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Abstract

Hit-and-Run algorithms are Monte Carlo procedures for generating points that are
asymptotically distributed according to general absolutely continuous target distribu-
tions G over open bounded regions S. Applications include nonredundant constraint
identification, global optimization, and Monte Carlo integration. These algorithms are
reversible random walks which commonly apply uniformly distributed step directions.
We investigate nonuniform direction choice and show that under minimal restrictions
on the region S and target distribution G, there exists a unique direction choice dis-
tribution, characterized by necessary and sufficient conditions depending on S and G,
which optimizes a bound on the rate of convergence. We provide computational results
demonstrating greatly accelerated convergence for this optimizing direction choice and
for more easily implemented adaptive heuristic rules.



1 Introduction

We consider the Monte Carlo problem of generating a sample of points according to a given
probability distribution G over an open, bounded region S in R". After motivating the
problem through several applications, this section discusses the limitations of exact sam-
pling methods, describes the Hit-and-Run asymptotically exact method, and previews the
contribution of the paper to Hit-and-Run direction choice.

1.1 Sampling Applications

Nonredundant constraint identification (cf. Karwan et al. [16]). Given a point z satisfying
a system of linear inequalities and a unit direction u, an inequality is nonredundant if it
is uniquely the nearest constraint to x in direction +u or —u. As a special case, consider
points x sampled uniformly from the relative interior of the feasible region of a linear program
and directions u sampled uniformly on the unit hypersphere, with all pairs of points and
directions independent. The probability that the sample fails to identify any nonredundant
constraint decreases to zero as the sample size increases to infinity. We can then more rapidly
solve a reduced problem including only the identified nonredundant constraints. These may
not all be found by finite sampling, but even if the optimal solution to the reduced problem
is infeasible for the full problem, the optimum for the dual reduced problem remains feasible
and provides a good initial point for solving the full dual problem.

Global optimization (cf. Dixon and Szegd [7, 8], Rubinstein [21]). Deterministic iterative
optimization strategies typically choose locally improving search directions and step sizes
yielding improvement in each iteration. These methods often yield solutions which are
only locally optimal for nonconvex problems. A simple stochastic alternative for global
optimization is Pure Random Search [5], which samples points uniformly in the feasible
region and reports the sampled point with the best objective function as the optimal solution.
More practical methods commonly rely on the Multistart approach, applying local search
algorithms from some or all of a group of solutions chosen randomly from the feasible region
[20]. Both methods rely on efficient sampling of feasible points.

The potential of stochastic global optimization methods is illustrated by Pure Adaptive
Search (PAS) [19, 30], in which a new iterate is uniformly distributed over the subset of
the feasible region superior in objective value to the current iterate. The number of PAS
iterations required to approach the global optimum arbitrarily closely is shown to grow only
linearly in dimension, a result previously suggested by the computational experience of Solis
and Wets [24]. For stochastic global methods in general and PAS in particular, efficient
sampling from arbitrary regions is therefore of significant importance.

Monte Carlo Integration (cf. Hammersley and Handscomb [13]). We may evaluate I =
Js f(z)dz by noting that if the random variable X is distributed according to a positive



probability density function ¢ on .S, then
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The sample-mean method of Monte Carlo integration consists of generating Xi,..., Xy
according to g and estimating I by the unbiased estimator I = (1/N)SN, f(X;)/9(X;).
Sample-mean estimation may be superior to deterministic numerical methods for nonsmooth
integrands with multidimensional domain [21]. The potentially strong dependence of the
variance of I on the choice of g motivates interest in sampling from general distributions
over §S.

2 Sampling methods

2.1 Exact sampling

We begin by considering some of the shortcomings associated with the exact sampling meth-
ods of transformation, composition, and rejection (Schmeiser [22]). A vector X of n numbers
drawn independently from the uniform distribution over the interval [0, 1] is uniformly dis-
tributed over the unit cube in R™. Given a bijective differentiable transformation 7" from
the unit cube onto S, then T'(X) is uniformly distributed on S if T" has constant Jacobian
determinant. However, such transformation techniques are known only for a small class
of regions S, such as paralleletopes, hyperspheres, and simplices. Composition techniques
express the probability density to be sampled as a mixture of densities conditioned on a
random parameter, for cases when the decomposed densities can be sampled more easily
than the composite [21]. These methods tend to be intractable in even moderate dimension
[27]. The most generally applicable methods are rejection techniques. Sampling uniformly
from a region R enclosing S and rejecting those points not in S, the remaining sample is
uniformly distributed over S. However, the expected number of points in R needed in order
to hit S grows rapidly in dimension, making rejection techniques inefficient in high dimension
for many cases of S and R. The same problems are associated with sampling nonuniformly
according to a density g over .S, since this is equivalent to sampling uniformly in the region
under the graph of g over S.

2.2 Hit-and-Run algorithms

With each Hit-and-Run algorithm is associated a direction probability distribution H over
the unit hypersphere. The algorithm proceeds from a current point x™ by generating a
direction u according to H and selecting ™" according to G conditionalized on the resulting
line set, i.e., the subset of S lying in the direction +u from ™.



The most widely known version is the Hypersphere Directions (HD) Hit-and-Run algo-
rithm, proposed in 1979 by Boneh and Golan [4] and independently in 1980 by Smith [26].
HD selects directions according to a uniform distribution over the unit sphere and chooses
iterates uniformly on the resulting line set; in [27], Smith proves that the HD iterates ap-
proach a uniform limiting distribution independently of the starting point for open bounded
search regions S, and demonstrates experimentally that Hit-and-Run is potentially more
efficient than rejection techniques in high dimension. Another example is Coordinate Direc-
tions (CD) Hit-and-Run, due to Telgen [29], in which the direction is chosen uniformly from
among the 2n coordinate vectors (the vectors which parallel the coordinate axes in R") and
the new iterate is chosen uniformly on the resulting line set as in HD. These two algorithms
were analyzed and applied in Berbee et al. 2] to identify nonredundant linear constraints.

Bélisle, Romeijn, and Smith [1] have shown asymptotic convergence for the generalized
Hit-and-Run class when S is open and bounded and G is absolutely continuous with a
density that is positive, bounded, and continuous almost everywhere with respect to Lebesgue
measure. Schmeiser and Chen [23] have generalized to unbounded S and unbounded densities
of G. Under minimal restrictions on the direction distribution H, choosing new iterates
conditionally according to G' on the line set causes the distribution of iterates to converge
in total variation to GG. The direction distribution does not affect the asymptotic target
distribution of the iterates, but as we shall demonstrate, it has a strong effect on convergence
rate.

2.3 Other iterative sampling methods

Another iterative method for sampling according to a given asymptotic distribution is the
Gibbs sampler, due to Geman and Geman [11]. The Gibbs sampler samples several random
variables according to a joint density by sampling one of the random variables from its condi-
tional distribution given the values of the other variables, which are held fixed. The random
variable to be changed at each step is rotated so that each of the variables is resampled in
sequence. In the Euclidean-space setting of our problems, the Gibbs sampler is the same as
the CD Hit-and-Run algorithm, except that CD randomly chooses which variable to resam-
ple in each iteration rather than following a deterministic sequence. Tanner and Wong [28]
propose a similar method called data augmentation. For a review of these techniques, see
Gelfand and Smith [10]. Our study of random direction choice will not apply directly to the
Gibbs sampling approach due to the deterministic character of the Gibbs sequential direc-
tion choice rule. Gibbs sampling tends to reduce the computational effort of each iteration,
because no random direction is generated. However, the Gibbs approach is inflexible due to
its dependence on the alignment of the search region with the coordinate axes. Chen and
Schmeiser [6] verify empirically that for bivariate normal target distributions, Hit-and-Run
is more robust than Gibbs with respect to variation in the covariance of the distribution.
Another approach is Metropolis sampling, due to Metropolis et al. [18], which differs



from Hit-and-Run in that it generates random step sizes by an acceptance/rejection rule
applied to a uniformly distributed point from the line set, rather than by conditionalization.
This approach was extended by Hastings [14] and examined for very general settings in R"
by Bélisle, Romeijn, and Smith [1]. Hit-and-Run, Metropolis sampling, and Gibbs sampling
are all instances of Markov Chain Monte Carlo; for a review, see Geyer [12].

3 The Hit-and-Run Algorithm

Denote the unit ball in ®" by B = {u € R"| |ju|| < 1}, whose topological boundary 0B is
the unit hypersphere. Let S € R™ be an open bounded set. Let G be the target probability
distribution on .S, assumed absolutely continuous with respect to Lebesgue measure V', with
positive density g continuous almost everywhere and bounded from above and away from
zero. Let o be the measure giving surface area of measurable subsets of 0B, and let H be
the probability distribution of direction choice on 9B, assumed absolutely continuous with
respect to o and having positive density h. Also, for z,y € S let uy, = (y — x)/||ly — z||
represent the unit direction from x to y.

We now formally define the Hit-and-Run algorithm in S associated with the target dis-
tribution G and the direction distribution H.

Hit-and-Run Algorithm
1) Choose an arbitrary starting point 2° € S and set m = 0.
2) Generate a random direction u,, € 0B according to H.
3) Select A, from the line set A, = {\ € R|z™ + Au,,, € S} according to the density

B g(x™ + Atyy,)
Ia,, g(x™ 4 rupy,) dr

Im(A) AEA,,.

4) Set z™ = 2™ + A\, Uy, and m = m + 1, and go to step 2.

Because step 3 searches for both positive and negative step sizes A in direction u, we may
when convenient assume without loss of generality that h(u) = h(—u) for all u € 0B.
By Theorem 5 of [1] the distribution of the Hit-and-Run iterates {z™,m = 1,2,...}
converges in total variation to G for any initial 2°, i.e.,
lim Pr(a™ € Az’ = 2) = G(A) AeBg,zeS
uniformly in A, where Bg represents the Borel o-field on S. In fact, the cited theorem is more
general, not requiring g to be bounded allowing much more general direction distributions



H. In particular, our current restrictions on H exclude the CD version of Hit-and-Run
(where the direction distribution is not absolutely continuous) and other variations which
have zero direction density on some direction set of positive surface measure. However, the
convergence rate analysis here requires the stronger conditions.

For the HD algorithm, where G and H are uniform distributions, Smith in [27] established
the following bound on convergence rate:

) o nznfl

where ~ is the ratio of the volume of S to the volume of the sphere in R"” whose diameter
is that of S. As an example, if S is a 10-dimensional cube, v &~ 1/250 and the number m
of iterations required to upper-bound the error term on the left by 0.01 is over five million.
Our goal is the generalize this bound to nonuniform target distribution G and direction
distribution H and then find a direction distribution H* which optimizes the bound on
rate of convergence to the distribution G over the region S. Ideally, we hope moreover to
achieve improvement in experimental performance (i.e., average case behavior) as well as in
worst-case behavior.

A m—1
Pr($m€A|xO:x)—‘;ES)|§(l 7 > AeBg,x el (1)

4 Optimizing the Rate of Convergence

Assuming the region S and the target distribution G to be fixed and satisfying the conditions
of the previous section, let Py(A|z) be the one-step transition probability distribution for
the Hit-and-Run algorithm with direction distribution H. That is,

Py(Alz) = Pr(a™ € Alz2™ = z) A€ Bg,xz€S.

The following lemma expresses the transition probability density, which will contribute to
the derivation of the convergence rate bound. We define A(z,y) = {\ € R| x4+ Au,, € S} as
the set of feasible step sizes in the direction between z and y. (See [1] for an independently
derived expression for more general direction distributions and step size rules. The proof
given here is preserved for its relative simplicity and the comparative tractability of the
resulting density expression. We do not define fy(z|x); it can be an arbitrary positive
number, since V ({z}) = 0.)

Lemma 1 Given direction distribution H absolutely continuous with density h, for allx € S
the transition probability distribution Py(-|x) is absolutely continuous with density

_ (h(umy) + h(—uxy))g(y)
In) = o fea 9@ ruydr VS SVET @




Proof: Fix z. For 0 < r; < ry and measurable D C 9B such that D N (—D) = (), define
Cp(ri,m) ={z +ruju € D,;r;y <r <ry}, and let C be the class of all such sets. Let
Is(+) be the function indicating membership in S, and let S, , be a random variable
giving the Hit-and-Run step size from x in direction u. Let U be a random variable
distributed according to H over 0B.

For C' = Cp(ry,re) € C,

Py(CNnSlx) = Pr(UeD,S,y € (r1,m9))+Pr(U € —D, =S, € (r1,73))

= [ Pr(Suu € (r172)) (h(u) + h(—=w) o(du)
B ST (h(u) + h(—u))g(x + su) 1 s o (du
=,/ 1t S @ +rayars 7

) (h(1tay) + h(—11y)) ()
= O e g ]

by change to spherical coordinates; see e.g. [15, p.4]
/ (h(tay) + h(—tay))g(y)
c

ns ||y - :EHn_l fA(w,y) g(l’ + Tury) dr

(3)

Since Bg is generated by the m-system C restricted to S, equation (3) determines
Py (A|z) for all A € Bg as well [3, Theorem 3.3], completing the proof. =

The following theorem bounds the rate of convergence to the target distribution by pro-
viding an upper bound on the deviation between the target distribution and the distribution
of the m' Hit-and-Run iterate for any m, over all A € Bg, as a function of the direction
distribution H. We denote by H the class of absolutely continuous direction distributions
H with density h bounded away from zero. As stated in Section 3, we may assume without
loss of generality that h(u) = h(—u) for all H € H.

Theorem 2 For H € H,
|Pr(z™ € Al2® = x) — G(A)| < (1 =55V (9))"* AeBs,zeS (4)
where dg is the density bound for H, given by
Og = xlgfllefs fu(ylz).

Proof: For H € 'H, we have S bounded, g bounded from above and away from zero, and
h bounded away from zero. Hence from the preceding lemma fg(y|z) is bounded away

from zero, i.e., g > 0. Then the theorem follows from a result of Doob [9, p.197, case
b)]. =



In order to minimize the error on the left of (4) regardless of iteration number m, we seek
a direction distribution achieving the optimal error €, given by

€= éren;(l — oV (9)).

Therefore we formulate the convergence rate bound optimization as:

: *
(P) Find ¢ 21217){ Opr.

Since each dy is the value of a minimization, we call 6* the maximin density. By an
optimal direction distribution we will mean any distribution H* € H for which the maximin
density ¢* is attained. Of course, our use of the term “optimal” is a shorthand, since such a
distribution is optimal only in the worst-case rate of convergence as expressed by Theorem 2.
We would hope to realize further improvements by applying the methodology of this paper
to tighter bounds, if they should become available.

5 The Optimal Direction Distribution

We now investigate the maximin problem (P) in more detail. We will demonstrate that the
problem has a unique solution H* and characterize this solution by necessary and sufficient
conditions on H.

For each H € 'H, we define f};(u), the infimal transition density in direction u, by

fu(u) = inf {fu(ylz)} u € IB.
z,yeS
Ugy==Fu
Then 6y = infyuesp fi;(w). The infimal transition density decomposes into two parts, the
first corresponding to the target distribution G and the geometry of S, which are considered
fixed, and the second to the direction distribution H, which we wish to optimize.

Lemma 3 The infimal transition density for H is given by
1
fr(u) = —(h(u) + h(—u u € 0B
() p(u>( (u) + h(—u))

where p(u) is the span of S in direction u, defined independently of H by

T+ ru)dr
o) = sup {fW)g( ) ||y—x||"-1} uweoB. 5)
x,yEiS g(y)



Proof: We have

i = in 9(y) . i
ui;ieffu{fH(yu)} - ui;y:gfu {fA(I’y) g(x + ru) dr ||y _ anfl (h( ) + h( ))}
1
= mw(u) +h(—u)). =

We now state the main result.

Theorem 4 Let S C R" be an open bounded set, and let G be a probability distribution on
S, absolutely continuous with respect to V- with density g bounded from above and away from
zero. Then

i) There exists a unique optimal direction distribution H* € 'H.

it) The direction distribution H € H is optimal if and only if the infimal transition density
for H 1is constant, i.e., if fi; = c for some ¢ > 0.

Proof: We begin by proving sufficiency. Assume that for the direction distribution H with
density h, there exists ¢ > 0 such that f};(u) = ¢ for all w € 0B. Suppose that H is
not optimal, i.e., there exists a direction distribution H’ with density A’ such that

Ji(w) > 0pr > 0 = f(u) u € 0B.

Then by Lemma 3, 2'(u) + h'(—u) > h(u) + h(—u) for all u € 0B. But both h and
h' integrate to one over 0B, hence a contradiction ensues. No direction distribution
improves on the density bound 0y = ¢, and H is optimal.

Now we prove existence. Let H* be the direction distribution with density

. p(uw) "
W) = o) o) 0B

and corresponding infimal transition density f7.. Observe that g bounded above and
away from zero and S open and bounded implies p is bounded above and away from
zero. Further, it is easily seen that p(u) = p(—u) for all u € 9B, so h* is likewise
symmetric and hence H* € H. For u € 0B,

B 2
~ Jop p(v) o(dv)

Therefore H* satisfies the sufficient condition and is optimal, with 0* = dg+ = c.

=C.

S (u)



To prove the necessary condition, assume that direction distribution H with density A
is optimal. Since H* defined above is also optimal, f};(u) > 0y = §* = f}.(u) for all
u € 0B. Then by Lemma 3,

h(u) + h(—u) > h*(u) + h*(—u) u € 0B. (6)

Since both sides of this inequality must integrate over OB to the value 2, equation (6)
must hold with equality almost everywhere on dB. Then by our earlier assumption
that h(u) = h(—u), we have h = h* almost everywhere, i.e., h* is a density for H.
Thus fy(u) = fu(u) = ¢ for all u € OB and the necessary condition is established.
Furthermore, we have proven that any two optimal distributions must satisfy (6) with
equality almost everywhere, i.e., that the optimal distribution is unique. =

This main result has intuitive appeal. To maximize the minimum of a probability density,
an obvious candidate is to choose a uniform distribution. The proof above shows that
although the infimal transition density is not itself a probability density, it does have a
certain normalization which depends on S and G through the span p, and to maximize the
minimum, uniformity is again the solution.

From the proof of the above theorem, we have

Corollary 5 Under the conditions of Theorem 4,

i) The optimal distribution H* is determined by the span p of S given in (5), with density

. p(u)
h(u) = ——F————.
= Jop o) o)
i1) The optimal error €* is given by
2
ef=1—-——V(9).
Top (0} o)

Note also that H* is absolutely continuous with respect to o and has nonzero density on
all of 0B. Therefore, H* satisfies the conditions imposed in Section 3 to ensure that the
distributions of the iterates do in fact converge to the target distribution G.

6 Optimal Direction Choice for the Uniform Target
Distribution over a Class of Convex Regions

We will now examine the issue of how to generate directions according to a optimal direction
distribution H* with density h*. We could proceed by a rejection technique, generating

9



directions u uniformly on dB and accepting only if a uniform (0,1)-variate is less than
h*(u)/h, where h is an upper bound on h* (recall p is bounded from above, and hence
such a bound exists). This procedure is inefficient, particularly as n becomes large and S
deviates from a spherical shape. Moreover, h*(u) may be difficult to calculate. Under certain
conditions on the search region and target distribution, we can establish a potentially more
efficient procedure.

Assume the target distribution G is uniform over S convex. Since g is constant, the span
expression simplifies to

p(u) = sup [y —z|" u € 0B. (7)

We further assume that S has a center s, which we define to be a point such that for almost
all u € 0B, the supremum defining the span in direction u is realized by points x,y € 05
(the topological boundary of S) with s = (z + y)/2. The class of centered regions is quite
small by this definition, including spheres, rectangles, and regular polytopes, for example,
but not simplices or general polytopes. However, the importance of centered regions as a
motivating case will become apparent.

We define the radius in direction u by r(u) = sup{r > 0| s + ru € S} for all u € 0B.
By (7), we have p(u) = (r(u) + r(—u))" = (2r(u))"” for all u € 0B.

Theorem 6 Let S C R" be open, bounded, and convex with center s, and let the target

distribution G be uniform. Let'Y be a random wvariable uniformly distributed on S and let
U= (Y —3s)/||Y = s||. Then U has distribution H* on 0B.

Proof: For measurable D C 0B let Sg(D) be the part of S in the directions D from s, given
by

SS(D):{xGS: — ED}

[l = s
Then,

Pr(U e D) = Pr(Y € S4(D))

p(u

/D Jon p(v)
— /D h*(u) o(du) by Corollary 5.

10



Hence U is distributed according to H* on 0B. =

Therefore, to evaluate the efficiency of optimal direction choice on the class of centered
convex regions we may implement exact optimal direction choice by generating points uni-
formly distributed in the search region and normalizing the vectors from the center to these
points. Of course, if we could do this efficiently we would already have solved the problem
which Hit-and-Run is designed to address. However, this theoretical result motivates an
easily implemented approximation to optimal directions. Since the sequence of Hit-and-Run
iterates converges to uniformity, we can try choosing directions by randomly choosing one of
the previous Hit-and-Run iterates and normalizing the vector from an approximate center to
the iterate. A simple scheme for approximating the center would be to set the ith coordinate
equal to the mean of the ith coordinates of the previous Hit-and-Run iterates. Section 8
presents further discussion and computational results for a procedure of this kind

We now show that the class of centered convex regions is characterized by a single optimal
convergence rate bound.

Theorem 7 Let S C R" be open, bounded, and conver with center s, and let the target
distribution G be uniform. Then the optimal error is identical to that for uniform direction
choice in a spherical search region, i.e.,

€ = n2n_1.
Proof: By Corollary 5,
2
e = 1—— V(S
Tow Py o(da) " )
2
= 1-— V(s
2 fop () o(du) )
- n2n—1 :

For a spherical search region, v = 1 in (1) and hence the same bound obtains. =

Now, we examine the optimal direction distributions and convergence rate bounds for
particular regions S. The first example verifies an intuitive result.

Example 1 Let S = {z € ®R"|||z|| < b} so that S is the open ball of radius b > 0 centered
at the origin in . By (7), p = (2b)" and hence from Corollary 5 the optimal direction
distribution is uniform. This is natural; S looks the same from all directions, and we
have no reason to favor one direction over another. =

11



Example 2 Now let S = {z € R"|0 < z; < b;,i = 1,...,n} sothat S is an open rectangular
paralleletope determined by the upper bounds by, b, ..., b,. S is convex and has center
s=(b1/2,by/2,...,b,/2). For any unit direction u, a similar triangles argument shows
b;/2|u;| to be the distance in direction u from s to the ith upper bound constraint.
Since r(u) is the greatest distance which satisfies all n of the constraints,

plu) = (r(u) +r(=u)" (8)

bi
= ' . 9
i:%%¥2n{|ui|} ©)
u; 70

Since the optimal density is proportional to p, we can see either geometrically from (8)
or analytically from (9) that the density favors directions along the long axes of the
rectangle, and is maximized by the directions from s to the corners of S.

Let us evaluate the uniform-direction and optimal convergence rate bounds. By The-
orem 7, the optimal error is 1 — 1/(n2"~!). In contrast, recalling that v represents the
ratio of the volume of S to the volume of a sphere with diameter equal to that of S,
the uniform bound is determined by the term

Y V(S)
n2n—1 n2r=1(1diam(S))"V(B)
211, bi

1

Cn(SE )MV (B)

For each of the upper bound vectors 0° = (1,1,1,...,1), b = (1,2,3,...,10), and
v’ = (1,4,9,16,...,100) in R Table 1 shows the values of the uniform-direction
and optimal-direction convergence bound terms, as well as the number of iterations
required to upper-bound the error terms in (1) and (4) by 0.01. Clearly optimal
direction choice is greatly superior with respect to worst-case behavior, reducing the
number of iterations required by two to six orders of magnitude. =

7 Numerical Comparison of Uniform and Optimal Di-
rection Distributions

We executed Hit-and-Run both with uniform and with optimal direction choice in each of the
three hyperrectangles of Example 2. The testing procedure was as follows: run Hit-and-Run

for 10,000 iterations, sampling each tenth point in order to reduce serial correlations. The
resulting 1000 points in R were then shuffled to randomize their ordering. This procedure

12



Table 1: Convergence bound values in R*°

Error terms # iters m required so that

Upper bound vector Uniform dir: Optimal direction: Pr(z™ € -]2%) — G(-) <0.01
e=1—7/n2""1 | e =1-1/p2""1 | Uniform dir. | Optimal direction

W=(1,1,1,...,1) 1—-7.84-107" 1-1.95-107% 5.9 million 24 thousand

bt =(1,2,3,...,10) 1-3.36-10"8 1-1.95-107% 137 million 24 thousand

22 =(1,4,9,...,100) || 1 - 9.90-10- 11 1-1.95-10 2 47 billion | 24 thousand

produces ten samples of 1000 real-valued points, one sample in each coordinate direction.
We performed two-tailed x? frequency and serial correlation tests [17, pp. 59-60] to test
the hypothesis that the samples are uniformly distributed with respect to each of the ten
coordinate directions. The coordinate directions are each broken into 10 equal cells so that
each frequency test has 9 degrees of freedom. Smith [27] performed the same computational
test for HD on a cube in 'Y (i.e., uniform directions with »° as the upper bound) and
reported that seven of the ten coordinates passed the frequency test for uniformity at a
significance level of 10% and nine of the ten coordinates passed the serial correlation test at
the 10% significance level.

Tables 2 and 3 show the test statistics for the frequency and serial correlation tests re-
spectively. They show that with upper bound vector #°, for which the optimal direction
distribution is the closest to uniform of the three upper bounds tested, the results of uni-
form and optimal direction choice are comparable. However, when we elongate the region
somewhat by using the upper bound b!, only four of the ten coordinate samples pass the
frequency test with uniform directions, while nine of the ten coordinates pass with optimal
direction choice. The very elongated region with bound 0? yields results close to those for b
with respect to the number of tests passed by each direction choice method, but note that
most of the coordinates which fail under uniform direction choice do so with spectacularly
poor x? values. The serial correlation test statistics tell a similar tale; although the serial
tests for uniform direction choice are largely passed with bound b!, when we further elongate
the search region with bound b?, uniform directions badly fails half of the coordinate tests.
Taken together, these results demonstrate that optimal direction choice accelerates conver-
gence of Hit-and-Run to a uniform target distribution on regions whose geometry makes
clear distinctions between search directions.

We can gain further insight by seeking to establish a connection between the test results
and the convergence rate bound values which apply to the regions tested. Theorem 7 and
Table 1 indicate that the convergence rate bound for Hit-and-Run with optimal direction
choice is the same for any upper bound vector. That is, the convergence bound analysis
suggests that Hit-and-Run with optimal direction choice should perform the same in any
rectangular region. Revisiting Tables 2 and 3, we see that this predicted behavior does

13



Table 2: Frequency test statistics for Hit-and-Run in rectangular regions.*

X2 Statistics® (ith coord. range (0,b;) broken into 10 equal cells)
Coordinate Upper bound vector/Direction choice method
bO bt b?
1 Uniform Optimal Uniform Optimal Uniform Optimal
1 5.7 e 10.6 o 93 e 11.3 o 6.6 e 8.0 e
2 10.9 o 6.6 e 2.5 8.0 e 8.7 e 26.4
3 8.3 e 10.7 o 13.9 o 14.1 o 30.8 124 o
4 8.1 e 72 e 5.6 e 12.3 o 16.8 o 4.0 o
5 104 o 17.6 20.9 13.0 e 27.6 10.0 e
6 22.0 20.8 50.4 14.3 o 498.8 53 e
7 19.5 7.5 e 19.3 18.2 843.2 18.1
8 8.6 e 15.8 o 13.0 o 4.8 o 563.0 155 o
9 9.7 e 16.6 o 27.3 7.7 e 401.2 7.1 e
10 16.0 e 9.4 e 44.0 8.5 e 773.1 7.6 e
# passing
uniformity 8 8 4 9 3 8
at a = 10%

“Statistics passing the frequency test are marked by e.
®Upper and lower x2 values for a = 10%, v = 9: (3.3, 16.9).

occur. The numbers of frequency tests passing for the three regions tested are 8, 9, and 8
respectively; the difference is not statistically significant. The differences among the number
of serial tests passing (10, 7, and 10 respectively) might be considered significant, but two
of the three tests which failed for b' did so just barely; a slightly lower test significance
would have made the serial results as stable as the frequency results. The correspondence
of stability between convergence rate bounds and experimental performance for the differing
test regions provides empirical justification for the approach of accelerating convergence by
optimizing the worst-case performance bound.

8 An adaptive direction choice rule

For the purpose of evaluating the effects of optimal direction choice in section 7, we were able
to efficiently generate optimally distributed directions by applying a simple transformation
to points drawn from the uniform distribution over the rectangular region S, as stated
in Theorem 6. However, this method has no practical value; if a sample from the target
distribution over S is readily available, there is no need for further application of Hit-and-
Run or any other sampling method.

The convergence of Hit-and-Run to its uniform target distribution leads us to consider a
heuristic approach. In keeping with Theorem 6, let us try choosing directions by randomly
selecting one of the previous Hit-and-Run iterates and normalizing the vector from an ap-
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Table 3: Serial correlation test statistics for Hit-and-Run in rectangular regions.®

X2, Statistics®
Coordinate Upper bound vector/Direction choice method
b0 bt b2

1 Uniform Optimal Uniform Optimal Uniform Optimal
1 98.8 e 79.6 o 89.6 e 107.6 o 98.4 e 94.4 o
2 83.6 o 92.4 o 89.2 e 102.4 o 126.0 105.2 o
3 101.2 o 92.8 e 116.4 o 1172 o 123.2 o 108.0 e
4 1004 e 101.6 e 87.6 e 124.4 101.2 o 77.2 o
5 110.8 o 99.6 e 113.6 e 103.6 e 111.6 o 91.6 e
6 136.8 115.6 o 140.8 101.6 e 693.2 95.2 e
7 124.4 88.8 o 106.8 e 134.4 1223.6 96.8 e
8 88.4 e 105.6 e 105.2 o 80.0 e 836.4 101.2 o
9 115.2 o 88.0 e 97.2 e 102.8 o 574.0 103.6 e
10 79.6 o 107.2 o 127.2 124.4 1064.4 106.4 e

# passing

uniformity 8 10 8 7 4 10

at o = 10%

@Statistics passing the serial correlation test are marked by e.
®Upper and lower x2 values for a = 10%, v = 99: (77.0, 123.2).

proximate center to the iterate. A simple scheme for approximating the center is to take the
1th coordinate to be the mean of the ith coordinates of the previous Hit-and-Run iterates.
We call this algorithm Artificial Centering Hit-and-Run (ACHR), formally stated as follows:

Artificial Centering Hit-and-Run

1) Choose an arbitrary starting point 2 € S and a number of warmup sample points W > n.

Set m = 0 and § = 2°.

2) If m < W (warmup phase), generate a random direction u™ according to the uniform
distribution on dB. Otherwise (main phase), select a number a from the uniform
distribution on {0, 1,...,m} and set u™ = (z* — §)/||z* — §||.

3) Select the step size A, as in the prior definition of Hit-and-Run.
4) Set ™ =™ + X\, u™ and m =m + 1.
5) Set § = (ms+2™)/(m+1). Go to step 2.

The algorithm first goes through a warmup phase, using uniform (i.e., HD) direction choice,
in order to generate an initial sample. The requirement W > n ensures that after the warmup
phase, the set of directions {(z*—3§)/||z* —§||la = 0,..., W} spans 0B with probability one.
Then in the main phase, the search direction is chosen as the vector from the experimental
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center 5§ to a randomly selected previous iterate. When the warmup period is short enough
to be attractive with respect to computational effort, the warmup sample points may be
generated with too few iterations to be nearly uniformly distributed, so we will discard them
from the sample.

Obviously, the sequence of ACHR iterates is not a Markov chain, due to the dependence
of directions on prior iterates and directions. Thus the convergence theorems from the
literature do not apply, and hence it is not assured that the sequence of iterates converges
in distribution to the target distribution.

8.1 Numerical results: centered convex case

We applied ACHR to the rectangular sampling problems, generating W = 100 warmup
sample points. Recall that the the uniform target distribution over a hyperrectangle is a
case covered by Theorem 6, which motivated the ACHR algorithm.

As before, we iterate ten times between each sample point. The results of frequency
and serial correlation tests are shown in Table 4. Comparing to the results for optimal-
direction Hit-and-Run in Tables 2 and 3, we find little or no degradation in performance
when using ACHR. Thus, we have implemented approximate optimal direction choice yield-
ing performance on a par with exact optimal direction choice while keeping computational
effort roughly equivalent to uniform direction choice. The extra effort is simply in the
warmup iterations; for a 1000-point sample, the 100 warmup sample points simply require
10% more iterations. Furthermore, the added effort for ACHR is less than W/N because
ACHR iterations are cheaper. Main-phase ACHR direction choice requires only one uni-
formly distributed number from [0, 1), while HD direction choice requires n samples from
the univariate standard normal distribution.

8.2 Numerical results: a noncentered case

Although ACHR succeeded in accelerating convergence on the rectangular sampling problems
considered above, a strong question remains as to whether adaptive rules of this kind may
have application in more general settings. To investigate this question, we now look at
applying ACHR to a problem outside the class of centered search regions.

Let S be a simplex defined by

n
S = {ZE S §Rn|$ > O,le/bl < 1}
i=1
given an upper-bounding vector b > 0 in ™. Let the target distribution G be uniform.
We will again compare uniform, optimal, and adaptive direction choice by simulating
each method in the simplex S. Just as in our experiment with rectangular regions, we
will generate optimally distributed directions by a method which requires points uniformly
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Table 4: Test statistics for ACHR in rectangular regions.®

Freq. x2 Statistics® [ Ser. corr. x3, Statistics®
Coordinate Upper bound vector
i b0 bt b2 b0 b b2
1 28.0 8.7 e 16.5 e || 142.8 100.0 o | 1104 o
2 36.6 25.9 9.3 e || 1384 109.2 o 84.8 o
3 13.9 o 2.7 14.6 o 91.6 e 98.0 e 99.2
4 14.0 o | 414 7.6 o || 108.8 o | 124.8 104.0 o
5 9.1 e 84 e 55 e || 104.8 o | T71.2 110.8 o
6 11.7 o 159 e 13.1 e 08.8 e | 103.2 e | 122.0 o
7 6.7 9.7 e 12.9 o 85.2 o | 117.2 o 82.0 e
8 10.3 o 12.7 o 8.0 e || 102.0 98.0 e 90.8 e
9 22.8 15.7 o | 31.8 98.4 e | 100.8 o | 134.0
10 9.1 e 8.7 e 95 e 89.6 ¢ | 92.8 ¢ | 864 e
# passing
uniformity 7 7 9 8 8 9
at a = 10%

“Statistics passing tests are marked by e.
®Upper and lower x2 values for a = 10%, v = 9: (3.3, 16.9).
“Upper and lower x? values for a = 10%, v = 99: (77.0, 123.2).

distributed over S. Since S is noncentered, however, the simple transformation of Theorem 6
does not apply. Compared to the relative simplicity of that theorem, the derivation of the
technique for generating optimal directions in the simplex (which derivation we consign to
Appendix A) illustrates the potential complexity of general optimal direction distributions,
and the need for practical adaptive rules.

The frequency test statistics for uniform and optimal direction choice and ACHR are
shown in Table 5, for each of the three upper bound vectors ° = (1,1,1,...,1), bt =
(1,2,3,...,10), and v* = (1,4,9,...,100). We generate 1000-point samples taking every
twentieth iterate, with 100 warmup points for the ACHR adaptive algorithm. With the
easiest upper-bound vector b°, uniform directions unexpectedly outperform optimal direc-
tions, illustrating that the optimality is with respect to a bound on the convergence rate,
rather than an actual convergence rate. However, by comparing performance on the more
difficult regions we see that optimal direction choice is far more robust.

Remarkably, the adaptive direction rule is both robust and also much more successful than
the worst-case optimal rule, even though its motivating principle, asymptotic equivalence to
the optimal direction distribution as stated in Theorem 6, does not apply to the simplex
because that region is noncentered. Our tests have been restricted to regions which can be
handled more efficiently by transformation techniques, because in these regions we are able to
efficiently implement exact optimal direction choice for purposes of comparison. The success
of adaptive direction choice on a noncentered region suggests that the ACHR algorithm
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Table 5: Frequency test statistics for Hit-and-Run in simplices®

X2 Statistics®
Coord. Upper bound vector/Direction choice method
0 bt b2
i Unif. Opt. | Adapt.|| Unif. Opt. | Adapt. Unif. Opt. | Adapt.
1 21.7 15.7 o 41 e 4.5 o | 20.5 12.2 o 27.1 29.4 84 e
2 16.5 e | 10.4 e 8.0 e 3.0 11.3 ¢ | 143 e 21.3 21.8 98 e
3 30.6 11.9 o 9.3 o || 15.3 @ | 10.6 @ 6.8 e 14.8 o | 29.6 55 e
4 11.7 e | 19.9 22.5 25.2 25.7 9.2 e 99.8 13.2 e | 10.1 o
5 14.1 o 9.5 e | 24.5 119 o 7.8 o 58 e 93.1 9.0 ¢ | 12.7 @
6 24.1 27.1 18.3 12.0 o | 172 o | 138 @ 89.6 10.9 o | 24.3
7 12.8 o | 28.3 4.0 e || 64.5 20.5 6.0 e || 107.7 16.3 o 92 e
8 16.0 o | 124 o 4.9 e || 20.6 18.0 10.3 e || 302.5 28.1 124 o
9 6.5 e | 50.4 15.9 e || 85.3 44.5 12.7 o || 541.6 10.8 o 71 e
10 14.9 o | 32.7 15.2 o || 68.3 29.8 10.0 o || 274.8 24.1 19.5
# pass-
-ing at 7 5 7 4 4 10 1 5 8
a = 10%

“Statistics passing the frequency test are marked by e.
®Upper and lower x2 values for a = 10%, v = 9: (3.3, 16.9).

has potential application to general sampling problems for which rejection is the only exact
sampling approach.

9 Conclusion

The problem of generating points according to a probability distribution G' with density g
over an open bounded region S in R" has application to Monte Carlo methods of simulation,
numerical methods, and optimization. Even for simple regions S and a uniform distribution
G, the computational effort of rejection techniques for exact sampling grows rapidly in
dimension. When S and G are complicated, the performance is much worse.

Hit-and-Run algorithms offer an efficient method for generating points which asymptoti-
cally approach the desired probability distribution G. However, experimental and worst-case
performance of HD Hit-and-Run is substantially degraded as S becomes nonspherical and
G nonuniform. In this paper we have generalized the Hit-and-Run convergence rate bound,
known previously for HD, to nonuniform direction distributions. We have constructed a
unique bound-optimal direction distribution which significantly accelerates convergence to
the target distribution, to a degree consistent with the corresponding improvement in con-
vergence rate bound. Although exact implementation of this optimal direction choice may be
very difficult, the ACHR heuristic algorithm suggests the possibility of implementing adap-
tive direction choice rules which automatically approximate optimal direction choice. The
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success of ACHR on the simple problems considered here should motivate formulation and
testing of adaptive direction choice for more general settings, with an eye towards seeking
adaptive methods for which convergence to the target distribution can be guaranteed.
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Appendix A Optimal direction choice for uniform sam-
pling in a simplex
Let S be a simplex defined by
S={zeR"x>0> z/b <1}
=1

given an upper-bounding vector b > 0 in R". Let the target distribution G be uniform.

By Corollary 5, the optimal direction density h* is proportional to the span function of
the problem, which we now derive. Let D; = {z € R"|x; > 0,i = 1,...,n} be the first
orthant of R".

Proposition 1 The span function for the uniform target distribution on S is given by

i=1
n

Proof: Recall from equation (7) that p(u) = sup{|ly — z||" |,y € S, usy = u} since S is
convex. Thus p(u) is determined by the greatest distance across S in direction w.

If w € £D;, then one endpoint of any segment across S in direction v must lie on the
facet bounding S above; see Figure 1(a). Call the other endpoint y and let a be the
distance between them. Then Y7, (y; + au;)/b; = 1. Solving the expression for a, we
see that the distance is maximized by y = 0, confirming the proposition for v € £D;.

If w & £Dy, it is evident pictorially that one endpoint of the longest segment must
lie in a corner other than the origin, and that the same segment would maximize the
distance across the enclosing rectangle completed in dashed lines in Figure 1(b). Thus
the span for such directions is equal to its value on the rectangle of Example 2. =

Propositions 2 and 3 give equivalences for the optimal direction distribution H* condi-
tioned on whether or not the search direction lies in +D;. Proposition 4 then gives the
probability that an optimally distributed direction lies in +D;, allowing sampling from H*
by a composition technique.

Proposition 2 Let U be distributed according to H* on OB and let Y be uniformly dis-
tributed on the simplex S. Then Y/||Y|| is distributed identically to U given U € +D;.

22
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Figure 1: Spans of the simplex

Proof: For measurable D C Dy, let Sy(D) be the part of S in the directions D from 0, as
defined in the proof of Theorem 6. Also, let 79(u) be the distance in direction u from 0
to the facet bounding S above. Then

Pr(Y/|Y] e D) = Pr(Y € S(D))
x / ro(u)o(du) by change to spherical coordinates
D

= [ plw)o(du).

the last equality being evident from the proof of Proposition 1. Thus Y/||Y|| has proba-
bility density proportional to h* over the first orthant. u

Let 8" = {z € R0 < x; < b;,i = 1,...,n} be the hyperrectangle enclosing S in the
obvious fashion, as shown in dashed lines in Figure 1(b), and note that S’ has center s = b/2.

Proposition 3 Let U be distributed according to H* on OB and let Y be uniformly dis-

tributed on S’. Then U and (Y —s)/||(Y — s)|| have the same distribution, given that neither
lies in +£D;.

Proof: Let r(u) be the distance in direction u from s to 95’. For measurable D C (0B —
+Dy),

Y- "(u) o(du
Pr(mED> ~ /Dr() (du) (10)

= [ Sotw) ol (11)

where the factor of 1/2 occurs because now the distance is from s to the boundary rather
than from boundary to boundary. Thus, (Y — s)/||(Y — s)|| has density proportional to
h* outside the first orthant. =
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Proposition 4 Let U be distributed according to H* over S. Then

1

Pr(U € £D1) = T

Proof: Let R = [;5p(u)o(du) and p = Pr(U € £D;). Then

p = @/R) [ plw old)

1

= (@0/R) [ (1/n)ro(u) o(du)

= (2n/R)V(S) by change to spherical coordinates

and

L=p = (R [ p(u)o(du)
n 2" —2 .
= 25 [ merw)” o(d)

= 202" ' = 1)V (S)/R.

Since V(5")/V(S) = n! (see e.g. equation (VIIL.4.4) of [25]), we have (1 — p)/p =
n!(2"~! — 1), which yields the desired result when solved for p. m

We can therefore generate optimally distributed directions by a composition technique,
selecting a random number from [0,1) to determine whether or not the direction will lie
in +D;. If so, we generate a direction by sampling uniformly from S as in Proposition 2.
(This is easy, since the marginal distribution function of the first coordinate Y; of a point
uniformly distributed in S is 1 — (1 — y;)", the conditional distribution function of Y5 given
Y: =y is y1(1 — (1 — y2)" 1), and so on.) Otherwise, we generate a direction by sampling
uniformly from S’ as specified in Proposition 3, rejecting directions which search the first
orthant.
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