) above (these computations can be done in parallel, although this
was not implemented in the actual test performed). Third, the numerical procedures for evaluating
the assignment mappings for a given choice of routes, while available for both commercial and
academic users, usually require significant computational effort. Finally, mixed strategies found by
the algorithm can be easily and naturally addressed in problem instances in which many vehicles
share the same origins, destinations and departure times. Indeed, the frequencies of the mixed
strategy can be viewed as representing the percentages of the vehicles taking particular routes
(i.e., using particular pure strategies) among the platoon of those sharing origins, destinations and
departure times.

The latter consideration also motivated the use of sampling in the implementation of the al-
gorithm in the aforementioned paper (although no rigorous claims on the limiting behavior of the
algorithm were made). The authors chose to take one sample at each iteration. Although the
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theoretical results proven in this paper are not applicable in this setting, it can again be argued
that the large number of vehicles sharing the same origins, destinations and departure times results
in close replication of the historic frequencies of routes taken by the vehicles in each such group,
since the number of samples taken for a given origin-destination pair is actually rather large.

Although no a priori guarantee on the quality of the solution found by the (sampled) fictitious
play algorithm can be made at this point, the computational experiments in Garcia, Reaume and
Smith (2000) indicate that the solution found was quite good as measured by the criterion of overall
system performance. In the experiment, performed for the traffic network of Troy, MI, approxi-
mately 16,500 vehicles were simulated to “flow” through the network according to approximations
of actual travel patterns observed in Troy. The majority of the vehicles were presumed to follow
the “free-flow” fastest paths, i.e., paths from their origins to their destinations that are the fastest
when no traffic congestion is present on the network. A fraction of the vehicles, however, were
“guided” to follow the routes found for them by the above implementation of the fictitious play
algorithm. The authors investigated the impact such (limited) route guidance had on the individual
travel times of the vehicles as well as the system average travel times. The results and performance
of the sampled fictitious play algorithm were compared with those of the heretofore best method
SAVaNT (Kaufman, Smith and Wunderlich, 1998). When the guided vehicles constituted 5% of
the total number of vehicles, their average travel times were approximately 10% better than those
of the unguided vehicles, with the system-wide average travel time of 17.22 minutes. It took 20
iterations of sampled fictitious play to obtain the above result, compared to the 68 iterations of
SAVaNt, requiring more c.p.u. time than fictitious play, resulting in an average trip time of 17.39
minutes. Moreover, guiding 25% of the vehicles not only decreased the average travel time for a
guided vehicle to 8.72 minutes, but also reduced the system-average travel time to 8.82 minutes.
(That is, the ability of a quarter of the vehicles in the network to choose their routes intelligently
sufficiently reduced the overall network congestion to allow for faster travel times of the unguided
vehicles.) It is remarkable that the fictitious play algorithm obtained results nearly identical to the
output of SAVaNT using considerably fewer iterations and less c.p.u. time, even without exploring
the possible parallel implementation of best-response calculations.

5.2.2 Mobile units situation awareness

In their paper “Fictitious Play Approach to a Mobile Unit Situation Awareness Problem,” Lam-
bert and Wang (2003) demonstrate the effectiveness of the fictitious play approach to optimization
on a large scale situation awareness simulation developed for the Multidisciplinary University Re-
search Initiative (MURI) on “Low-Energy Electronic Design for Mobile Platforms.” In this problem,
a number of mobile units desire to keep track of each other’s locations over the course of a military
exercise lasting a pre-specified period of time. The MURI project as a whole was concerned with
every aspect of the operation — from the design of the components of devices that units use to
broadcast their location information, to deciding on the communication protocol. It was the latter
aspect of the project that presented an optimization problem which was addressed by fictitious
play.

The units’ communication devices operate with batteries, and thus the units have a limited
amount of energy. The transmission of information by a unit requires energy, as does the processing
of any received signal. The probability that a unit will receive a transmission broadcast by another
unit depends on the distance between them, the power used to transmit, and the power used to
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receive the signal. The process of designing the communication protocol consisted of selecting values
for the following set of parameters: T — the time between transmissions of position information,
q — the probability of retransmitting (to compensate for possible “lost” transmissions), Ect — the
energy used in transmission, and Ecr — the energy used in receiving. It was assumed that all units
will use the same values for the above parameters. The objective was to minimize, over all choices
of T , q, Ect and Ecr, the sum of the mean absolute errors of each unit’s estimates of the positions
of the other units over the course of the exercise. The nature of the dependence of the objective
function on these parameters is complex, with no analytic expression of the function available.
Thus, to evaluate the objective function for any choice of values of the parameters, a complex
simulation of the process down to the electronic components of the communication devices was
required, taking 2-5 minutes of computer time. This feature of the problem motivated the use of
sampled fictitious play as an optimization heuristic in this problem. Its performance was compared
to both pure random search and simulated annealing by Lambert and Wang (2003).

In the implementation of sampled fictitious play the 4 parameters were selected as the players,
with a discretization of 10 units over each parameter’s range of values as the strategy space for
the respective player. The resulting discretized problem fit into the framework of (20), since every
combination of parameter values was considered feasible (if a unit used all its allotted power before
the end of the exercise, it simply stopped transmitting and receiving information, and thus updating
its estimates of the other units’ locations). At each iteration, a sample of the strategies of the four
players was taken. Due to the complex nature of dependence of the objective function on each of the
parameters, the only available method to compute, for each player, a best reply to the above sample
was to evaluate (via simulation) the objective function for each of the 10 pure strategies, with the
other players choosing their sampled strategies. However, the implementation took advantage of
the opportunity to perform the best reply computations in parallel.

Unlike in the dynamic traffic assignment problem, this problem did not possess a natural in-
terpretation for a mixed strategy. Therefore, the sampled fictitious play algorithm was used, as
proposed in Subsection 5.1, as a search guidance heuristic, where the output returned was the best
pure strategy combination encountered in the course of the algorithm.

Several problem instances, with various initial battery capacity levels, we considered. The
results found by Stark et al. (2002) using simulated annealing, as well as results using pure random
search were used as a benchmark against which to compare the solutions found by sampled fictitious
play. The sampled fictitious play algorithm was allowed to run for 30 iterations, so that the number
of unique function calls made by the algorithm approximately matched those of the other two
algorithms; however, the wall-clock running time of the sampled fictitious play algorithm was lower
by as much as a factor of 6, due to the parallelization. They found that sampled fictitious play
and simulated annealing returned solutions of comparable quality, while both outperformed pure
random search by as much as 25%. Moreover, sampled fictitious play, unlike simulated annealing,
could gracefully scale to allow for unit-dependent communication protocols without significant
increase in computation time.

6 Conclusions

In this paper we broadened the existing results on convergence properties of the fictitious play
algorithm on games with identical payoffs to include an approximate fictitious play algorithm
which allows for errors in players’ best replies. Moreover, we introduced the sampled fictitious
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play algorithm, which possesses the above convergence properties, and at the same time provides
a computationally efficient method for implementing fictitious play.

In the second part of the paper we introduced the use of algorithms based on sampled fictitious
play to solve optimization problems in the form

max{u(y) : y = (y1, . . . , yn) ∈ Y1 × · · · × Yn},

and argued when this approach is likely to be beneficial, with particular focus on the problems in
which the objective function u(·) comes from a “black box,” such as a simulation model, where
significant computational effort is required for each function evaluation, and no assumptions on the
objective function structure are made.

Computational experiments evaluating the performance of algorithms based on the fictitious
play paradigm are ongoing. We cited two examples: a dynamic traffic routing problem and a
situation awareness application, to demonstrate the potential of these algorithms in complex applied
problems. Other applications are being considered, as well as extensions of the algorithms to
optimization problems of more general form.
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Appendix

Proof of Proposition 1
First notice the following fact: given δ > 0 there exists an ε > 0 such that for each f̄ ∈ ∆ with

f̄ /∈ Bδ(K), ui(f i, f̄−i)− ui(f̄) > ε for some i ∈ N and some f ∈ ∆. Simply take

ε =
1
2

min
f̄∈∆\Bδ(K)

max
i∈N

max
f i∈∆i

(
ui(f i, f̄−i)− ui(f̄)

)
, (21)

which is well-defined and positive since ∆ \Bδ(K) is a compact set, N is finite, and ∆i is compact
and ui is continuous for all i ∈ N .

Now suppose that the belief path (f(t))∞t=1 does not converge to equilibrium. Then for some
δ > 0, for any T there exists t ≥ T such that f(t) /∈ Bδ(K). Then for ε > 0 defined as in (21), for
any T there is a t ≥ T for which f(t) is not an ε-equilibrium, which contradicts our hypothesis.
Hence the belief path (f(t))∞t=1 converges to equilibrium.

Proof of Proposition 2
Assume (4) holds but there exists δ > 0 such that

lim sup
T→∞

card ({1 ≤ t ≤ T : f(t) /∈ Bδ(K)})
T

= c > 0.

Define ε as in (21). Then for each f̄ ∈ ∆ with f̄ /∈ Bδ(K), ui(f i, f̄−i)− ui(f̄) > ε for some i ∈ N
and some f ∈ ∆. That is,

f̄ 6∈ Kε if f̄ 6∈ Bδ(K).

Therefore,
card ({1 ≤ t ≤ T : f(t) /∈ Kε}) ≥ card ({1 ≤ t ≤ T : f(t) /∈ Bδ(K)}) ,

and so

lim sup
T→∞

card ({1 ≤ t ≤ T : f(t) /∈ Kε})
T

≥ lim sup
T→∞

card ({1 ≤ t ≤ T : f(t) /∈ Bδ(K)})
T

= c > 0,

which contradicts (4).

Proof of Lemma 3
Let (y(t))∞t=1 be a path, and let (fy(t))∞t=1 be the associated belief path. We have already noted

that for any belief process, convergence to equilibrium implies convergence to equilibrium in Cesaro
mean.

To establish the converse, suppose that (y(t))∞t=1 converges in belief to equilibrium in Cesaro
mean. Let δ > 0 be chosen arbitrarily. Let

M = max
f,g∈∆

‖f − g‖.

Choose η ∈ (0, δ/(2δ + M)). By (3), there exists an integer T0 such that for every T ≥ T0,

card ({1 ≤ t ≤ T : fy(t) /∈ Bδ(K)}) < ηT. (22)
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We will show that for every T ≥ T0, fy(T ) ∈ B2δ(K).
Suppose T ≥ T0 but fy(T ) /∈ B2δ(K). Then for any integer t ∈ [T, T + bTδ/(δ + M)c], fy(t) 6∈

Bδ(K) (here, bxc is the greatest integer less than or equal to x). Indeed, if for some t in the above
interval fy(t) ∈ Bδ(K), then there exits f ∈ K such that ‖fy(t)− f‖ < δ, which implies

2δ ≤ ‖fy(T )− f‖ ≤ ‖fy(t)− fy(T )‖+ ‖fy(t)− f‖ < ‖fy(t)− fy(T )‖+ δ,

i.e., ‖fy(t)− fy(T )‖ > δ. On the other hand, using expression (6)

‖fy(t)− fy(T )‖ =
1
t

∥∥∥∥∥
t∑

s=T+1

(y(s)− fy(T ))

∥∥∥∥∥ ≤ 1
t

t∑
s=T+1

‖y(s)− fy(T )‖

≤ t− T

t
·M ≤ δ

M + δ
·M ≤ δ,

resulting in a contradiction. Hence, for any integer t ∈ [T, T + bTδ/(δ + M)c], fy(t) /∈ Bδ(K).
We conclude that

card
({

1 ≤ t ≤ T +
⌊

Tδ

δ + M

⌋
: f(t) 6∈ Bδ(K)

})
≥ 1 +

⌊
Tδ

δ + M

⌋
> η

(
T +

⌊
Tδ

δ + M

⌋)
,

contradicting (22). Therefore, fy(T ) ∈ B2δ(K) for every T ≥ T0. Since δ was chosen arbitrarily,
convergence follows.
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