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Abstract

We prove existence of MPE in undiscounted infinite horizon dynamic games, by exploiting an struc-
tural property (Uniformly Bounded Reachability) of the state dynamics. This allows to identify a suitable
finite horizon equilibrium relaxation, the ending state Constrained MPE, that captures the relevant fea-
tures of an infinite horizon MPE for a long enough horizon. An application to an asynchronous dynamic
duopoly is presented.

1 Introduction

The traditional approach to prove existence of equilibria of infinite horizon games relies heavily on the
continuity of payoff functionals. The procedure begins by proving existence of finite horizon equilibria and
follows by taking limits as the horizon diverges. Compactness of the infinite horizon strategy space or the
history space is usually required to ensure the existence of a limit point (see for example, Fudenberg and
Levine [1983], [1986] and Borgers [1989]) which by continuity will inherit the desired properties.

In dynamic games with undiscounted or “average” reward payoffs, this approach fails since, the infinite
horizon payoff functionals are not continuous. Moreover, since future rewards are as valuable as present
rewards, “end of horizon” effects are magnified, thus, there may exist infinite horizon and finite horizon
equilibria of a substantially different nature. In other words, there are infinite horizon equilibrium strategies
that are not the limit of finite horizon equilibrium strategies.

In this paper, we provide a new proof of existence of Markov Perfect Equilibria (MPE) in the context of
infinite horizon nonstationary undiscounted dynamic games. The proof relies on a new method to overcome
“end of horizon” effects as in Schochetman and Smith [1997]. The idea is to restrict the deviation possibilities
for players by forcing an ending target state for every finite horizon. This relaxation leads to the definition of
a Constrained MPE. A reachability assumption, which essentially requires the “cooperative” controllability
of the state dynamics, ensures that play in early periods (as opposed to play in late periods) is more relevant
in identifying profitable deviations in the long run.

We apply our results to an asynchronous dynamic duopoly (see Maskin and Tirole [1988]). Interestingly
enough, a full sequential characterization of infinite horizon MPE, as limits of finite horizon Constrained
MPE, is possible in this setting. This result in turn, may help in proving the sustainability of first best
outcomes as equilibrium play of the infinite horizon game. This issue, as carefully exposed by Dutta [1995],
has been recently examined by Wallner [1997]. Of further research is the application of the techniques
here introduced to linear quadratic dynamic games (see Engwerda [1996]) where, hopefully, an analytical
representation of the Constrained MPE is possible.
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2 Nonstationary Dynamic Games.

A T−horizon, N−player nonstationary dynamic game can be represented by means of the collection GT =
{Aik(·) ⊂ Aik; rik(·, ·); fk(·, ·)}Tk=0 with state space denoted by S ⊂ R and given initial state s0 ∈ S, where :

• Aik ⊂ R is the set of feasible actions at time period k for player i ∈ I = {1, 2, 3, ...N} and for s ∈ S,
Aik(s) denotes the subset of feasible actions given state s.

• rik : S ×A1
k ×A2

k × · · · ×ANk → R is the player’s i, k−th period reward function.

• fk : S×A1
k ×A2

k × · · ·×ANk → S is the state transition function for period k, i.e given state s ∈ S and
actions ai ∈ Aik(s) we shall denote by a, the action N−tuple (a1, a2, ..., aN ). With this notation, the
state at the beginning of period k + 1 will be given by :

sk+1 = fk(s, a)

The set of T -long feasible sequences of actions profiles that players may exert is commonly referred to
as the history space :

H(T ) =
T−1∏

k=0

A1
k ×A2

k × · · · ×ANk

We shall denote by hT (s0) ∈ H(T ) a feasible history sequence if it is of the form :

hT (s0) = (a0; a1; ...; aT )

where for k = 0, 1, 2, ..., T − 1:

ak = (a1
k, a

2
k, ..., a

N
k ) and aik ∈ Aik(sk)
sk+1 = fk(sk, ak)

Finally, the total sum of rewards per stage for feasible history hT (s0) ∈ H(T ) is given by :

P iT (hT (s0)) =
T−1∑

k=0

rik(sk, a
1
k, a

2
k, ..., a

N
k )

Finally, if one is only concerned with an intermediate stream of rewards, we shall denote by P iN (hT (s0)) the
sum of the rewards induced by history hT (s0) up to period N with N < T , i.e :

P iN (hT (s0)) =
N−1∑

k=0

rik(sk, a
1
k, a

2
k, ..., a

N
k )

2.1 Strategies and Markov Perfect Equilibria (MPE).

We now introduce the concept of Nash Equilibria in strategies that employ available information for dynamic
games with fixed finite horizon T .

A closed-loop strategy for player i ∈ I, say πTi , is a T−tuple of maps πik : S → Aik , so that πTi is of the
form :

πTi = (πi0, π
i
1, ..., π

i
T−1)

We denote Πi(T ) the set of all such strategies for player i ∈ I. We refer to the N-tuple πT ∈ Π1(T )×Π2(T )×
· · ·× ΠN (T ) as a closed loop strategy combination and denote Π(T ) the set of all such strategy combinations.

We shall denote by hπ
T

T (s0) ∈ H(T ) the feasible history induced by strategy combination πT . Similarly,

we shall denote by hπ
T

T (sk) ∈
T−1∏
k

A1
k × A2

k × · · · × ANk the feasible history of play induced by strategy
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combination πT after intermediate state sk at time period k, where 0 < k < T − 1. As above, the payoff
obtained for this case will be denoted by :

P iT (hπ
T

T (sk)) =
T−1∑

j=k

rij(sj , a
1
j , a

2
j , ..., a

N
j )

The extension of a dynamic game when there is an infinite number of stages to play follows straightfor-
wardly by setting the history space to be the infinite cartesian product :

H =
∞∏

k=0

A1
k ×A2

k × · · · ×ANk

Similarly, we shall denote by Π, the set of all infinite horizon feasible strategy combinations.
Finally, the total aggregated reward received by player i under infinite horizon strategy combination π

is defined as follows :

P i(hπ(s0)) = lim inf
T→∞

P iT (hπ
T

T (s0))
T

where πT stands for the T−horizon truncation of infinite horizon strategy combination π.

2.2 Markov Perfect Equilibrium.

We are now ready to introduce the solution concept we shall be dealing with :

Definition 1 (Markov Perfect Equilibrium) : We say that πT is a Markov Perfect Equilibrium
(MPE) in closed-loop strategies iff for every player i ∈ I who would like to deviate from πT by playing
γTi ∈ Πi(T ) from every state sk ∈ S with 0 ≤ k < T − 1, would find no incentive in doing so, i.e :

P iT (h
(γTi ,π

T
−i)

T (sk)) ≤ P iT (hπ
T

T (sk))

where (γTi , π
T
−i) ∈ Π(T ) stands for the strategy combination in which all players j ∈ I and j 
= i follow πTj

and player i ∈ I follows γTi .

This definition carries over straighforwardly to the infinite horizon setting with the above introduced
framework.

We denote Π∗(T ) and Π∗ the set of all “Markov Perfect Equilibrium” strategies for the T−horizon and
infinite horizon games respectively.

2.3 Topologies on the set Π .

Since our interest is to study convergence of finite horizon equilibrium strategies to infinite horizon equi-
librium strategies, it is very important to carefully define relevant topologies on Π, and consequently the
different notions of convergence they induce. For a complete study the interested reader is referred to Har-
ris[1985b].

We will adopt the convention that any finite horizon strategy combination is trivially extended through
any feasible choice of continuation sequence of strategies, so that its extension is an element of Π.
We first concentrate on a topology for H. Given h = (a0, a1, a2, ..., ) and h′ = (a′0, a

′
1, a
′
2, ..., ) we define the

metric D : H ×H → R+ by :

D(h, h′) = sup
t

[
min{dt(at, a′t), 1}

t
]

where dt is any metric on A1
k ×A2

k × · · · ×ANk .
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The metric D(·, ·) induces the product topology on H (see Munkres[1975], p.123). With this metric in
hand one can define varios topologies on the set Π :

Definition 2 : W is the topology with basis consisting of the sets :

{π ∈ Π | D(hπ, h) < ε}

where h, hπ ∈ H. The basis is then obtained as we vary ε, h varies over H.

In words, the notion of convergence related to the topology W is simply the fact that πT → γ with
respect to W if and only if for any given intermediate state sk, the sequence of histories induced by πT ,
namely {hπTT (sk)}T converges to hγ(sk) in the product topology.

Definition 3 : L is the topology with basis consisting of the sets :

{π ∈ Π | πT = γT }

with γ ∈ Π, obtained as γ varies over Π and T varies over all periods and where πT , γT are the T−truncations
of infinite horizon strategy combinations π and γ respectively.

In words, πT → γ with respect to L if and only if for all intermediate states, simultaneously, the sequence
of histories induced by πT converge in the discrete topology (they fully agree) to the histories induced by γ.
L is essentially a uniform version of W, Clearly, for practical purposes it may be easier to prove convergence
with respect to W, since convergence need only be verified for representative subgames. On the contrary, L
imposes more restrictive conditions on an approximating sequence, so it is generally more helpful in proving
uniqueness.

When action sets are discrete, as it will be assumed throughout this paper, these topologies coincide (see
Harris[1985b]).

3 Constrained Markov Perfect Equilibria.

Let us now briefly discuss the motivations for the solution concept relaxation that we will introduce shortly.
The main difficulty for a sequential characterization of infinite horizon equilibria as limits of finite horizon
equilibria is due to “end of horizon” effects (see Fudenberg and Levine[1983]). In words, for a fixed finite
horizon, the final state attained for finite horizon equilibrium will generally be different from the state at-
tained by the truncation of the infinite horizon equilibrium. Myopic behavior close to the fixed finite horizon
is the explanation for this. We will try to overcome this effect by forcing equilibrium strategies to attain a
certain “target” state.

Definition 4 (Constrained strategies) : Let s ∈ S be some feasible state, we denote by Π(T, s) the set
of closed-loop strategy combinations such that for every sk ∈ S, 0 ≤ k < T − 1, and the state s is reachable
from sk; the play to follow after state sk must reach sT . In other words, the history prescribed, i.e hπ

T

T (sk)
reaches state s, at time period T , whenever state s is reachable from sk ∈ S, 0 ≤ k < T − 1 .

Note that the play prescribed by any πT ∈ Π(T, s) from some state sk ∈ S from which s is not reachable,
is completely irrelevant to the definition.

Definition 5 (Constrained MPE) :A strategy combination πT ∈ Π(T, s) is called a “Constrained
MPE to state s” iff for every deviation γTi ∈ Π(T ) such that (γTi , π

T
−i) ∈ Π(T, s) from every sk ∈ S with

0 ≤ k < T − 1, such that state s is reachable from sk we have :

P iT (h
(γTi ,π

T
−i)

T (sk)) ≤ P iT (hπ
T

T (sk))

We denote Π∗(T, s) the set of all “Constrained MPE to state s”
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4 Existence of Markov Perfect Equilibria.

4.1 Standing Assumptions.

We now present the standing assumptions for our analysis:

• Assumption 1: (Non-Emptyness) For every T , there exists some s ∈ S such that Π∗(T, s) 
= ∅.

• Assumption 2:

(a) Discreteness : Each set Aik is discrete and finite, hence, the history space H is compact in the
product topology and Π is compact in L .

(b) Reward Boundedness : for every i ∈ I and for every time period k :

−∞ < −M ≤ rik(·, ·) ≤M <∞

• Assumption 3 (Uniformly Bounded Reachability) : For any infinite feasible sequence of states,
say s = (s0, s1, s2, ...) and any intermediate state off the sequence, say s′k, at time period k; there
exist some finite time period T > k and sequence of action profiles {as}k<s≤T , so that state sT in the
sequence, is reached in T = k +�(s′k, s) > t periods. Moreover,

sup
k

sup
s
�(s′k, s) ≤ L <∞

4.2 The Existence Result.

The intuition for the next result lies in the fact that under the Uniformly Bounded Reachability assumption,
a sequence of finite horizon Constrained MPE will encompass all posible deviations (and not just the “con-
strained” deviations) as the horizon diverges to infinity. Compactness of the strategy space ensures that
every sequence of Constrained MPE has a converging subsequence and the limit strategy will be an MPE
for the infinite horizon game, by the argument above.

Lemma 1 : Let s = (s0, s1, s2, ...) be an infinite feasible sequence of states and {πT : πT ∈ Π∗(T, sT )}T
a sequence of finite horizons Constrained MPE such that :

π = lim
T→∞

πT with respect to L

then under assumptions 2 and 3 π ∈ Π∗.

Proof : Let us first show that;

P i(h(γi,π−i)(s0)) ≤ P i(hπ(s0))

for any player i ∈ I, who would deviate by playing γi ∈ Π from initial state s0. We recall that h(γi,π−i)
T (s0)

and hπT (s0) stand for the T−truncations of the histories induced by strategies (γi, π−i) and π, respectively.

By convergence in L there exists TN such that for any πT with T > TN the play prescribed by (γTi , π
T
−i)

and πT coincide exactly with h
(γi,π−i)
T (s0) and hπT (s0) respectively, in the first N < T periods. Moreover,

the deviation for player i :
γ̄Ti = (γi0, γ

i
1, .., γ

i
N , a

i
N+1, ..., a

i
T−1)

(in which we append from the N−period, the actions (aiN+1, ..., a
i
T−1) as prescribed by πT ) is such that

(γ̄Ti , π
T
−i) “reaches” state sT . Formally :

(γ̄Ti , π
T
−i) ∈ Π(T, sT )
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Hence, by hypothesis on πT we have :

P iT (h
(γ̄Ti ,π

T
−i)

T (s0)) ≤ P iT (hπ
T

T (s0))

By cost boundedness and the choice of TN , we have that total payoff accrued, up to period N satisfies :

P iN (h
(γ̄Ti ,π

T
−i)

T (s0))
N

≤ P iN (hπ
T

T (s0))
N

+
2M · L
N

hence :
P iN (h(γi,π−i)

T (s0))
N

≤ P iN (hπT (s0))
N

+
2M · L
N

Then, iterating on this construction, we have that :

P i(h(γi,π−i)(s0)) = lim inf
N→∞

P iN (h(γi,π−i)
T (s0))
N

≤ lim inf
N→∞

P iN (hπT (s0))
N

= P i(hπ(s0))

Thus, from the initial state, the proposed deviation is not profitable.
For a deviation from any other state sk ∈ S with 0 < k we use the same argument.
By a standard compactness argument existence of MPE follows :

Theorem 1 : Under Assumptions 1,2 and 3 there exists an MPE for the infinite horizon undiscounted
game.

Proof : By assumption 1 (non-emptyness) on can construct a sequence {πT : πT ∈ Π∗(T, sT )}T of
Constrained MPE for an infinite feasible sequence of states s = (s0, s1, s2, ...). By compactness of the
strategy space, there exists a converging subsequence, say {πTk : πTk ∈ Π∗(Tk, sTk)}k and :

π = lim
k→∞

πTk with respect to L

Finally by Lemma 1, π ∈ Π∗.

5 Application : Sequential Duopoly.

In this section we briefly illustrate all the definitions above introduced for the case of a duopoly competition
in prices, as in Maskin and Tirole [1988].
Players move sequentially, so that in odd numbered periods k, firm 1 chooses its price which remains un-
changed until period k + 2.That is, p1

k+1 = p1
k if k is odd. Similarly, firm 2 chooses prices only in even

numbered periods, p2
k+1 = p2

k if k is even. Hence, at time period k , firm’s i instantaneous reward rik(.) is
a function of the “state”, i.e the price that firm’s j set on period k − 1, say pjk , and the “action”, i.e the
price that firm’s i will establish pik. Feasible price set, say p ∈ P are discrete and bounded, goods are perfect
substitutes, that is, firms share the market equally whenever they charge the same price. Firms have the
same unit cost c. Let Dk(.) denote the market demand function at time period k. The total reward at time
period k is given by :

rk(p) = (p− c)Dk(p) p ∈ P

Then :

rik(p
1, p2) =

rk(pi) if pi < pj

rk(p
i
k)

2 if pi = pj

0 if pi > pj
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Strategies are “Markovian” in that they depend on the current “state”, i.e last period rival’s action. Hence,
the set of all histories is the same as the set of all feasible sequences of states.
Consider the infinite history h = {(p1

k, p
2
k)}k then firm i undiscounted payoff is :

P i(h) = lim inf
T→∞

1
T

T−1∑

k=0

rik(p
1
k, p

2
k)

Now, let us assume that p1
T is a feasible price decision for firm 1 at odd time period T . Then, Π(T, p1

T )
stands for the set of all markovian strategy combinations for horizon T in which player 1 is constrained
to play p1

T at time period T .Similarly, Π∗(T, p1
T ) is the set of T -long horizon “constrained” MPE strategy

combinations to “state” p1
T . Notice that under the assumptions by a backwards induction argument one can

easily see that Π∗(T, p1
T ) 
= Ø and that the Uniformly Bounded Reachability assumption holds.

Moreover, a “converse” like result to Theorem 1 holds in this particular setting, i.e every infinite horizon
Markov Perfect Equilibrium is the limit of a sequence of finite horizon Constrained Markov Perfect Equilib-
rium strategies.

Theorem 2 : For every π ∈ Π∗ there exists an infinite feasible sequence of “states” (p0, p1, p2, ...) and
a sequence of finite horizon Constrained Markov Perfect Equilibrium {π̂T : π̂T ∈ Π∗(T, pT )}T such that :

π = lim
T→∞

π̂T with respect to L

Proof : Let πT denote the T -truncation of π and pT the “state” reached from initial state. Clearly,
πT /∈ Π(T, pT ), since, off- equilibrium play need not necessarily lead to “state” pT . However, one can
construct a strategy combination π̂ that “resembles” π such that π̂T ∈ Π(T, pT ) as follows :

For all intermediate “states” pk ∈ P with 0 ≤ k < T :

• If hπ
T

T (pk) reaches state pT at time period T , we set hπ̂
T

T (pk) to be exactly hπ
T

T (pk).

• Else, hπ̂
T

T (pk) = hπ
T

T (pk) except for the last period action which is set to be exactly pT .

We embed the collection {π̂T : π̂T ∈ Π∗(T, pT )}T in the space Π, by appending the infinite tail of play
prescribed by π after “state” pT . It is clear that :

π = lim
T→∞

π̂T with respect to L

Reasoning by contradiction, let us now assume that :

π̂T /∈ Π∗(T, pT ) for all T

By definition, this implies the existence of profitable deviations, i.e for each T there is γTi with i ∈ I such
that (γTi , π̂

T
−i) ∈ Π(T, pT ) and :

P iT (h
(γTi ,π̂

T
−i)

T (p0)) > P iT (hπ̂
T

T (p0))

But by construction :

P iT (h
(γTi ,π̂

T
−i)

T (p0)) = P iT (h(γi,π−i)(p0))

and :
P iT (hπ̂

T

T (p0)) = P iT (hπ(p0))

which in turn will imply that :
P i(h(γi,π−i)(s0)) > P i(hπ(s0))

In other words, π /∈ Π∗, hence a contradiction.
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6 Conclusion.

Existence of equilibria in undiscounted games is a difficult issue. In this paper, we have presented a new
approach to this problem that relies heavily on structural properties of the game (the so called Uniformly
Bounded Reachability assumption). This assumption allows to define a solution concept ( the Constrained
MPE ) for the finite horizon game, that captures the relevant features of an infinite horizon MPE for a long
enough horizon.

An application to an asyncronous dynamic duopoly is presented. In this setting, not only the limit point
of finite horizon Constrained MPE is an infinite horizon MPE, but every infinite horizon MPE is the limit of
a sequence of finite horizon Constrained MPE. This sequential characterization helps identify the existence
of efficient equilibria for the infinite horizon game.
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