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Abstract

We introduce a novel procedure to compute system optimal routings in a dynamic tra�c network.
Fictitious play is utilized within a game of identical interests wherein vehicles are treated as players with the
common payo� of average trip time experienced in the network. This decentralized approach via repeated
play of the ®ctitious game is proven to converge to a local system optimal routing. Results from a large-
scale computational test on a real network are presented. Ó 2000 Published by Elsevier Science Ltd. All
rights reserved.

1. Introduction

The impact of modern telecommunication technologies, real time route guidance and driver
information systems on many of the traditional transportation policy and analysis questions has
been substantial. For instance, to account for time varying congestion, models based on classical
procedures for dynamic transportation systems analysis have increasingly used complex analytical
setups (see for example, Friesz et al., 1993; Ran et al., 1996). It is usually the case that to render
tractable the analysis, regularity properties like linearity or convexity are assumed.

For the design and operation of these networks, from a classical engineering perspective, one
would attempt to ®nd optimal policies with respect to an overall or system e�ciency criterion.
However, the decentralized structure of ownership and/or decision making, has also called for
analysis centered around the notion of equilibrium or user optimality. In this paper, we explore a
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new computational procedure to compute system optimal routings in the sense that, average trip
time experienced by vehicles in the network is minimized. The a priori advantages of this pro-
cedure are twofold. First, no traditional regularity properties are invoked in the theoretical
analysis, which is carried out in a very simple analytical setup. Secondly, the procedure's im-
plementation fully exploits the real time parallel processing potential present in modern dynamic
transportation networks. However, the procedure does have a ¯avour of equilibrium models in
that it mimics ®ctitious play within an arti®cial dynamic tra�c game.

Following Rosenthal's (Rosenthal, 1973) setting, in a tra�c network game, players are iden-
ti®ed with vehicles and payo�s are computed through an assignment mapping that, given routing
decisions for all players, calculates the resulting travel times. A routing mapping assigns to each
vehicle a time-dependent shortest path from its origin to destination given the route choices of all
other vehicles. In game theoretic terminology, the routing mapping is a best reply for each vehicle
to the routing decisions of the other vehicles.

The theory of learning in games (see Fudenberg and Levine, 1998) attempts to explain equi-
librium as the result of a dynamic process of adjustment in which players grope for optimality
over time. One example of such a dynamic process is ®ctitious play.

Fictitious play is an iterative procedure in which at each step, players compute their best replies
based on the assumption that opponents' decisions follow a probability distribution in agreement
with the historical frequency of their past decisions (Brown, 1951). In the dynamic tra�c network
context, this procedure can be interpreted as an iterative routing-assignment algorithm, in which at
each step, for each player, the routing mapping computes time-dependent expected shortest paths
given that other players' decisions are distributed according to the historical frequency of routing
decisions. Unfortunately, convergence of such a process is not ensured in general. However,
Monderer and Shapley (1996) have demonstrated that when players share a common objective
function, ®ctitious play does converge in a certain sense. From a descriptive viewpoint, this is not a
very interesting result, since the kind of strategic interactions game theory attempts to model sel-
dom involve the case of identical interests. Nonetheless, from a normative viewpoint, one could
envision an arti®cial game in which players are forced to assume the common objective (such as in
our case, average trip time of vehicles in the network) as theirs. One would expect then, that the set
of routings to which this arti®cial process converges must have some optimality properties.

The major shortcoming of other iterative techniques for solving system or user optimal routings
has been the failure to guarantee convergence (see e.g. Kaufman et al., 1998). The ®ctitious play
algorithm we explore in this paper is unique in this regard since convergence is established. The
resulting routing, while not necessarily system optimal, is locally optimal in the sense that no
player can, by changing its assigned route, diminish any further the average trip time experienced
in the network.

2. Preliminaries

2.1. Notation

We introduce the dynamic tra�c network game where:
N � f1; 2; . . . ; ng is the index set of vehicles.
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Every vehicle has a ®nite number of routing choices, that is to say: for every i 2 N there is a
®nite set Ri of possible routes to take. Let us denote by R �Qi2N Ri, the set of all vehicles feasible
route choices.

A: R! Rn is the assignment mapping. For any r 2 R, Ai�r� is the sum over the path determined
by ri of the resulting dynamic link travel times given that the other vehicles take routes rj, j 6� i. In
other words, Ai�r� is the total travel time for vehicle i if the vehicles follow routes speci®ed by r.
We will denote by Di the set of mixed routing decisions, i.e.:

Di � f i: Ri 7! �0; 1� such that
X
ri2Ri

f i�ri�
(

� 1

)
;

where f i�ri� is the probability that vehicle i selects route ri, i 2 N . Notice that the extreme points of
Di are exactly the elements of Ri.

Let D �Qi2N Di be the set of all mixed routing strategies over all vehicles. We extend the
domain of the assignment mapping so that for f 2 D, we have:

Ai�f � �
X
r2R

Ai�r� � f 1�r1� � f 2�r2� � � � f n�rn�:

In words, Ai�f � is the expected value of total travel time for vehicle i when all vehicles adopt mixed
routing strategy f.

Let Dÿi �Qj6�i D
j be the Cartesian product of the sets of mixed routing strategies for all vehicles

other than i.

2.2. Equilibrium de®nition

We say that a mixed routing vector f � is a Nash equilibrium i� for every vehicle i 2 N , the
probabilities assigned to routes for vehicle i by f �, yield its minimum expected total travel time,
provided that f �ÿi, the mixed routing choice of all other vehicles, is held ®xed, i.e.:

f �i 2 arg min
f i2Di

Ai�fi; f �ÿi�:

2.3. Example: mixed strategies

To illustrate the need to incorporate mixed routing decisions let us consider the simple example
where n � 2; R1 � R2 � fa; bg and Ai�a; a� � Ai�b; b� > Ai�a; b� � Ai�b; a�, i � 1; 2. This could be
the case of a situation faced by two vehicles departing at the same time, with same origin and
destination, with two route choices available, namely a and b. The outcomes �a; b� or �b; a� (they
take di�erent routes) are clearly, Nash equilibrium outcomes.

Consider now the case where vehicles are uncertain of other vehicles routing decisions. For
instance, let us suppose that vehicle 1 believes vehicle 2 is equally likely to choose routes a or b, or
equivalently, that it would follow a mixed strategy assigning equal probabilities to each route. In
this case, the best decision for vehicle 1 (i.e. minimizes expected value of his/her travel time) is to
also randomize routing choice in the same way vehicle 2 does.

This simple example illustrates the importance of considering mixed strategies. In short, the
equilibrium set is enlarged. In many applications, there may only exist equilibria in mixed deci-
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sions (for a more complete treatment, the reader is referred to Fudenberg and Levine, 1991).
Moreover, the quintessential existence theorem in game theory that we invoke below, only ensures
existence of mixed equilibria.

3. The ®ctitious dynamic tra�c game

In the dynamic tra�c network game described above, ®ctitious play can be interpreted as an
iterative routing-assignment algorithm, in which at each step, for each player, time-dependent
shortest paths are computed given that other players' decisions are distributed according to the
historical frequency of their earlier routing decisions.

Let us illustrate the workings of the ®ctitious play process in the example introduced in Sec-
tion 2.3.

If the ®rst set of routes chosen is r0 � �a; b� then the ®rst iteration would yield exactly
r1 � �a; b�. This instantaneous convergence is due to the fact that �a; b� is in fact, a Nash equi-
librium outcome. If r0 � �a; a� then r1 � �b; b�. That is, b is the best routing decision corre-
sponding to the belief that the other vehicle will repeat a as route choice. At this point, the
historical play says that vehicles are equally likely to choose a or b. Hence, the best reply is to
randomize route choice with equal probabilities. If the realization is r2 � �a; b� then, historical
frequencies of play suggest that vehicle 1 will pick with probability 2=3 route a. Hence, vehicle 2
choice will be biased towards route b. Now, let us assume that historical frequencies of play
converge. The limit can then be seen as a Nash equilibrium in mixed strategies.

Unfortunately, ®ctitious play processes do not converge in general. Monderer and Shapley
(1996) have demonstrated that when players share a common objective function, ®ctitious play
does converge in the sense introduced in the example, i.e., the historical frequencies of routing
decisions by players stabilize. This is a weak form of convergence. In words, the law of large
numbers ensures that the historical frequencies generated by the process approach the ones
generated by a large number of samplings from the limiting mixed routing distribution.

In order to use Monderer and Shapley's result we now de®ne a di�erent game; the Fictitious
Dynamic Tra�c Game (which we shall refer to as FDTG), by imposing the average trip time
experienced in the network as the common payo� function for all vehicles, i.e. U : D! R where:

U�f � �
X
i2N

Ai�f �
n

:

An equilibrium outcome for this game is de®ned as follows:

De®nition 1. Mixed routing strategy f � is a Nash Equilibrium for the FDTG game if for every
vehicle i 2 N , we have:

f �i 2 arg min
f i2Di

U�fi; f �ÿi�:
Let us now examine the meaning of a Nash Equilibrium for this game. Intuitively, given that all

other vehicles j 6� i follow f �j , vehicle i cannot reduce any further the average trip time experienced
by the vehicles in the network by deviating from the prescribed routing f �i . In other words, for the
optimization problem:
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�P� min
f2D

U�f �
the mixed routing f � is a type of a local optimal solution. Every optimal solution to (P) must be an
equilibrium routing for the FDTG game, whereas there may be equilibrium routings for the
FDTG game that are not optimal solutions to problem (P). In other words;

Optimal Solution Set�P� � Equilibrium Set�FDTG�:

3.1. Example

Let us consider the case when vehicles have only two choices. In this case, D � �0; 1�n. If f � is a
mixed equilibrium routing for the FDTG game and U��� is assumed di�erentiable then a ®rst
order necessary condition is:

oU
ofi
�f �� � 0: �3:1�

If in addition, U��� is assumed convex then:

U�f �1 � k1; . . . ; f �i � ki; . . . ; f �n � kn�P U�f �� �
X

i

oU
ofi
�f ��ki �3:2�

for ki 2 �0; 1�. Thus, (1) and (2) imply that:

U�f �1 � k1; . . . ; f �i � ki; . . . ; f �n � kn�P U�f ��:
That is, mixed equilibrium solutions of the FDTG game are also optimal solutions of problem (P)
when U��� is convex and di�erentiable.

3.2. Existence of Nash equilibrium in mixed strategies for the FDTG game

The Nash equilibrium existence theorem (1950) states that there exists an equilibrium solution
in mixed strategies for ®nite games, that is games with ®nite decision sets. Such a result when
applied to the FDTG game translates into:

Theorem 1. The FDTG game has a Nash equilibrium in mixed routing decisions.

Proof. See Nash (1950). h

4. Fictitious play convergence for FDTG game

We now brie¯y review Monderer and Sharpley's (Monderer and Shapley, 1996) results which
constitute the theoretical basis for the computational procedure we will introduce.

4.1. Notation

Let us denote by K � D the equilibrium set for the FDTG tra�c game above presented and �k k
any ®xed euclidean norm on D.
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For d > 0 let Bd�K� the open ball with radii d, i.e.:

Bd�K� � g 2 D: min
f2K

gk
�

ÿ f k < d

�
:

A pure routing sequence is a sequence of the form r � frtg1t�1 of elements of R. A historical
routing sequence is a sequence of mixed routing strategies of the form f � fftg1t�1 in D.

De®nition 2. We say that a historical routing sequence converges to equilibrium if each limit point
is an equilibrium point. Formally, for every d > 0 there exists T such that ft 2 Bd�K� for all t P T .

This notion of convergence is rather weak in that it is only implied by De®nition 2 that limits of
converging subsequences are equilibrium points (the historical routing sequence itself may not
converge).

To every pure routing sequence r we can associate a historical routing sequence fr by simply
computing the historical frequency of the various pure routing decisions in r, i.e. for given r 2 Ri:

f i
r;t�r� �

#f16 s6 t: ri�s� � rg
t

: �4:1�
In Eq. (4.1), f i

r;t�r� is simply the ratio of the number of times vehicle i has chosen route r, over total
number of iterations t. Note that if we de®ne I i

r;t�r� to be the indicator function of the route r in the
pure routing sequence r, a simple analytical expression for updating historical frequencies is:

f i
r;t�1�r� � f i

r;t�r� �
�I i

r;t�r� ÿ f i
r;t�r��

t � 1
; �4:2�

where

I i
r;t�r� �

1 if ri�t� � r;
0 otherwise:

�
A pure routing sequence r is the result of a ®ctitious play process if for every i 2 N and every t:

ri�t � 1� 2 arg min
ri2Ri
�U�ri; f ÿi

r;t ��:
In words, at each t the route prescribed for player i, is the pure best response to the mixed

strategy for all other vehicles consisting of the historical frequency of routes they have chosen up
to time period t.

We now state the important Monderer and Shapley's result applied to the FDTG game.

Theorem 2. Every pure routing sequence r which is the result of a ®ctitious play process converges to
equilibrium.

Proof. See Monderer and Shapley (1996). h

5. Algorithm

We formally present the algorithm motivated by Monderer and Shapley's result when applied
in the context of the FDTG game: It presents, however, a major di�culty; Theorem 2 only asserts
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that for a converging sequence of mixed strategies generated by ®ctitious play the limit is a Nash
equilibrium of the original game. It is in a sense, a ``limsup'' set convergence result, and for
computational purposes we need a ``liminf'' type of result. However, it is worth pointing out that
whenever the equilibrium set of our arti®cial game is a singleton, the algorithm is guaranteed to
converge in the stronger sense. In any other case, the algorithm will compute routings that will be
arbitrarily close to the equilibrium set. A continuity assumption of the assignment mapping will
ensure a good approximation of the optimal value of average trip time in the network.

Algorithm
1. Set t � 0. Pick an initial pure routing strategy f0.
2. Compute a best reply for each i 2 N :

ri�t � 1� 2 arg min
ri2Ri
�U�ri; f ÿi

t ��:

3. Update historical frequencies of route choices, ft according to Eqs. (4.1) and (4.2).
4. If ft�1 ÿ ftk k6 e then Stop, otherwise, set t � t � 1 and go to 2.

5.1. Implementation

We have implemented the above algorithm in a software package called Alliance. To implement
the assignment mapping, we use a version of the INTEGRATION tra�c simulator for link-time
prediction (Van Aerde et al., 1989), called INTEGRATION-UM, which was developed by re-
searchers at the University of Michigan. It basically follows a deterministic mesoscopic approach
employing macroscopic travel time and ¯ow relationships and macroscopic individual vehicle
control and link queueing.

To ensure tractability, we made several simpli®cations to the implementation of the dynamic
router or best reply subroutine. First, it is extremely di�cult to, for each vehicle i analytically
compute a best response to the historical frequencies of the routings of the other vehicles. Instead
we simulate the passage of these other vehicles through the network where each vehicle chooses its
route with probability in accordance with the historical frequencies of its routings. Using the time-
dependent link travel time pro®le produced by this simulation, vehicle i may then be assigned to a
path minimizing the increase to total system travel time. We use a variant of Dijkstra's algorithm
introduced in Kaufman and Smith (1993). It is worth emphasizing here that the Alliance basic
iteration (simulation + best replies), although not done in its present form, can be processed in
parallel.

To further simplify matters, since a single vehicle will have little e�ect on congestion, we also
simulate the travel vehicle i, in this simulation, thus avoiding the need to run a separate simulation
for each vehicle. It is hoped that for a heavily congested network with many vehicles leaving at the
same time with the same origin and destination this approach will adequately approximate true
best responses.

The second simpli®cation we perform is to discretize time into a sequence of slices. Within each
slice, vehicles are routed by the simulation according to the routing tables.These tables assign, for
each slice s and node n, the probability distribution with which a vehicle arriving at node n with
destination d at time s, will choose its next link. Note that this simpli®cation allows vehicles to
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follow routes they may have historically never taken, contradicting the algorithm's scheme. Here
again, we appeal to the large number of vehicles ¯owing through the network to justify this
simpli®cation since the e�ective congestion should remain relatively unchanged while greatly
reducing storage and computation requirements.

5.2. Computational tests

To validate Alliance we applied the algorithm to the Troy, Michigan tra�c network (Wun-
derlich et al., 1997). Approximately 16,500 vehicles were allowed to ¯ow into the network in 24
min according to travel patterns approximating those actually observed in Troy. After 24 min the
¯ow into the network was halted and the vehicles were allowed to travel for a further 36 min, thus
allowing the network to clear.

We will compare the performance of Alliance performance to SAVaNT (see Kaufman et al.,
1998), which is an iterative routing-assignment procedure intended to compute user optimal
routings that has been perceived to provide (whenever it converges) reasonably good routings in
terms of average trip time in the network.

To account for the impact of di�erent market penetration levels of ITS technologies we de®ne
three classes of vehicles. Class 1, consisted of those vehicles following the free ¯ow shortest path.
Class 2, consisted of those vehicles that perform a periodic update of the free ¯ow shortest paths,
and ®nally, Class 3 vehicles were guided by the Alliance algorithm. The initial routing given to all
classes corresponded to shortest paths under free ¯ow conditions.

In the ®rst test with high market penetration (i.e., Class 3 vehicles account for 25% of the total
number of vehicles) we observe that Alliance computes routings roughly as good as those com-
puted with SAVaNT, in terms of system average trip time, using considerably fewer iterations and
less c.p.u time.

In the second test, we assume a low market penetration (i.e. Class 3 vehicles account for 5%
of the total number of vehicles) we observe reductions in travel time for intelligent vehicles, here
again at a substantially lower computational e�ort when compared to SAVaNT (see also,
Fig. 1).

Test 1: Average trip time per class (min)

C1 (50%) C2 (25%) C3 (25%) # Iterations

Alliance 8.85988 8.85677 8.71779 14
SAVaNT 8.87245 8.84866 8.68266 34

Test 2: Average trip time per class (min)

C1 (95%) C3 (5%) Average # Iterations

Alliance 17.30430 15.59930 17.21905 20
SAVaNT 17.49250 15.49160 17.39240 68
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6. Conclusions

Through the application of recent results in the theory of learning in games and the extension of
Rosenthal (1973) framework to the formulation of a dynamic tra�c game, we have implemented a
decentralized iterative procedure to compute system optimal routings.

By focusing on discrete routing decisions and with the help of a dynamic travel time simulator
we have avoided the technicalities of a more thorough analytical development.

First large-scale empirical results are encouraging, yielding substantial reductions in compu-
tational requirements.
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