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Hit-and-run, a class of MCMC samplers that converges to general multivariate distributions, is
known to be unique in its ability to miz fast for uniform distributions over convex bodies. In
particular, its rate of convergence to a uniform distribution is of a low order polynomial in the
dimension. However, when the body of interest is difficult to sample from, typically a hyperrect-
angle is introduced that encloses the original body, and a one-dimensional acceptance/rejection
is performed. The fast mixing analysis of hit-and-run does not account for this one-dimensional
sampling that is often needed for implementation of the algorithm. Here we show that the effect
of the size of the hyperrectangle on the efficiency of the algorithm is only a linear scaling effect.
We also introduce a variation of hit-and-run that accelerates the sampler, and demonstrate its
capability through a computational study.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: — Probabilistic algorithm
(including Monte Carlo)

General Terms: Algorithm, Performance
Additional Key Words and Phrases: Markov chain Monte Carlo, Hit-and-run algorithm, uniform
sampling from a convex body

1. INTRODUCTION

The hit-and-run algorithm [Smith 1984] is a Markov Chain Monte Carlo (MCMC)
method for generating points uniformly distributed on an arbitrary bounded open
subset of a finite d-dimensional Euclidean space. The algorithm is relatively simple.
Starting with a specific point, say z, in the open set, a point € on the surface of
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a d-dimensional unit hypersphere centered at x is chosen at random, defining a
line passing through z and 6. Then a new sampled point is chosen uniformly on
the intersection of this line and the open set. This new sampled point replaces
the starting point = and the process is reiterated. The distribution of the sampled
points converges in total variation to the uniform distribution on the open set. This
version of hit-and-run is considered to be the most efficient algorithm for generating
an asymptotically uniform point if the set under consideration is convex [Lovész
1999; 2006]. With an appropriate filter, the algorithm can also be extended to
sample points that converge to an arbitrary target distribution in total variation
[Bélisle et al. 1993; Romeijn and Smith 1994].

Simple as it seems, direct sampling from the intersection of the random line and
the open set may be difficult, because the one-dimensional set can be the union of
an arbitrarily large number of open intervals. One way to circumvent the problem
is to enclose the region within a hyperrectangle, or box, so that sampling on the
intersection of the line with the box is easy, applying the rejection technique until
a point is sampled in the union of open intervals. Performing hit-and-run on an
enclosing hyperrectangle in this way was recognized as early as the conception of
the hit-and-run itself. However, analysis of this technique’s impact on the efficiency
of hit-and-run has not been done.

In this article, we first precisely define the algorithm on an enclosing box. We
then show that the impact of the box on the complexity is only a linear scaling
factor and derive a bound on the actual scale factor for the case of convex bod-
ies. This illustrates the power of hit-and-run since a direct acceptance/rejection
sampling entails exponential effort in the dimension. We also describe a variation
to accelerate the algorithm, and perform a computational study to compare the
efficiencies between the original and the accelerated hit-and-run on an enclosing
box.

2. HIT-AND-RUN WITH BOX

Let S be a bounded open subset of ®? from which we want to sample a uniform
point. We state the hit-and-run algorithm with an enclosing hyperrectangle as its
sampling agent in Algorithm 2.1. The shrinking algorithm from Neal [2003] is sum-
marized in Algorithm 2.2, and used to accelerate Algorithm 2.1 into Algorithm 2.3.

Denote the d-dimensional Lebesgue measure over R¢ by Ay where A denotes the
one-dimensional Lebesgue measure over a line. Let D denote the d-dimensional
unit sphere centered at the origin, and 0D denote its surface. Let v be a continu-
ous probability distribution on 9D with density bounded away from zero. Assume
further that we know a d-dimensional hyperrectangle, referred to as box B that
contains S. Let R be the diameter of B (e.g. the longest chord). The follow-
ing algorithm on an enclosing box is a modification of hit-and-run with a general
direction distribution, as in Bélisle et al. [1993].

ALGORITHM 2.1 THE HIT-AND-RUN ALGORITHM ON A BoOX.

Step 0:. Let Xog =x9 € S, and set n = 0.
Step 1:. Choose a direction ©,, on 0D with distribution v and set i = 1.
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Step 2:. Choose Ly, ; from the uniform distribution on Ey,:
E,={reR:z,+r0, € B}.

Step 8:. If X, + Ly, ;0, is notin S, sett =1+1 and return to Step 2. Otherwise,
set Xn+1 == Xn + Ln,ien-
Step 4:. Setn=n-+1. Go to Step 1.

In words, =, is the intersection of the line passing through X,, in direction ©,,
and the box B. Let A, be the intersection of the line passing through X, in
direction ©,, and S, i.e. A, = Z, NS. Performing Step 2 and Step 3 samples
a point uniformly on =, repeatedly until we obtain a point in A,. This is, in
fact, the rejection technique to sample a point uniformly on A,. This rejection
is the only modification from the original hit-and-run, where a uniform sample
on A,, is performed directly. Therefore, the resulting sequence of iteration points
(Xp;n > 0) from the hit-and-run algorithm on a box is the same as the original
hit-and-run. Note that when S is described by linear constraints or constraints that
are invertible, then sampling on the line set A,, can be performed directly.

The original hit-and-run, and hence the hit-and-run algorithm on a box, is uni-
formly ergodic. It has been shown that the limiting distribution of an iteration
point X, is the uniform distribution on S. This results from the property that the
transition probability of the hit-and-run process is reversible with respect to the
uniform distribution. The process is also shown to be uniformly ergodic [Bélisle
et al. 1998; Diaconis and Freedman 1997].

The complexity of the hit-and-run algorithm on a box accounts for the total
number of sampling points from B per iteration and the number of iterations needed
to achieve the uniform distribution on S within a certain error. To make the
statement precise, we need to introduce some quantities.

For any n = 0,1,2,..., define C,, as the total number of sampling points in the
nth iteration. Since X, is uniformly ergodic with the uniform limiting distribution,
given a fixed error € > 0, there exists a number N, such that, for any measurable
subset A and for all g € S,

P [ XN, € AlXo = x0] — u(A)| <,

where p is the uniform probability on S. Therefore, the total number of sampling
points required before the distribution of the iteration point attains the uniform
distribution on .S within an e error is Zg;gl Ch.

With a fixed error € > 0, define the total expected number of sampling points to
get within e of the limiting distribution as ET

N.—1 Ne—1
ET.=E Z C,l = Z E[C,]. (1)
n=0 n=0

The second equality in (1) follows because the hit-and-run process is uniformly
ergodic, so N, is a constant that is independent of the starting point xy € S. Note
that N, is the measure of complexity used in Lovdsz and Vempala [2006], where
iteration points are assumed to be sampled directly from S. In our setting, we
sample S indirectly from the box B, so we need to count not only the iteration points
in S but also all the sample points in B. Therefore, N is not enough to capture
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the whole complexity, and we instead use ET, for our measure of complexity. Now,
if the initial distribution of X is the uniform distribution on .S, the hit-and-run
process is stationary and E [C,,] = EC is the same for all n. Therefore,

EC - /SE (Co X = 2] (AiS)) (). @)

In some applications of Markov chain sampling, one requires more than one
sample from the stationary distribution of the chain, each sample independent
of the others. Usually, this is accomplished not by running multiple sequences
of the Markov chain from different starting points, but by running a very long
sequence of the chain with the burn-in period removed. After the burn-in period,
the chain is approximately stationary. EC approximates the expected number of
sampling points in one iteration after the burn-in period. In that case, ET. =
N.EC approximates the expected number of sampling points required until two
iteration points in the sequence generated by process can be treated as independent.
These approximately independent iteration points have been used, for example, in
polynomial time volume algorithm for convex bodies [Kannan et al. 1997] and also
in constructing a confidence interval for some Bayesian inferences [Quinn 2004]. In
simulation, the batch-means approach has been primarily employed in construction
of a confidence interval of the long term mean of an output of a Markov chain
sequence [Asmussen and Glynn 2007]. For example, the hit-and-run algorithm
can be used with the batch-means approach to construct a confidence interval on
the center of gravity of S. N, can be employed as a fixed batch size, and ET;
approximates the expected number of sampling points required in one batch.

In the next section, we show that the size of the box is not a crucial factor of the
computational complexity of Algorithm 2.1 by providing bounds on ET. as a linear
function of the box diameter. We also provide an explicit formula for the bound on
ET, when the chain is stationary and the region S is convex. This explicit bound is
applicable when the burn-in period is long enough that the chain is approximately
stationary.

For the hit-and-run algorithm with an enclosing box, one can speed up the algo-
rithm by employing the following shrinking mechanism due to Neal [2003] to reduce
the rejection time in Step 3 of Algorithm 2.1.

ALGORITHM 2.2 NEAL’S SHRINKING ALGORITHM [NEAL 2003]. Let S C R be
an open set contained in an interval In = (by ,bg) and let z € S. Seti = 0. Choose
a new point Y in S as follows.

Step 1:. Choose a point X' uniformly on I;.

Step 2:. If X' is not in S, then shrink the interval as follows. If X' > x, set
bi, =X If X' <ua, setb,, =X'. Let Ijq = (bj1,bf,). Seti=i+1 and
return to Step 1. Otherwise, if X' is in S, set the new point Y = X'.

It is proven in Neal [2003] that, for any x,y in an open set S C R,

q(z,y) = q(y,x) where P(Y € A | starting at =) = / q(z,y) dy. (3)
A

This shrinking algorithm is used to sample from a level set of a one-dimensional
density function in the slice sampling technique. Note that Y is not necessarily
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uniform on S. Combining the shrinking mechanism with hit-and-run, we obtain
the following accelerated algorithm as follows.

ALGORITHM 2.3 THE ACCELERATED HIT-AND-RUN ALGORITHM ON A BOX.

Step 0:. Let Xg =x9 € S, and set n = 0.
Step 1:. Choose a direction ©,, on 0D with distribution v, defining the line Z,,;
E,={reR:z,+r0, € B}.
Set I =sup =, and I =inf Z,. Seti=1.
Step 2:. Choose Ly, ; from the uniform distribution on the open interval (17 ,1;)
Step 3:. Set Xy ; = Xp + Ly iOn.

If Xy is not in S, set I, and l;,, as follows. If L,; >0, set I\ = Ly
and keep Iy =17 . If Lp; <0, set I, = Ly ; and keep I, =1f. Seti=1i+1
and return to Step 2.

Otherwise, if Xy, ; is in S, set Xpp1 = Xn .

Step 4:. Setn=n-+1. Go to Step 1.

The Markov chain generated by Algorithm 2.3 is reversible with respect to the
uniform distribution on S, no matter if S is convex or non-convex, because of (i)
the probability (density) of choosing a line passing through y starting from z is the
same as that of choosing a line passing through x starting from y, for any x,y € S
and (ii) given a line passing through both x and y, the probability (density) of
choosing the point y on the line from x is the same as that of choosing the point =
on the line from y, as stated in (3).

Algorithm 2.3 differs from Algorithm 2.1 in that the line intersecting the box
is shrinking. This shrinkage increases the probability of acceptance in Step 2 and
3. Because every open subset S can still be reached in one step, the convergence
property of the new Markov chain remains the same.

When S is convex, the iteration point process generated by Algorithm 2.3 dis-
tributes the same as that generated by Algorithm 2.1, so IV, of the two processes are
the same. However, when S is not convex, the iteration point processes from the
two algorithms distribute differently, and, hence, N, of the two processes may be
different. As a result, in terms of ET,, Algorithm 2.3 is faster than Algorithm 2.1
when S is convex, but unclear when S is not convex.

In what follows, we analyze the upper bounds of ET, and EC of Algorithm 2.1.
We then perform a computational study to evaluate the benefit of employing Al-
gorithm 2.3 over Algorithm 2.1.

3. ANALYSIS OF THE COMPLEXITY

The complexity of Algorithm 2.1 defined by ET, relies solely on the quantity E [C,,],
because N, is determined by the region S and is independent of the box B. There-
fore, the main analysis is developing a bound on E [C},]. We first derive a bound on
E [C,] in general to show that the bound grows linearly in the diameter of the box.
When the process is stationary, then E[C,] = EC, and we can compute a bound
for a specific case when S is the union of a finite number of convex bodies. We are
interested in this specific case because the class of convex bodies is the domain of
problems on which the original hit-and-run algorithm has been proven practical.

ACM Journal Name, Vol. , No. , 20.



6 . Seksan Kiatsupaibul et al.

3.1 Bound on E[C,]

Let S be an open set, and B be a hyperrectangle, with diameter R, containing S.

Suppose Algorithm 2.1 starts with Xg = x¢. The algorithm generates two random

sequences: the direction vectors (©,;n > 0) and the iteration points (X,;n > 0).
For all x € S and 0 € 0D, define

Seo={se€S:s=zx+td,teR} and Byyg={s€B:s=x+1t0,tc R}

ProrosiTION 3.1. For alln=0,1,2,...,
E[C.] < R E[l} (4)
e A(Sx,.0,)]"

PrOOF. According to Algorithm 2.1, for each n = 0,1,2,..., given X,, = =,
0, =0, C,, is a geometric random variable with mean \(B; )/A(Sz ). Hence,

)\(BXm@n ) ]
A(Sx,.e,)

For all z € S and 6 € 0D, B, ¢ is a straight line within B, and A\(B; ¢) is bounded
by R, the diameter of B. Therefore,

R 1
| _RE|—— |,
/\(an,@n)] L\(an,en)}

Observe that E[1/A(Sx, e,)] does not depend on B, since X,, is taken from hit-
and-run defined by only S and v, and ©,, is distributed by v. O

E[C,| =E[E[C,|X,,0,]] =E [

]E[Cn]gE[

3.2 Computation of the Bound on EC for the Union of Convex Bodies

If Xg is uniform, or if n is sufficiently large, the Markov chain is stationary, and
then EC = E[C,]. In this section, we derive a bound on EC when the open region
S is a finite union of convex bodies. Since the complexity bound is dictated by
each single convex body in the union, we begin by analyzing E [1/A\(Sx, e, )] for a
single convex body. We then obtain a bound on EC' for the finite union of convex
bodies by applying the quantity to each single convex body of the union.

Let the dimension d be fixed, and consider first the case when S is a convex body,
and B is a hyperrectangle with diameter R containing S. Construct a hit-and-run
process (X ;n > 0) from Algorithm 2.1 where X, is uniformly distributed on S.
Consider the expectation term in Proposition 3.1,

1 1
8 {A(SX@)} - /aD [3 NS g ha(g) Pal®)dvd) (5)
1 1
= ) /BD /s NS, ) Pal@) dv(0).

The first equality follows by Fubini’s theorem since X,, and ©,, are independent,
and because X, is uniformly distributed on S.

Now fix § € 0D. Let Sg- be the projection of S onto the hyperplane perpendicular
to . For p € S, let S} be the line segment in which S intersects the line through
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p in @ direction and be linearly parameterized by t. Then by Fubini’s theorem,

/SA( d\a(z /SL /S S0 )dAd—l(p)Lé dXi—1(p) = Xa—1(S7").

The second equality follows since the inner integral is equal to 1, by the definition
of A(Sgz,0). Therefore,

1 ] _ Jop M 1(Sj)du(9). ©

E
[/\(an,@n) Aa(S)
Note that (6) is true for any d-dimensional region S.

LEMMA 3.2. For a convex body S C R? containing an open hypersphere of radius
r where d > 2, if X,, is uniformly distributed on S, then

= e <o 7)

PRrROOF. Without loss of generality, let the hypersphere of radius r contained in
S be centered at the origin. We find a lower bound of A\4(S) in terms of Ad—1(S§‘),

Aa(S) = /d)\d /SL /S” dA(t) dhg—1(p).

Assume that d > 2. For any 6 € 9D, we write [, -d\q—1(p) using a (d — 1)-
0
dimensional spherical coordinate system,

p(o) rtlp, ¢)
/ / dA(t) dhg_1( / / / dtp?=2 dp ds(¢)
sy Jsp dDa_1 t(p.®)

al¢)
/ / (E(p, 8) — t(p #)) p*2 dpds(¢),
ODg_1

where 9D, is the surface of (d—1)-dimensional unit hypersphere and ds(¢) is the
differential of the (d —2)-dimensional Lebesgue measure over 0Dy_1 parameterized
by direction vector ¢.

To obtain a bound on #(p, ¢) —t(p, ), we establish three points in S and consider
the triangle they form. For each direction ¢, because p(¢) is the limit of the inner
integral, there exists a point (t,p(¢) — &,¢) in S, for a small € > 0. The points
(r—e,0,¢) and (—r +¢,0, ¢) are also contained in S, because S contains an open
ball of radius r. The triangle formed by (¢, p(¢) —¢, @), (r—¢,0,¢) and (—r+¢,0, ¢)
is contained in S, because S is convex. With the base being defined by (r —¢, 0, ¢)
and (—r +¢,0, @), the triangle’s base length and height equal 2r — 2¢ and p(¢) — ¢,
respectively. Therefore, by a similar triangle property, at each height p from the
base of the triangle, the width is equal to

p(p) —e—p
(2r — 2¢) @) —c

Because the triangle is contained in .S,
p(g) —e—p
p(¢) —¢
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This is true for all € > 0. Therefore,

Hp.) ~tlp. ) 2 220 L,
and
p(¢>) 5 ,0 d )
Ai(S) > /8D / dp ds(9)

p(o) =(h)d—1
_ d—2 5. p(9)
_27“/6Dd1</ Pt dp g )ds(qS)
B (o) 1 i
= 27"/6Dd 1/ ( )p dpds(9)
2 p(®) i
= d/BDdl/o P " dpds(9)

= 25 (8)

By using a similar triangular argument, (8) is also valid for the case d = 2. The
lemma then follows using (8) and (6). O

Now we compute a bound on FC when S is a finite union of convex bodies.

PROPOSITION 3.3. Assume that S € R? is a finite union of m convex bodies S;
contained in a hyperrectangle B with diameter R, e.g.

S = U?;lsia
where each S; contains a hypersphere of radius . Then

EC < K@ )

for d > 2 where K = 3" X\q(S:)/Xa(S).

PRrROOF. Let X,, be uniformly distributed on S. Define T} = S; and, for ¢ =

T; = Si\(U, 1 Tk)
where A\B denotes A excluding B. Then

= xmean) iE [os*xn,@n\X T P (X, < )
i [ A(Sx,.e,) ’X ET]i\d((g)) (10)

The second equality follows because X, is uniformly distributed over S. Now
consider only the conditional expectation term,
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* {(SX@ ‘ Xn ET} = /BD /T By Pel@) v (0)
- ijg%; /ap /T /\(Sw;d(sl)d/\d(x) dv(0)
<3 L | syt ave)
= iiﬁg; oD /S NER Sxd(sl)dAd(x) dv(0)
= izg%;; (11)

The first inequality follows from 7T; C .S; and the integrand is a nonnegative function.
The second inequality follows from S; C S and, hence A(S;, ,) < A(Sy,¢). The third
inequality follows from Lemma 3.2. Substituting (11) into (10),

[ xmean) < (W) =3y 12)

where K = >, Ag(S;)/Aa(S). Since X, is uniformly distributed on S, the hit-
and-run process is stationary and EC = E[C,]. Equation (12), Equation (5) and
Proposition 3.1 imply Proposition 3.3. [

Observe that the constant K in Proposition 3.3 is the ratio between the sum of
volumes of the convex bodies constituting S and the volume of S. If the convex
bodies in S do not intersect with one another, then K is equal to one.

3.3 The Bound on the Complexity

Let (X,;n > 0) be generated from Algorithm 2.1. Then let N. be the number
of iterations required such that the distribution of the iteration point attains the
uniform distribution on S within € error, as defined in Section 2.

THEOREM 3.4. There exists a bound for the expected number of sampling points
and the conditional expected number of sampling points of Algorithm 2.1 that grows
linearly in R, the diameter of B. In particular,

ET.<R- Z [Sxe)] (13)

PRrROOF. From (1) and Proposition 3.1,

Ne.—1

ETEZZ ZRE{SXG)}

n=0

Observe that the term ZnN;gl E[1/A(Sx, .0, )] depends on the stochastic process
(Xn;n > 0) and (©p;n > 0), which do not depend on B. Therefore, the bound in
Theorem 3.4 grows linearly in R, the diameter of B. [
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COROLLARY 3.5. Assume that S C R? is a finite union of m convex bodies
contained in a hyperrectangle B with radius R, and each convex body constituting
S contains a hypersphere with radius r. Assume that Xo is uniformly distributed
over S. Then

BT, < NKO (14)
'S

ford>2and K =1 Xa(S;)/Aa(S) where K and N, are independent of B.

PRrROOF. Since X is uniformly distributed over S, the process is stationary and
E[C,] = EC. Substituting (9) in Proposition 3.3 into (1), yields

N.—1
' d d
ET.= Y E[C,] < E:KQ—];:NGKQ—];.

n=0 n=0

O

In Lovész and Vempala [2006], it is shown that, if S is a well rounded convex
body, then N, is of order O*(d*). With this result, Lovdsz and Vempala point out
that the original hit-and-run is one of the fastest MCMC uniform samplers for a well
rounded convex body. A well rounded convex body contains a unit hypersphere
and is contained in a hypersphere with radius d, so r = 1 and R = 2d*2. For
a single convex body, K = 1. Therefore, ET, is of order O*(dﬁé). Since any
convex body can be transformed into a well rounded one in polynomial time by an
affine transformation [Lovasz 1999], this bound is applicable to problems involving
a convex body where an affine transformation of the original convex body is allowed.
Therefore, the overall complexity of hit-and-run on a box applied to a convex body
is only slightly worse than that of the original hit-and-run, and the power of the
original hit-and-run is still carried over to the hit-and-run on a box.

4. A COMPUTATIONAL STUDY

We compare the performance of Algorithm 2.1, hit-and-run on a box (HRB), with
Algorithm 2.3, accelerated hit-and-run on a box (AHRB), on two types of nonconvex
bodies, a union of hyperspheres and a union of hypercubes. The objective is to
evaluate the potential benefit of employing AHRB over HRB.

Consider first a union of two unit hyperspheres whose centers are one unit apart,

S =81 USs, where S; = {z € RY: ||z — z4]]2 < 1}, fori = 1,2,

where 1 = [0.5,0,0,...,0]7 and 22 = [-0.5,0,0,...,0]7, and || - |2 denotes the
Euclidean norm. We run HRB and AHRB to compute the center of gravity of the
region. The solution to this simple problem is obviously the origin. We apply HRB
and AHRB by enclosing S in a box [—b,b]¢. For each box size b and dimension d,
10 simulations are run in multiples of 1000 hit-and-run iterations and stop when
the 95% confidence interval of the first component of the estimate contains 0 and
the width of the interval is smaller than 0.1. The performance measure is defined
as the average number of sample points (both accepted and rejected) over the 10
simulation runs. Figure 1 shows the performances of HRB and AHRB at different
values of b and d.
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Dimension (d=5) Dimension (d=10)

- ¢ HRB
= AHRB °

7

I

°

- ¢ HRB
= AHRB °

le+06 2e+06 3e+06
1

S N

Average number of sample points
0e+00 2e+05 4e+05 6e+05
Average number of sample points

0e+00
1

T T T T T T 1
0 2 4 6 8 10 14 18 0

H
T T
2 4 6 810 14 18

Box size (b) Box size (b)

Fig. 1. Performances of HRB and AHRB on the union of 2 hyperspheres at different b and d

For each fixed dimension, it is obvious that AHRB requires significantly fewer
sampling points than HRB does, and the advantage increases with the box size.
Now consider a union of two hypercubes

S =81 USy, where S; = {z € R : ||z — 2] < 1}, fori = 1,2,

where x1 = [0.5,0.5,...,0.5]7, 2o = [-0.5,—0.5,...,—0.5]T, and || - ||oo is the max
norm. This S is more difficult because of the corners, and the overlapping part of
the two hypercubes decreases as the dimension increases, causing the two cubes to
be less connected. We repeat the same simulation experiment on the union of the
two cubes. The results are shown in Figure 2, and again AHRB dominates HRB.

Dimension (d=5) Dimension (d=10)
2 2
5 o HRB 5 o HRB
2 o |m= AHRB > “| = AHRB
® o ® ~ o
s 7 4 s 9
g o E &1
S S —
g 8 | g 5
£ 3 P A
c [=E—
g 8] 7 g §1
i I 4
< g TTT T T T T T T T < g T T T T T T T T T
0 2 4 6 8 10 14 18 0 2 4 6 8 10 14 18
Box size (b) Box size (b)

Fig. 2. Performances of HRB and AHRB on the union of 2 hypercubes at different b and d

Table I shows the number of sampling points and the number of iteration points
required in each problem instance when d = 10. It is worth noting that, even
though the average number of sampling points of AHRB is much less than that
of HRB, the average number of iteration points of AHRB is greater than that of
HRB. This is because the shrinking scheme of AHRB causes the transition to be
more localized, while a high dimensional nonconvex S requires a higher degree of
global reaching to obtain a good mixing rate.
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Table I. Number of sampling points and iteration points of HRB and AHRB on each problem
instance when d = 10 (unit in 1000 points)

Box size | Sampling points (both accepted and rejected) Iteration points (accepted only)
2 hyperspheres 2 hypercubes 2 hyperspheres 2 hypercubes

HRB [ AHRB HRB [ AHRB HRB [ AHRB HRB [ AHRB

2 320.6 162.5 1,777.2 1,606.7 39.7 42.6 293.7 534.1

4 691.5 217.2 4,342.1 1,986.9 41.1 42.3 271.4 426.1

) 1,2475 | 265.1 9,635.1 2,668.4 369 | 41.0 2814 | 441.0

16 2,706.6 315.7 23,382.9 2,872.1 39.8 40.4 337.5 387.5

5. CONCLUSION

We analyze the effect of a hyperrectangle as a sampling agent in obtaining a hit-
and-run process. We show that its effect on the computational complexity is of
linear order in its diameter. The bound implies that it is not crucial to find the
hyperrectangle that best fits the support. We also demonstrate in a computational
study that, by shrinking the line set at each rejection step, hit-and-run on a box
can be sped up considerably.
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