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We consider the planning of production over the infinite horizon in a system with time-
varying convex production and inventory holding costs. This production lot size problem

is frequently faced in industry where a forecast of future demand must be made and production
is to be scheduled based on the forecast. Because forecasts of the future are costly and difficult
to validate, a firm would like to minimize the number of periods into the future it needs to
forecast in order to make an optimal production decision today. In this paper, we first prove
that under very general conditions finite horizon versions of the problem exist that lead to an
optimal production level at any decision epoch. In particular, we show it suffices for the first
period infinite horizon production decision to solve for a horizon that exceeds the longest time
interval over which it can prove profitable to carry inventory. We then develop a closed-form
expression for computing such a horizon and provide a simple finite algorithm to recursively
compute an infinite horizon optimal production schedule.
(Forecast Horizon; Dynamic Lot Sizing; Time-varying Costs)

1. Introduction
The production lot sizing problem is a model for the
control of production over a multiperiod planning ho-
rizon (Denardo 1982). It is one of the most frequently
used single-item deterministic inventory planning mod-
els (Federgruen and Tzur 1991). The objective is to
schedule production over the planning horizon so that
demand is satisfied at minimum cost. Standard as-
sumptions are that demand is deterministic (i.e., known
in advance) and backordering is not allowed (i.e., de-
mand cannot be satisfied by future production).

The fundamental economic tradeoff here is the bal-
ance of reductions in cost of production against corre-
sponding increases in costs of carrying inventory. In the
presence of economies of scale on the cost of produc-
tion, it can prove profitable to produce more than the
current period’s demand and carry inventory forward
to satisfy future demand, thereby lowering the average
cost of production (cycle stock motive). Even in the ab-

sence of economies of scale in production costs, the fu-
ture cost of production may exceed the cost of current
production plus inventory carrying costs again leading
to current production that exceeds current demand
(speculative motive (Chand and Morton 1986)).

The choice of planning horizon to employ is a difficult
issue, because the system being modeled typically has
a long but otherwise indefinite lifespan. A resolution of
this problem is to utilize an infinite horizon to model
the underlying long but unknown finite horizon life-
span of the system. In the general case of time-varying
demand and cost, the resulting model presents a chal-
lenging problem to solve (the stationary case reduces to
the classic economic lot size (ELS) model (Harris 1913).

Early efforts to solve infinite horizon versions of the
problem allowed time-varying demand but restricted
costs to be either stationary linear (Thompson and Sethi
1980, Morton 1978a), nonstationary linear (Kunreuther
and Morton 1973), or stationary convex (Kunreuther



SMITH AND ZHANG
Infinite Horizon Production Planning

1314 MANAGEMENT SCIENCE/Vol. 44, No. 9, September 1998

3b2d se15 Mp 1314 Thursday Oct 08 10:17 AM Man Sci (September) se15

and Morton 1974, Morton 1978b, Modigliani and Hohn
1955, Lee and Orr 1977). Their approaches to establish-
ing the existence of and procedures for discovery of so-
lution and forecast horizons variously used either mar-
ginal analysis to bound optimal production levels (Mor-
ton 1978; Kunreuther and Morton 1973, 1974; Morton
1978), or Lagrange multipliers to decouple present from
future decisions by forcing ending inventory to be zero
(Modigliani and Hohn 1955, Lee and Orr 1977). Most
of these papers provide forward algorithms together
with a stopping rule that, if met, results in discovery of
a solution horizon to the underlying infinite horizon
problem. However, existence of solution and forecast
horizons were only established under additional signif-
icantly stronger assumptions on the cost structure of the
problem.

The so-called dynamic lot size version of the problem
where production costs are fixed-plus-linear and inven-
tory holding costs are linear has been extensively stud-
ied in the nonstationary case. Although the recent focus
has been on computational breakthroughs in solving fi-
nite horizon versions of the problem (see, e.g., Aggar-
wal and Park 1990; Federgruen and Tzur 1991; and Wa-
gelmans, Van Hoesel, and Kolen 1989), the properties
exploited there have, in some cases, been used to estab-
lish conditions on finite horizon versions of the infinite
horizon problem that guarantee early decision agree-
ment with optimal decisions of the infinite horizon
problem. Such a finite horizon is called a solution ho-
rizon. When the agreement does not depend on prob-
lem data (in this case demand) beyond this solution ho-
rizon, it is also called a forecast horizon because only
data over this horizon needs to be forecasted to establish
infinite horizon optimal early decisions (Bes and Sethi
1988). Although solution and forecast horizons may fail
to exist here, Federgruen and Tzur (1991, 1992) pro-
vided a stopping rule that is guaranteed to be met
whenever they do exist (see also Chand and Morton
1986).

An important property of the dynamic lot size prob-
lem is the monotonicity of the last period with produc-
tion in the planning horizon N. This last property has
been extensively exploited to generate forecast horizon
existence and discovery results for the dynamic lot size
problem and its variations (see, e.g., Wagner and Whitin
1958; Zabel 1964; Eppen et al. 1969; Thomas 1970; Black-

burn and Kunreuther 1974; Lundin and Morton 1975;
Bensoussan et al. 1983; Chand 1982; Chand, Sethi, and
Proth 1990; and Chand, Sethi, and Sorger 1989). See also
Heyman and Sobel (1984) for a general review of using
policy monotonicity in homogeneous MDP problems.

In this paper, we consider the infinite horizon version
of the general lot sizing problem under diseconomies of
scale in production and inventory holding costs. This
convexity assumption is equivalent to the condition that
marginal production and holding costs be nondecreas-
ing. For example, this includes the case where inventory
costs are linear and where a firm experiences a higher
overtime rate for production exceeding the standard ca-
pacity followed by a still higher unit cost for exceeding
overtime capacity through outsourcing.

The optimization problem to be solved falls within
the class of doubly infinite convex programming prob-
lems, because there are both an infinite number of vari-
ables (production levels) and constraints (demand sat-
isfaction in each period). There is an extensive literature
on solution and forecast horizon approaches to solving
such general problems in infinite horizon optimization
(see, e.g., Bean and Smith 1984, 1993; Bes and Sethi 1988;
and Schochetman and Smith 1989, 1992). However, a
key assumption there that guarantees that general pur-
pose algorithms will successfully discover an equiva-
lent finite horizon problem is uniqueness of an infinite
horizon optimal solution. Although this condition is be-
lieved to be typically met in practice, it is difficult to
verify.

In this paper, we explore instead a novel algorithmic
approach for finding solution and forecast horizons that
systematically exploits monotonicity of optimal early
decisions in horizon N when production and inventory
holding costs are convex. This focus on early decision
monotonicity, as opposed to late decision monotonicity
as in the treatment of the dynamic lot size problem
where costs are concave, leads to a closed form expres-
sion for a forecast horizon guaranteed to yield optimal
early production decisions for the infinite horizon prob-
lem. As we will show, the length of the forecast horizon
is the longest interval of time over which it can prove
profitable to carry inventory.

The paper is organized as follows. In §2, we formulate
the infinite horizon model of the problem. In §3, we
prove that under very general conditions, solution



SMITH AND ZHANG
Infinite Horizon Production Planning

MANAGEMENT SCIENCE/Vol. 44, No. 9, September 1998 1315

3b2d se15 Mp 1315 Thursday Oct 08 10:17 AM Man Sci (September) se15

horizons exist leading to finite horizon versions of the
problem that yield optimal solutions to the infinite ho-
rizon problem. In §4, we give a closed-form expression
for computing a solution (indeed forecast) horizon and
a simple recursive procedure for computing an optimal
infinite horizon production schedule.

2. Problem Formulation
Consider a single-product firm where a decision for
production must be made at the beginning of each pe-
riod n, n Å 1, 2, . . . . We will adopt the following no-
tation wherein n Å 1, 2, . . . .

Constants and functions:

Dn Å the demand during period n (nonnegative in-
tegers)

a Å the discount factor for the time value of money
(0 õ a õ 1)

I0 Å the inventory on hand at the beginning of pe-
riod 1 (nonnegative integer)

cn(x) Å the cost of producing x units of the product dur-
ing period n (nonnegative)

hn(x) Å the cost of holding x units of inventory ending
period n (nonnegative)

Decision variables:

Pn Å the production level during period n (nonnegative
integers)

In Å the inventory on hand at the end of period n (non-
negative integers)

We will use the superscript (*) to denote optimality.
With the above notation, we can formulate this infi-

nite horizon problem, labeled Q, as

`
n01(Q) Minimize: a [c (P ) / h (I )] (1)∑ n n n n

nÅ1

Subject to: I / P 0 D Å I , n Å 1, 2, . . . . (2)n01 n n n

P ¢ 0, I ¢ 0, n Å 1, 2, . . . (3)n n

P , I : integer, n Å 1, 2, . . . (4)n n

where I0 is given. As we can see from (2), if we know
the production levels Pn in all periods, we can determine
the inventory levels In. Therefore, it suffices to find an
optimal production schedule . . . . Note, how-* * *P , P , P ,1 2 3

ever, that this is a doubly infinite integer nonlinear pro-
gramming problem and is therefore a formidable prob-
lem to solve.

3. Existence of Solution Horizons
We now investigate conditions under which a finite ho-
rizon version of the problem has an optimal first deci-
sion that is in agreement with an infinite horizon opti-
mal first decision. If we can find an optimal infinite ho-
rizon first decision by solving a finite horizon version*P1

of the problem, we can roll forward one period and
form a new infinite horizon problem with new initial
inventory Å I0/ 0D1 to obtain an optimal infinite* *I P1 1

horizon second decision for the original problem. This
rolling horizon procedure can then recursively recover
an optimal infinite horizon production schedule.

In this section, we formulate the N-horizon truncated
version of the problem and show that, under convex
production and inventory holding costs, optimal pro-
duction levels of the N-horizon problem are increasing
in N. We then identify conditions under which an N-
horizon optimal nth decision, 1 ° n ° N, converges as
N r ` to an infinite horizon optimal nth decision. Fi-
nally, we establish existence of a finite horizon version
for solving the infinite horizon problem.

3.1. The N-Horizon Problem
We formulate the N-horizon problem, labeled (Q(N)),
corresponding to the original infinite horizon problem
(Q) as:

N
n01(Q(N)) Minimize: a [c (P ) / h (I )] (5)∑ n n n n

nÅ1

subject to: I / P 0 D Å I , n Å 1, 2, . . . , N (6)n01 n n n

P ¢ 0, I ¢ 0, n Å 1, 2, . . . , N (7)n n

P , I : integer, n Å 1, 2, . . . , N. (8)n n

Let S ⊆ R` be the set of all feasible production sched-
ules to (Q), S(N) ⊆ RN the set of feasible production
schedules to (Q(N)), P(N) any feasible production
schedule to (Q(N)), and I(N) the ending on hand in-
ventories resulting from the production schedule P(N),
N Å 1, 2, . . . . We now adopt our first assumption on
(Q) and hence (Q(N)), i.e., that both production and
inventory holding costs are convex:
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A0. Production and inventory holding costs are convex,
i.e., cn(·) and hn(·) are convex functions with cn(0) Å hn(0)
Å 0 for all n Å 1, 2, . . . .

The following lemma provides that for the N-horizon
problem (Q(N)), increasing demand leads to a mono-
tone increase in production.

LEMMA 1 (VEINOTT [1964]). Let P*(N) Å *(P (N),1

. . . , be any optimal solution for a vector (D1,* *P (N), P (N))2 N

D2, . . . , DN) of demands. If one of these demands is increased
by 1 unit, it is optimal to increase one of these production
levels by 1 unit.

The proof of this lemma can be found in Denardo
(1982).

Consider now the demand profile for an N / 1-
horizon problem where DN/1 Å 0. Since, without loss of
optimality, we never leave positive inventory at the end
of a horizon, we conclude Å 0 at an optimal solution*IN

for DN/1 Å 0. Then by the principle of optimality,

* *P (N) Å P (N / 1) (9)1 1

when DN/1 Å 0. Hence applying the lemma repeatedly
as DN/1 is increased one unit at a time, we have

* *P (N) ° P (N / 1), for N Å 1, 2, . . . (10)1 1

for any fixed DN/1. Following the same argument, we
also have

P*(N) ° P*(N / 1),n n

for all 1 ° n ° N, N Å 1, 2, . . . . (11)

Hence, we have proven the following corollary.

COROLLARY 1. is monotonically increasing in NP*(N)n

for any fixed n, 1 ° n ° N.

3.2. Optimal Solution and Value Convergence of
the N-Horizon Problems

Before we discuss convergence of optimal solutions of
the N-horizon problems, we need the following addi-
tional notation and assumptions. Let C(P) be the objec-
tive function of (Q) for P √ S and C* Å C(P*). Also let
C(P(N); N) be the objective function of (Q(N)) for P(N)
√ S(N) and C*(N) Å C(P*(N); N). Furthermore, we
adopt the following additional assumptions on (Q):

A1. There exists a finite cost feasible production schedule
to (Q), i.e., C(P*)õ ` for some feasible production schedule
P* √ S.

A2. The marginal costs of production are uniformly
bounded from above and away from zero, i.e., 0 õ dn

° cn(Pn) 0 cn(Pn 0 1) ° gn ° g õ ` for all integers Pn

ú 0 and all n Å 1, 2, . . . .

Assumption (A1) is needed for a solution to (P) to exist
while (A2) is a regularity condition that bounds optimal
production and inventory levels. We now show that

converges as horizon N r ` to an infinite horizonP*(N)n

optimal nth decision õ ` for all n (Theorem 1). ThatP*n
is, limNr` Å under the above conditions. ThisP*(N) P*n n

componentwise convergence of P*(N) Å *(P (N),1

. . . , 0, 0, . . .) to P* Å . . .) as* * * *P (N), P (N), (P , P ,2 N 1 2

vectors in R` is precisely product convergence in R`

(Schochetman and Smith 1992), so we may equivalently
write that

P*(N) r P* as N r `.

We establish this convergence by first showing that
converges to an infinite horizon feasible solutionP*(N)n

as N r ` (Lemmas 2 and 3) and then that value and
hence solution convergence holds for all n Å 1, 2, . . .
(Lemma 4 and Theorem 1).

LEMMA 2. There exist finite production bounds PV n, n
Å 1, 2, . . . , so that ° PV n õ ` for all N and n Å 1,P*(N)n

2, . . . .

PROOF. Suppose not, then there exists some n and
subsequence k Å 1, 2, . . . , such thatnN ,k

nlim P*(N ) Å `. (12)n k
kr`

By assumption (A2),
nlim c (P*(N )) Å ` (13)n n k

kr`

and hence
nlim C*(N ) Å `. (14)k

kr`

However, by (A1), with the first decisions inn nP*(N ) Nk k

P*,
n n nC*(N ) ° C(P*(N ); N ) ° C(P*) õ `. (15)k k k

This contradicts equation (14). h
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By Corollary 1, at any decision epoch, n, there exists
a monotonically increasing sequence of optimal deci-
sions N Å 1, 2, . . . . By Lemma 2, this sequenceP*(N),n

of values is bounded from above. Therefore, mustP*(N)n

converge as N goes to infinity, i.e.,

Plim P*(N) Å P õ ` (16)n n
Nr`

exists for all n Å 1, 2, . . . .
It remains to show is infinite horizon optimal.PP

LEMMA 3. √ S, i.e., is infinite horizon feasible.P PP P

PROOF. Fix n Å 1, 2, . . . . Then

n n n

P * *P Å lim P (N) Å lim P (N)∑ ∑ ∑j j j
Nr` Nr`jÅ1 jÅ1 jÅ1

n n

¢ lim D 0 I Å D 0 I . (17)∑ ∑j 0 j 0
Nr` jÅ1 jÅ1

Hence is infinite horizon feasible. hPP

LEMMA 4. limNr` C*(N) Å C*, i.e., optimal value con-
vergence holds.

PROOF. Since, without loss of optimality, production
is bounded in every period by Lemma 2, this follows
from the general optimal value convergence result of
Theorem 3.2 in Schochetman and Smith (1989). h

We can now prove our principal result that finite ho-
rizon optima monotonically converge upwards as ho-
rizon lengthens to an infinite horizon optimal solution.

THEOREM 1. is infinite horizon optimal, and hencePP
P*(N) converges monotonically upward to an infinite horizon
optimal production schedule, i.e.,

PP*(N) F P as N r ` for all n Å 1, 2, . . . .n n

PROOF. From (3.16), and nonnegativity of the costs,
for any positive integer M,

M
n01

P Pa [c (P ) / h (I )]∑ n n n n
nÅ1

M
n01Å lim a [c (P*(N)) / h (I*(N))]∑ n n n nH J

Nr` nÅ1

N
n01° lim a [c (P*(N)) / h (I*(N))] Å C*∑ n n n nH J

Nr` nÅ1

by Lemma 4. Now take the limit as M r ` on both sides
of the above inequality to get

M
n01

P P PC(P) Å lim a [c (P ) / h (I )] ° C*. (18)∑ n n n nH J
Mr` nÅ1

From Lemma 3, √ S and hence is infinite horizonP PP P
optimal. h

Theorem 1 allows us to easily extend Veinott’s mono-
tonicity lemma to the infinite horizon case.

COROLLARY 2. Suppose Assumptions (A0) through
(A2) hold. Let P* be any optimal solution for a vector (D1,
D2, ···) of demands. If one of these demands is increased by
1 unit, it is optimal to increase one of these production levels
by 1 unit.

PROOF. Let be the optimal infinite horizon pro-HP
duction schedule for the demand vector (D1, . . . , Dj

/ 1, . . .) and let be the corresponding optimalHP*(N)n

production volume in period n under this demand
schedule for a planning horizon of N periods. Note that
for all n Å 1, 2, . . . ,

˜ ˜ PP Å lim P*(N) ¢ lim P*(N) Å P (19)n n n n
Nr` Nr`

by Lemma 1 and Theorem 1. Also

n n n

˜ ˜ * *P Å lim P (N) ° lim P (N) / 1∑ ∑ ∑k k kS D
Nr` Nr`kÅ1 kÅ1 kÅ1

n n

P*Å 1 / lim P (N) Å 1 / P (20)∑ ∑k k
Nr`kÅ1 kÅ1

for all n Å 1, 2, . . . since without loss of optimality end-
ing inventory in period N is zero for all planning hori-
zons N Å 1, 2, . . . . (19) together with (20) imply that P̃n

Å P̂n for all periods n but one in which P̃n Å P̂n / 1. h

The conclusion of Theorem 1 is called optimal solu-
tion convergence while that of Lemma 4 is called opti-
mal value convergence. Optimal value convergence
supports a method analogous to successive approxi-
mations as applied to homogeneous MDP problems
(Denardo 1982). These may be viewed as equivalent to
solving successively longer horizon problems as we it-
erate (the initial guess of value function is seen here as
a terminal value at the end of horizon).

Optimal value convergence implies that for N large
enough, the corresponding optimal N-horizon plan
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P*(N) achieves a cost arbitrarily close to that achieved
by an optimal infinite horizon solution P*, i.e., P*(N)
and P* are close in value. But P*(N) is not an infinite
horizon feasible solution. Optimal value convergence is
therefore of limited use, approximating infinite horizon
optimal cost, but not solutions, while it is the latter we
need to implement. Still we may at times be able to ex-
tend P*(N) feasibly over the infinite horizon at small
cost to achieve an infinite horizon feasible solution with
nearly the same cost as P*. The solution convergence
result of Theorem 1 is however far more powerful, be-
cause policies and not just costs are arbitrarily well ap-
proximated by sufficiently long finite horizon optimal
solutions. In fact, the approximation to early decisions
is without error in this case as we note in the next sub-
section.

3.3. Solution Horizons for Solving the Infinite
Horizon Problem

By Theorem 1,

lim P*(N) Å P*, n Å 1, 2, . . . (21)n n
Nr`

where P* Å P̂ is an infinite horizon optimum. This im-
plies that for any e ú 0, there exists a horizon, Ne(n)
such that

ÉP*(N) 0 P*É õ e, for all N ¢ N (n). (22)n n e

Let e Å 1. Then

ÉP*(N) 0 P*É õ 1 (23)n n

so that

P*(N) Å P* (24)n n

for all N ¢ N1(n). In particular,

* * *P (N) Å P , for all N ¢ N (25)1 1 1

where Å N1(1) so that is a solution horizon. That* *N N1 1

is, there exists a finite horizon sufficiently distant*N1

that an optimal first period production lot size for any
horizon that long or longer yields an infinite horizon
optimal first period production lot size.

By forward dynamic programming, let fn(i) be the
present value of the optimal cost from period 1 through
period n with ending inventory level i in period n,
where i ¢ (I0 0 Dj)/ . Thenn(jÅ1

f (i) Å min { f (i / D 0 P )n n01 n n
0°P °D /in n

n01/ a [c (P ) / h (i)]}n n n

where f0(i) Å 0 for i Å I0 and ` otherwise. If we knew
the value of the solution horizon we could then*N ,1

solve for to get an infinite horizon optimal first*f (0)N1

period production level

* * *P Å P (N ).1 1 1

By (24), we can similarly compute the nth period infi-
nite horizon optimal production decision for all n Å 1,
2, . . . . We can then recursively find ···) Å P** *(P , P ,1 2

with zero error. We turn to the computation of solution
(and forecast) horizons in §4.

4. Computing Solution and Forecast
Horizons

We have shown in the previous section that there exists
a solution horizon such thatN*n

P*(N) Å P*, for all N ¢ N*n n n

at any decision epoch n. In this section, we seek a
method to compute solution horizons for all n Å 1, 2,
. . . and a corresponding simple algorithm to compute
an optimal infinite horizon solution for all n.P*n

Consider as N increases. By Corollary 1,*P (N)1

* *P (N / 1) ¢ P (N). (26)1 1

Therefore, the optimal first decision either remains the
same or increases as N increases. Suppose the latter, that
is,

* *P (N / 1) ú P (N). (27)1 1

Since, moreover,

P*(N / 1) ¢ P*(N), for all 1 ° n ° N (28)n n

by Corollary 1, at least one additional unit of inventory
is produced in period 1 and held for N periods to satisfy
a unit of demand in period N / 1. Evidently, by (27) it
is then less costly to satisfy a unit of demand in period
N / 1 by production in period 1 than by production in
later periods, and in particular than by production in
period N / 1. Let s be a lower bound on the marginal



SMITH AND ZHANG
Infinite Horizon Production Planning

MANAGEMENT SCIENCE/Vol. 44, No. 9, September 1998 1319

3b2d se15 Mp 1319 Thursday Oct 08 10:17 AM Man Sci (September) se15

Table 1 The Forecast Horizon in Days for the First Infinite Horizon
Optimal Production Level

r £

u

1.2 1.4 1.6 1.8 2

0.2 0.2 1 2 3 4 5
0.2 0.1 2 4 6 8 10
0.2 0.05 4 8 12 16 20
0.1 0.2 1 2 3 4 5
0.1 0.1 2 4 6 8 10
0.1 0.05 4 8 12 16 20
0.05 0.2 1 2 3 4 5
0.05 0.1 2 4 6 8 10
0.05 0.05 4 8 12 16 20

cost of carrying an additional unit of inventory, i.e., by
convexity of h, we may set

s Å inf {h (1)} ¢ 0.n
n¢1

Then by (A0),

N
N n01 Ns(1 0 a )/(1 0 a) ° a h (1) ° a g 0 c (1)∑ n N/1 1

nÅ1

so that N ° where is given by* *N N1 1

(1 0 a)c (1) / s1*N Å log (29)1 aH J(1 0 a)g / s

where X represents the smallest integer strictly
greater than X. We conclude then

* * *P Å P (N ) (30)1 1 1

is an infinite horizon first decision depending only on
D1, D2, . . . , where is given by (29). That is,* **D N NN 1 11

is a forecast horizon for the first production decision. Follow-
ing the same argument, we can compute the forecast
horizon for the second production decision, and so on.
A tighter bound on a forecast horizon N can be obtained
by utilizing specific problem data to compute the great-
est number of periods it is economic to carry inventory.
That is, a forecast horizon is provided by the largest
period of time it can prove profitable to hold a unit of
inventory produced in period 1.

Note that is independent of all demands. It also*N1

only depends on the values of bounds on inventory and
marginal production costs. To get a feeling for the mag-
nitude of our forecast horizon, we look at some exam-
ples.

In the simple case where production costs are station-
ary and linear over time,

g Å sup{sup[c (P ) 0 c (P 0 1)]} Å c (1)n n n n 1
n¢1 P ú0n

and Å 1. In other words, as we would expect, we*N1

only need to know the demand in the first period to
make the optimal first decision regardless of the inven-
tory costs since no inventory is needed when produc-
tion cost does not vary over time.

Consider now the case where the production costs are
piecewise linear or even nonlinear. In this case if we set

gÅ uc1(1), uú 1 (i.e., the marginal production cost will
not exceed uc1(1)) and s Å vc1(1) where v is the inven-
tory charge as the sum of a proportion of production
cost, opportunity costs, taxes, insurance costs, the value
loss over time (e.g., certain products have to be sold by
discount), floor space rental costs, etc., then

1 0 a / v*N Å log .1 aH J(1 0 a)u / v

For various inventory charges v per day, discount factor
a Å 1/(1 / r/365) per day where r is the interest rate
per year, we computed for u Å 1 to 2. The results*N1

are shown in Table 1.
We chose inventory costs unusually high here to il-

lustrate how short these forecast horizons can be. How-
ever, even in the case of moderate inventory costs, fore-
cast horizons can be significantly reduced by a more
detailed analysis using more precise cost information to
provide better bounds on the minimal forecast hori-
zon.1,2

1 We are indebted to Awi Federgruen and an anonymous referee for
suggestions that significantly improved the clarity of this paper.
2 This work was supported in part by the National Science Foundation
under grants DDM-9214894, DMI-9501740, and DMI-9713723
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