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Optimizing the performance of complex systems modeled by stochastic computer simulations is a challenging

task, partly due to the lack of structural properties (e.g., convexity). This challenge is magnified by the

presence of random error whereby an adaptive algorithm searching for better designs can at times mistakenly

accept an inferior design. In contrast to performing multiple simulations at a design point to estimate the

performance of the design, we propose a framework for adaptive search algorithms that executes a single

simulation for each design point encountered. Here the estimation errors are reduced by averaging the

performances from previously evaluated designs drawn from a shrinking ball around the current design point.

We show under mild regularity conditions for continuous design spaces that the accumulated errors, although

dependent, form a martingale process and hence, by the strong law of large numbers for martingales, the

average errors converge to zero as the algorithm proceeds. This class of algorithms is shown to converge to

a global optimum with probability one. By employing a shrinking ball approach with single observations, an

adaptive search algorithm can simultaneously improve the estimates of performance while exploring new and

potentially better design points. Numerical experiments offer empirical support for this paradigm of single

observation simulation optimization.
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1. Introduction

Stochastic optimization problems, where an objective function is noisy and must be estimated, are

finding applications in diverse areas, spanning engineering, economics, computer science, business

and biological science. Simulation optimization algorithms, that integrate search for the optimum

with observations from a noisy objective function, have been proposed in both continuous and

discrete domains (Fu 2015, Pasupathy and Ghosh 2013).

Striking a balance between exploration of new points and estimation of potentially good points is

critical for computationally efficient algorithms. We present a class of adaptive search algorithms

that performs exactly one simulation per design point, which we call single observation search

algorithms (SOSA). This class of SOSA algorithms combines exploration with estimation by esti-

mating the expectation of the objective function at a point with an average of observed values from

previously visited nearby points. The nearby points are within a shrinking ball around the current

point. The challenge is to ensure that the errors associated with the estimates of the expectation

of the noisy objective function do not bias the adaptive search algorithm and potentially lead to

mistakenly accepting inferior solutions. We prove convergence to a global optimum for this class

of SOSA algorithms under some mild regularity conditions. Then any adaptive search algorithm

that fits into this class can utilize single observations within shrinking balls in contrast to multiple

repetitions at a point to successfully search for a global optimum.

The idea of simulating a single observation per design point was first used by Robbins and Monro

for estimating gradients in their classic stochastic approximation algorithm (see, for instance, Chau

and Fu (2015), Kushner and Yin (2003), Robbins and Monro (1951)). This class of stochastic

approximation algorithms have proven to be very successful at optimizing noisy functions on con-

tinuous domains (see Chau and Fu (2015)). These classic stochastic approximation algorithms are

based on steepest descent, and are shown to converge to a local optimum. We consider the question

of whether there exist single observation per design point algorithms that converge to a global
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optimum. The insight of Robbins and Monro in their classic stochastic approximation algorithm

with single observations, is “... if the step sizes in the parameter updates are allowed to go to

zero in an appropriate way as (iterations go to infinity) then there is an implicit averaging that

eliminates the effects of the noise in the long run.” (Kushner and Yin 2003, p. viii). The random

error associated with the steepest descent type method can be shown to be a martingale difference.

This martingale property can be used to prove the convergence to a local optimum of the class of

the steepest descent type methods. This paper shows how to extend implicit averaging in a way

that provides convergence to a global optimum for our class of SOSA algorithms on non-convex,

multi-modal, noisy optimization problems.

A necessary characteristic of our class of SOSA algorithms is that the underlying adaptive

algorithm converges to a global optimal value when the objective function is not noisy. There are

many such adaptive search algorithms for global optimization, for example, simulated annealing,

evolutionary algorithms, model based algorithms (Hu et al. 2007, 2014), nested partition method

(Shi and Ólafsson 2000a), interacting particle algorithms (Molvalioglu et al. 2009, 2010, Mete and

Zabinsky 2014). (See Zabinsky (2011) for an overiew.) We characterize algorithms in SOSA by their

sampling distributions for generating sequential points. Since many adaptive search algorithms for

global optimization maintain a sampling distribution that is bounded away from zero on the feasible

region, we prove that this condition is sufficient to satisfy the assumptions of the convergence

analysis and consequently, such an algorithm converges to a true global optimum using single

observations with the shrinking ball approach.

The challenge in proving convergence to a global optimum with the additional demand of estima-

tion is due to the complex dependencies among the observational errors introduced by an adaptive

algorithm. An adaptive algorithm is influenced by past errors as it seeks new candidates, and thus

may be biased toward design points that were observed to be better than their true value. We

show in this paper that underlying martingale properties exhibited by these adaptive algorithms

can nonetheless be used to prove convergence to a global optimum.
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Baumert and Smith (2002) introduced the idea of estimating the objective function at a specific

design point x by including other points within a shrinking ball around x, thus never repeating

a simulation at a single design point. Their algorithm was based on pure random search, which

generates points independently and thus is not adaptive thereby avoiding dependencies among

subsequent errors.

Andradóttir and Prudius (2010) investigated three methods, namely Adaptive Search with

Resampling (ASR), deterministic shrinking ball and stochastic shrinking ball. They proved that

the three algorithms are strongly convergent to a global optimum. But again, the deterministic

and the stochastic shrinking ball approaches are based on pure random search with independent

sampling.

Closely related works in the area of simulation optimization include: Stochastic Approxima-

tion (Borkar 2008, 2013, Spall 2003), Sample Average Approximation (SAA)(Kim et al. 2015,

Kleywegt et al. 2002), Gradient-based Adaptive Stochastic Search for Simulation Optimization

(Zhou et al. 2014), Nested Partitions Method (Shi and Ólafsson 2000b) and Low-Dispersion Point

Sets (Yakowitz et al. 2000). These works either employ a gradient based approach, exploit special

structure of the feasible region or use multiple observations of sampled design points. Stochastic

approximation (Borkar 2008, 2013, Chau and Fu 2015, Kim et al. 2015, Kushner and Yin 2003,

Robbins and Monro 1951, Spall 2003), starting with the seminal work of Robbins and Monro

(Robbins and Monro 1951), is widely used for continuous problems with many applications. It

is a first-order method with single or multiple observations per point that typically converges to

a first-order stationary point. In contrast, SOSA does not require gradient information, allows a

general continuous feasible region and uses a single observation per sampled design point. Sample

average approximation (Homem-De-Mello 2003, Kim et al. 2015, Kleywegt et al. 2002) has been

used in both continuous and discrete stochastic optimization. SAA takes a collection of draws of

the random vector U (e.g., u1, . . . , uN) that may be independent identically distributed draws or

possibly quasi-Monte Carlo samples or Latin hypercube designs, and then solves an associated
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problem, minx∈S f̂(x) where f̂(x) = (1/N)
∑N

i=1 g(x,ui). Under certain conditions, SAA converges

to the global optimum as N →∞. Retrospective approximation (Pasupathy 2010) and variable

sample size methods (Homem-De-Mello 2003) are efficient variations of SAA. SAA is also related

to scenario-based stochastic programming (Shapiro et al. 2009), where the random draws are per-

formed before the optimization over x is performed. Other simulation optimization methods (ours

included) consider each x and then draw from U . Both methods have complex correlations and

dependencies.

Meta-models (Barton and Meckesheimer 2006, Pedrielli and Ng 2015) are also commonly used in

simulation optimization. SOSA, in principle, can be viewed as a meta-model and resembles Kriging

(Pedrielli and Ng 2015) in that the objective function at non-sampled design points are estimated

based upon weighted observations of the function at other sampled design points. However, Kriging

assumes conditions that are different from ours.

In this paper, we consider a broad class of adaptive random search algorithms in a continuous

domain, and prove that the accumulated error of the search process looking forward from the

current candidate point follows a martingale process. Since the errors are zero in expectation for

each point, the average error converges to zero from the strong law of large numbers for martingales

(see “the impossibility of systems” in Feller (1971)). This allows us to prove convergence to a

global optimum in probability for a broad class of adaptive random search algorithms with mild

assumptions and using a single observation per design point.

We provide numerical results using two algorithms; both algorithms are run with single observa-

tions (SOSA), as well as with multiple replications implemented with ASR as in Andradóttir and

Prudius (2010). The two algorithms are: a) a sampler based on a modified version of Improving

Hit-and-Run (IHR) (see Zabinsky et al. (1993), Zabinsky and Smith (2013)); and b) a uniform

local/global sampler originally used in Andradóttir and Prudius (2010). Andradóttir and Prudius

(2010) demonstrated that ASR performed better computationally than non-adaptive shrinking ball

approaches in high dimensions. In this paper, we demonstrate on two test problems in ten dimen-

sions that SOSA performs better computationally than ASR for both sampling methods tested.
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This is an encouraging result, that implicit averaging over shrinking balls can be very effective

and can actually improve computational performance of stochastic searches in general. The aver-

aging effect of nearby points seems to have the effect of discovering local and global trends in the

objective function, thus enabling an adaptive algorithm to sample effectively.

2. Single Observation Simulation Optimization

The stochastic optimization problem we consider is

min
x∈S

f(x) (1)

where x∈ S ⊂<d and

f(x) =E [g(x,U)]. (2)

However, the objective function f(x) cannot be evaluated exactly. Instead, we have a noisy eval-

uation available, that is, the performance at a design point x ∈ S ⊂<d is given by g : S ×Ω→<,

where U is a random element over a probability space denoted (Ω,A,P ). In discrete-event simu-

lation, randomness is typically generated from a sequence of pseudo-random numbers, therefore,

we let U represent an independent and identically distributed (i.i.d.) sequence of uniform ran-

dom variables. We assume that f is continuous and S is compact so that a minimum exists. Let

X ∗ = Arg minx∈S f(x) denote the set of optimal solutions, and let f∗ be the optimal value.

A common approach in simulation optimization is to estimate f(x) by observing the output of a

simulation run, g(x,u), where u is a realization of the random variable U . The difference between

the observed performance and mean performance, denoted

Z(x) = g(x,U)− f(x) (3)

represents the random observational error.

When the random observational errors are independent across all iterations of the algorithm, and

identically distributed, then the strong law of large numbers can be invoked to prove the error goes

to zero as iterations increase to infinity. The challenge with establishing convergence to optimality
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for an adaptive algorithm for global optimization is that the random errors are in general neither

identically distributed nor independent. An adaptive algorithm that favors “better” design points

introduces complex dependencies among the errors. Since points that appear “better” influence

the adaptive algorithm, the optimal value estimates tend to be negatively biased.

Illustration of Dependent Estimation Errors

Suppose S is the union of two non-overlapping balls we will call ball L and ball R. Suppose moreover

that the objective function values f(x), for x∈L, are better (less) than those in R. Suppose in the

initial step of an adaptive algorithm we begin by sampling a point from ball L and we observe its

objective function value. Next we sample a point from the other ball R and compare its value with

that of our point in L. The third point will be sampled from the ball with the smaller observed value.

Suppose that the error associated with the first noisy observation in L is negative, i.e., the

observed value is smaller than the true f(x). Now suppose the third point is in R. In this case, a

negative error at the first point sampled means the error at the second point must also be negative

since its expected value is inferior to the first point. This example illustrates that there is a depen-

dency between the errors from the first and the second observations. In general, there are subtle

dependencies that can be induced by adaptive search algorithms.

In Section 3, we show that, while errors looking backward from the current iteration point are

dependent (e.g., looking at the first and second points, having sampled the third), errors looking

forward when conditioning on the identity of the current iteration point (e.g., looking at the fourth

point, having sampled the third) are independent of past errors.

In this paper, we rigorously analyze the accumulated error associated with a class of adaptive

random search algorithms. As suggested in the example above, while the accumulated error of

the entire process does not form a martingale, the accumulated error of the process after a point

has been evaluated does form a martingale. This insight allows us to prove convergence to a

global optimum with probability one for a broad class of adaptive random search algorithms with

mild assumptions and using a single observation per design point. The key is to “slow down” the
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estimation process so that it does not cause the optimization search process to converge prematurely

to a wrong solution.

We make the following three assumptions regarding the problem. These assumptions are rela-

tively mild, and are typically satisfied in most continuous simulation optimization problems.

Assumption 1: The feasible set S ⊂ <d is a closed and bounded convex set with non-empty

interior.

Assumption 2: The objective function f(x) is continuous on S.

We consider two versions of the next assumption, Assumption 3 and Assumption 3′. Assumption

3 requires that the random error be bounded, and is satisfied by many bounded distributions.

However, it does not include distributions having infinite support, such as Normal or Gamma

distributions. Assumption 3′ requires that the random error has bounded variance, and the Normal

and Gamma distributions with finite variance satisfy Assumption 3′. In the next section, we see

that Assumption 3 leads to a stronger convergence result (convergence with probability one) than

Assumption 3′ (convergence in probability).

Assumption 3: The random error (g(x,U)−f(x)) is uniformly bounded over x∈ S, that is, there

exists 0<α<∞ such that, for all x∈ S, with probability one,

|g(x,U)]− f(x)|<α.

Assumption 3′: The random error (g(x,U)− f(x)) has bounded variance over x∈ S.

3. A Class of Adaptive Random Search Algorithms and Convergence Analysis

We propose a class of adaptive stochastic search algorithms with single observations per design

for the continuous simulation optimization problem in (1). We show that, under some regularity

conditions, an algorithm in this class will generate a sequence of objective function estimates that

converge to the true global optimum with probability one.

In the course of the algorithm, design points are sequentially sampled from the design space S,

according to an adaptive sampling distribution, denoted by qn at iteration n. The objective function
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at a point is estimated using the observed function values of nearby sample points within a certain

radius. The use of nearby points allows for a strong law of large numbers type of convergence by

asymptotically eliminating the random error associated with the sequence of observations. The

radius shrinks as the algorithm progresses, hence the image of shrinking balls. This shrinking

process asymptotically eliminates the systematic bias of using estimates of neighboring points since

the objective function f(x) is continuous in x.

For each x∈ S, let B(x, r) be the ball centered at x with radius r. Let Xn and Yn be, respectively,

the set of sample points obtained in the course of the Single Observation Search Algorithms and

their corresponding function evaluations up to iteration n. For xi ∈ Xn, the objective function

estimate f̂n(xi) of xi comes from the average of the function evaluations of the sample points that

fall into the balls centered at xi. Let ln(xi) denote the number of sample points that fall into the

balls centered at xi, called contributions to the estimate of xi.

Consider the following class of algorithms using the shrinking ball concept. Note that, to guar-

antee convergence to a true global optimum, regularity conditions for the sampling density qn and

the parameter sequences rn and in are required.

Single Observation Search Algorithms (SOSA)

We are given:

• A continuous initial sampling density for search on S, q1(x), and a family of continuous adap-

tive search sampling distributions on S with density

qn(x | x1, y1, . . . , xn−1, yn−1), n= 2,3, . . . ,

where xn is the sample point at iteration n and yn is its observed function value.

• A sequence of radii rn > 0.

• A sequence in <n.

Step 0: Sample x1 from q1, observe y1 = g(x1, u1) from the simulation, where u1 is a sample value

having the same distribution as U and independent of x1. Set X1 = {x1} and Y1 = {y1}. Also, set

f̂1(x1) = f̂∗1 (x1) = y1, l1(x1) = 1 and x∗1 = x1. Set n= 2.
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Step 1: Given x1, y1, . . . , xn−1, yn−1, sample the next point, xn, from qn. Independent of

x1, y1, . . . , xn−1, yn−1, xn, obtain a sample value un having the same distribution as U and evaluate

the objective function value yn = g(xn, un).

Step 2: Update Xn =Xn−1 ∪{xn} and Yn =Yn−1 ∪{yn}. For each x∈Xn, update the contribution

and the estimate of the objective function value as

ln(x) = |{k≤ n : xk ∈B(x, rk)}|=


ln−1(x) if xn /∈B(x, rn)

ln−1(x) + 1 if xn ∈B(x, rn)

(4)

and

f̂n(x) =

∑
{k≤n: xk∈B(x,rk)}

yk

|{k≤ n : xk ∈B(x, rk)}|
=


f̂n−1(x), if xn /∈B(x, rn)

((ln(x)− 1)f̂n−1(x) + yn)/ln(x), if xn ∈B(x, rn)

(5)

where B(x, rk) is a ball of radius rk centered at x and |A| for a set A denotes the number of

elements in A. Estimate the optimal value as

f̂∗n = min
x∈Xin

f̂n(x) (6)

and estimate the optimal solution as

x∗n ∈ {x∈Xin : f̂n(x) = f̂∗n} (7)

where Xin is a subset of Xn determined by the index in.

Step 3: If a stopping criterion is met, stop. Otherwise, update n← n+ 1 and go to Step 1.

Observe that the objective function estimate f̂n(x) is defined for all x∈ S. However, in the course

of the algorithm, we only compute the estimate for x ∈ Xn. To do this, the simplest way is to

go through Xn once in each iteration, and update the objective function estimates through the

recursive formula in (5). By doing so, up to iteration n, the estimates at sample points x1, x2, . . . , xn

will be updated n,n− 1, . . . ,1 times, respectively, which will result in at most n(n+ 1)/2 updates.

At each iteration, the function estimate of a sample point will get updated only when the new

sample point falls relatively close to a previously sampled point (within its ball of radius rk).

Therefore, up to iteration n, the function estimates will be calculated less than n(n+ 1)/2 times.
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Notice that the algorithm takes the estimate of the optimal value on the nth iteration, f̂∗n(x),

not from all n function estimates, but from a subset of the function estimates up to in. By slowing

the sequence of estimates using in, we are able to ensure convergence of the optimal value estimate

f̂∗n(x) to the true optimal value f∗. The idea is that the shrinking balls must shrink slowly enough

to still allow for the number of points in the balls to grow to infinity.

The main result of the paper is stated in Theorem 3, where we prove that an adaptive random

search algorithm with single observations per design, using a shrinking ball approach, converges

to a global optimum with probability one. The following corollary with the relaxed Assumption 3′

proves convergence to a global optimal value in probability. The convergence analyses rest on the

martingale property of the random error, which we establish in Theorem 1.

To develop this martingale property, we investigate the random error at a design vector, as in

(3), Z(x) = g(x,U)− f(x), and since

E [Z(x)] =E [g(x,U)]− f(x) = f(x)− f(x) = 0, for all x∈ S, (8)

Z(x) is a random error with zero expectation. It is worth noting that, rewriting (3) as

g(x,U) = f(x) +Z(x) (9)

now states that, given a design point x, a random performance can always be decomposed into a

sum of its expected performance and a random error with zero expectation.

To establish the convergence result for SOSA, it is necessary that the sequence of random num-

bers used as input to the simulation are independent of the past information. To state this more

formally, first let Xn and Yn denote the sample point and its corresponding objective function

evaluation at iteration n, for n= 1,2, . . .. Then

Yn = g(Xn,Un), (10)

where {Un, n= 1,2, . . .} are random elements, i.i.d. and have the same distribution as U . Since Xn,

Un and Yn are generated sequentially, we can construct a filtration, starting with F0 = σ(X1), the σ-

field generated by X1, and, for n= 1,2, . . ., Fn = σ(X1,U1, . . . ,Xn,Un,Xn+1), the σ-field generated
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by X1,U1, . . . ,Xn,Un,Xn+1. Observe that Xn is Fn−1 measurable. Since Yn is a function of Xn and

Un, Yn is Fn measurable. The process of (Xn, Yn) is then adapted to the filtration {Fn}∞n=0. It is

crucial to the convergence results that Un is generated so that it is independent of Fn−1.

We next establish that the expected random error conditioned on the filtration is zero. This

property will induce a martingale process of accumulated errors and, finally, enable the optimal

value estimates generated by the algorithm, {f̂∗n}, to converge to the true optimal value f∗.

Define the random error at iteration n by Zn where

Zn = Yn− f(Xn). (11)

Note that Zn, as well as Yn, depend on Xn and Un, but we suppress the arguments in the notation

to simplify the presentation.

We now establish a crucial martingale property, that E [Zn | Fn−1] = 0. Since Xn is Fn−1 mea-

surable and Un is independent of Fn−1,

E [Yn | Fn−1] = E [g(Xn,Un) | Fn−1] =E [g(Xn,Un) |Xn]

and since Un is identically distributed as U ,

= E [g(Xn,U) |Xn] = f(Xn). (12)

Again, since Xn is Fn−1 measurable,

E [Zn | Fn−1] =E [Yn− f(Xn) | Fn−1] =E [Yn | Fn−1]− f(Xn) = 0. (13)

The result in (13) provides the basis of the martingale property, since the error on iteration n,

conditioned on the past information in Fn−1, is zero.

Furthermore,

E [Zn] =E [E [Zn | Fn−1]] =E [0] = 0, (14)

which establishes that, according to (12) and (14), we can decompose Yn into its conditional

expectation term and its error term,

Yn = f(Xn) +Zn, (15)



Kiatsupaibul, Smith and Zabinsky: Single Observation Adaptive Search
Article submitted to Operations Research; manuscript no. OPRE-2016-04-209 13

where the random error Zn has zero expectation.

Now we express the accumulated error in estimating f(Xi) associated with the sample point Xi

in terms of the error coming from the points in the balls around Xi.

At iteration n, and for a fixed sample point Xi, for i≤ n, let Mn(Xi) be the accumulated error

in estimating f(Xi) using the function evaluations from the points Xk, k = 1, . . . , n that fall into

balls around Xi. We define an indicator function to identify the sample points in balls around Xi,

Ik(Xi) =


1 if Xk ∈B(Xi, rk)

0 if Xk /∈B(Xi, rk)

for k= 1, . . . , n. Using the indicator function, we have

Mn(Xi) =
n∑
k=1

Ik(Xi)Zk. (16)

It is important to note that {Mn(Xi), n= 1,2, . . .} for i > 1 is not a martingale, due to the depen-

dencies on early sample points in the sequence. In fact, when n< i, Mn(Xi) depends on unrealized

information of Xi. To be exact, Mn(Xi), where n< i, is not Fn measurable.

At each iteration, the best candidate X∗n is chosen as the point whose function estimate is the

smallest so far. Since the function estimate is formed by the function observations of previous

points in the ball around X∗n, these objective function observations tend to be negatively biased.

The errors from these points tend to be concurrently negative and, hence, are correlated.

We have discovered that we can decompose the accumulated error into two parts: the error from

the sample points that preceded Xi, and the error from the sample points that were sampled after

Xi, and establish the martingale property for the second part of the error. We let

M i
n(Xi) =

n∑
k=i

Ik(Xi)Zk, n= i, i+ 1, . . . . (17)

be the accumulated error from function evaluations taken from iteration i onward to iteration n.

Note that M i
n(Xi) is the sum of (n− i+ 1) error terms. Define M i

i−1(Xi) = 0. Now, using (16) and

(17), we decompose Mn(Xi) into two parts

Mn(Xi) =
i−1∑
k=0

Ik(Xi)Zk +M i
n(Xi), (18)
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where I0(Xi)Z0 = 0 as a convention.

In Theorem 1, we show that the accumulated error about a sample point Xi from function

evaluations taken from iteration i onward to iteration n is a martingale.

Theorem 1. For any i, i= 1,2, . . ., {M i
n(Xi), n= i, i+ 1, . . .} is a martingale with respect to the

filtration {Fn, n= i, i+ 1, . . .}.

Proof: Fix i. Define

M̃ i
n =

n∑
k=i

Zk

as the accumulated error from all points sampled on the iterations from iteration i through iteration

n. We first show that {M̃ i
n, n= i, i+ 1, . . .} is a martingale with respect to the filtration {Fn, n=

i, i + 1, . . . ,}. This is equivalent to showing that E [|M̃ i
n|] <∞, and E [M̃ i

n | Fn−1] = M̃ i
n−1, for

all n ≥ i. By Assumption 3, E [|Zn|] < α <∞. By the triangular inequality of the absolute value

function, E [|M̃ i
n|]≤ (n− i+ 1)α<∞. In addition,

E [M̃ i
n | Fn−1] = E [Zn + M̃ i

n−1 | Fn−1]

= E [Zn | Fn−1] +E [M̃ i
n−1 | Fn−1]

= M̃ i
n−1.

The last equation follows by (13) and that M̃ i
n−1 is Fn−1 measurable, for all n ≥ i. Therefore,

{M̃ i
n, n= i, i+ 1, . . .} is a martingale.

Observe that Ik(Xi) is Fk−1 measurable, for k = i, i + 1, . . .. Therefore, Ik(Xi) is a decision

function with respect to the filtration {Fn, n= i, i+ 1, . . . ,}. Now, for n= i, i+ 1, . . .,

M i
n(Xi) =

n∑
k=i

Ik(Xi)Zk =M i
n−1(Xi) + In(Xi)(M̃

i
n− M̃ i

n−1).

Therefore, by the impossibility of systems (Feller 1971, pg 213), {M i
n(Xi), n = i, i + 1, . . .} is a

martingale. �
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We now express the estimate of the function value at a sample point and the estimate of the

optimal value in terms of Xi, f(Xi) and Mn(Xi). For a fixed i, let Ln(Xi) be the number of sample

points that fall into the balls B(Xi, rk) around Xi where k= 1, . . . , n and n≥ i, that is,

Ln(Xi) =
n∑
k=1

Ik(Xi).

The estimate of the function value at a sample point Xi can be expressed as

f̂n(Xi) =

∑n

k=1 Ik(Xi)Yk
Ln(Xi)

=

∑n

k=1 Ik(Xi)f(Xk)

Ln(Xi)
+
Mn(Xi)

Ln(Xi)
(19)

where the first term includes the systematic bias and the second term is the accumulated error. The

systematic bias is created by the fact that an estimate of the function value at a point includes func-

tion value estimates of points around it with different expectations. The accumulated error Mn(Xi)

can be decomposed (see (18)) into a non-martingale accumulated error term,
∑i−1

k=0 Ik(Xi)Zk, and

a martingale process of the accumulated errors, M i
n(Xi), as a result of Theorem 1.

The estimate of the optimal value f∗, is

f̂∗n = min
i=1,...,in

{f̂n(Xi)}= min
i=1,...,in

{∑n

k=1 Ik(Xi)f(Xk)

Ln(Xi)
+
Mn(Xi)

Ln(Xi)

}
. (20)

Note that f̂∗n is the minimum taken not from all n function estimates but from a subset of the

function estimates up to in, where in ≤ n. The size of the subset in is a control parameter required

to ensure the convergence of the optimal value estimate f̂∗ to the true optimal value f∗, by slowing

the estimation.

Since f̂∗n, the estimate of the optimal value generated by SOSA, is taken from the minimum of

a growing number of estimated function values, in order to prove that f̂∗ in fact converges to f∗,

the true optimal value, we require some form of uniformity in the convergence of these estimates.

To establish the requirements, we add one more assumption.

Recall that Ln(x) is the number of sample points that fall in the balls around x. Given a function

of natural numbers L̃(n), we define D(n) to be the event that each design vector x has at least

L̃(n) sample points in the balls around x, that is,

D(n) =
⋂
x∈S

{
Ln(x)≥ L̃(n).

}
.
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The objective function evaluations of these sample points (one function evaluation per sample

point) around a design point will form the estimate of the objective function of that design point.

The key idea is that the number of sample points in the balls around x grows at least as fast as

L̃(n) even though the radii of the balls are shrinking. In other words, the balls cannot shrink too

quickly; the shrinking balls must maintain a threshold of sample points in them.

Definition 1. A function h(n) is called O(np) where p∈< if there is a 0<κr <∞ such that for

all n ∈ N, 0≤ h(n)≤ κrnp. A function h(n) is called Ω(np) where p ∈ R if there is a 0< κL <∞

such that for all n∈N, h(n)≥ κLnp. A function h(n) is called Θ(np) if it is both O(np) and Ω(np).

Assumption 4: Assume there exists 1/2<γ < 1 and a function L̃(n) that is Ω(nγ), such that

∞∑
n=1

P (D(n)c)<∞

where D(n)c is the complement of event D(n), and γ is called an order of local sample density.

Assumption 4 ensures that there are on the order of nγ function evaluations used in the estimate

of every point in the design space.

The single observation search algorithms can satisfy Assumption 4 if the sampling densities sat-

isfy some regularity conditions, and if the radii of the balls do not shrink too quickly. In particular,

if the search sampling density qn, n= 1,2, . . . is uniformly bounded away from zero on S and rn is

of Ω(n−(1−γ)/d), then Assumption 4 is satisfied. Many adaptive search algorithms for global opti-

mization do have their search sampling density bounded away from zero, and in the next section

we consider two such algorithms and prove that they satisy Assumption 4, and hence converge to

a global optimum.

In leading up to Theorem 3, we expand the estimate of the function value in (19) as,

f̂n(Xi) =

∑n

k=1 Ik(Xi)f(Xi)

Ln(Xi)
+

∑n

k=1 Ik(Xi) (f(Xk)− f(Xi))

Ln(Xi)
+

∑i−1
k=1 Ik(Xi)Zk
Ln(Xi)

+

∑n

k=i Ik(Xi)Zk
Ln(Xi)

= f(Xi) +

(∑n

k=1 Ik(Xi)f(Xk)

Ln(Xi)
− f(Xi)

)
+

∑i−1
k=1 Ik(Xi)Zk
Ln(Xi)

+

∑n

k=i Ik(Xi)Zk
Ln(Xi)

(21)
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to clearly identify the correct value in the first term, the bias due to nearby points in the second

term, the non-martingale accumulated error in the third term and the martingale accumulated

error in the fourth term. The second term, the bias, is created by the fact that an estimate of the

function value at a point is formed by the function value of that point and other points around

it but within the balls. Based on the continuity of the objective function in Assumption 2, we

employ Cesaro’s Lemma (see Lemma EC.1 in the e-companion) with the shrinking ball mechanism

to show that the bias term is washed away by averaging. The third term, the non-martingale

random error of the estimated objective function value of a specific sample point, is formed by

the errors corresponding to other points that are sampled prior to that sample point. These non-

martingale random errors can be highly correlated and may not cancel each other out by averaging

alone. However, it is considered a fixed term once a specific point has been sampled. Therefore,

the slowing sequence, in, is employed to slow the growth of this term, causing this non-martingale

random error to diminish to zero when divided by the number of points in the associated balls. The

fourth term, the martingale random error of the estimated objective function value of a specific

sample point, is formed by the errors corresponding to points that are sampled from that specific

sample point onward. The slowing sequence together with the martingale property through the

Azuma-Hoeffding Inequality (see Lemma EC.2 in the e-companion) cause the martingale random

error to disappear. Thus, in the limit, we are left with the correct value for the estimate of the

function value.

We next prove Theorem 2 showing that the probability the estimate is incorrect by ε amount

for the early portion of the estimates goes to zero as n goes to infinity, i.e.,

lim
n→∞

P

(
in⋃
i=1

{
|f̂n(Xi)− f(Xi)| ≥ ε

})
= 0.

For notational convenience, define A(n, ε) as the event that, when we consider only the early

portion of the sequence up to in, at least one objective function estimate is incorrect by more than

the target error ε allowed, for ε > 0, that is,

A(n, ε) =

in⋃
i=1

{
|f̂n(Xi)− f(Xi)| ≥ ε

}
.
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Theorem 2 gives conditions under which, the probability of missing this error target for the early

portion of the estimates goes to zero as n goes to infinity. Theorem 2 makes use of the martingale

property established in Theorem 1 and the slowing sequence in in SOSA.

Theorem 2. If Assumptions 1, 2, 3 and 4 are satisfied, and if in ↑ ∞ such that in ≤ ns where

0< s< γ, then, for all ε > 0,
∞∑
n=1

P (A(n, ε))<∞.

Proof: See the e-companion. �

By Assumption 4, the algorithm generates sample points that fill the feasible region. Once the

estimated objective function errors of all sample points are controlled as described in Theorem 2

and the objective function is continuous according to Assumption 2, the optimal value estimates

converge to the true optimal value. This convergence property is formalized in Theorem 3.

Theorem 3. If Assumptions 1, 2, 3 and 4 are satisfied, and if in ↑ ∞ such that in ≤ ns where

0< s< γ, then f̂∗n→ f∗ with probability one.

Proof: See the e-companion. �

If Assumption 3 is relaxed to Assumption 3′, we have a weaker convergence in probability result.

Corollary 1. If Assumptions 1, 2, 3′ and 4 are satisfied, and if in ↑∞ such that in ≤ ns where

0< s< γ, then, for all ε > 0,

lim
n→∞

P (|f̂∗n − f∗| ≥ ε) = 0,

i.e., f̂∗n→ f∗ in probability.

Proof: See the e-companion. �

Note that Assumption 4 can also be relaxed, but with a weaker convergence result as in Corol-

lary 1. A weaker Assumption 4, requiring only that limn→∞ P (D(n)c) = 0, produces the same effect

through the last term of (EC.4), and thus, as in Corollary 1, f̂∗n converges to f∗ only in probability.

Now, in Corollary 2, we show that not only does SOSA converge to the optimal value, but, under

appropriate conditions, it converges to an optimal solution. Let X∗n represent the optimal solution
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estimate at iteration n. In the case of multiple optima, it is possible that the estimates jump within

the set of optima depending on the underlying sampling distributions qn, however, the distance

between the optimal solution estimate X∗n and the set of global optima X ∗ converges to zero with

probability one. For a solution x ∈ <d and a subset E ⊂ <d, we define the distance from x to E

as ρ(x,E) = infy∈E ‖x− y‖ where ‖ · ‖ denotes the Euclidean norm on <d. When there is a unique

optimum, then the optimal solution estimate converges to the unique global optimum.

Corollary 2. Suppose all the conditions in Theorem 3 are satisfied. Then, with probability one,

ρ(X∗n,X ∗)→ 0.

In addition, if there is a unique optimum, X ∗ = {x∗}, then X∗n→ x∗ with probability one.

Proof: See the e-companion. �

4. An Application: Single Observation Algorithms Based on Hit-and-Run

We compare four algorithms on two global optimization test problems with noisy objective func-

tions. The four algorithms comprise two from the Single Observation Search Algorithms (SOSA)

framework and two from the Adaptive Search with Resampling (ASR) framework. Introduced by

Andradóttir and Prudius (2010), ASR is an adaptive search framework that advocates performing

repeated observations of objective function at sampled design points, which is in contrast to SOSA.

Within each framework, we try two different samplers, one is the Improving Hit-and-Run (IHR)

sampler and the other one is the sampler originally used with ASR in Andradóttir and Prudius

(2010), which we call the AP sampler. The four algorithms to be tested in this study are:

1. SOSA with IHR sampler (IHR-SO),

2. SOSA with AP sampler (AP-SO),

3. ASR with IHR sampler (IHR-ASR),

4. ASR with AP sampler (AP-ASR).

The IHR-SO algorithm modifies the improving hit-and-run algorithm (IHR) (see Ghate and

Smith (2008), Zabinsky (2003), Zabinsky et al. (1993), Zabinsky and Smith (2013)) by incorpo-

rating the shrinking ball approach. The class of hit-and-run algorithms has a desirable property
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of efficiently converging to a target distribution with very mild assumptions (Smith 1984, Zabin-

sky and Smith 2013). IHR is a simplified version of Annealing Adaptive Search (AAS) algorithm

(Romeijn and Smith 1994, Zabinsky 2003) with zero temperature. AAS is later shown to be approx-

imated by Model-based Annealing Random Search (MARS) (Hu et al. 2007, 2014). Therefore, IHR

can be considered a simple representative of a global optimization search engine in this class.

An early version of improving hit-and-run with single observation, but without shrinking balls,

has been applied to a simulation optimization problem with encouraging computational results in

Kiatsupaibul et al. (2015). A more extensive numerical study (Linz et al. 2017) showed a benefit

of SOSA compared to multiple replications.

The AP sampler has been employed as the sampling strategy for ASR in the study of Andradóttir

and Prudius (2010) with promising computational results. AP samples locally from the neighbor-

hood of the current optimal solution estimate and also globally from the whole feasible region. In a

sense, it is a simple version of the nested partitions methods (Shi and Ólafsson 2000a) that sample

from a partition local to the current optimal solution estimate and its complement. Therefore, AP

can be considered a simple representative of another class of global optimization search engine.

The original combination of AP and ASR is called AP-ASR in this study. Here we also combine

AP with SOSA, called AP-SO, and compare it against the original AP-ASR.

The IHR-SO and AP-SO algorithms share the property of having a positive probability of sam-

pling anywhere in the space. Thus, as shown in Theorem 4 and Corollary 3, they satisfy the four

assumptions for continuous optimization problems and converge to a global optimal value.

SOSA with IHR Sampler (IHR-SO)

Parameters: κr, starting ball radius; γ, order of local sample density; β, order of radius shrinkage;

and s, order of slowing sequence. The parameters specify the following radii and slowing sequences:

{rn = κrn
−β, n= 1,2, . . .} and {in = bnsc, n= 1,2, . . .}.

Follow the steps of SOSA but replace Step 1 by the following IHR sampler.
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Step 1: Given x1, y1, . . . , xn−1, yn−1, let x̃n−1 ∈Arg minx∈Xn−1
f̂n−1(x). The IHR sampler obtains

a new design point xn by first sampling a direction v from the uniform distribution on the surface

of a d-dimensional hypersphere, and second, sampling xn uniformly distributed on the line segment

Λ where Λ = {x̃n−1 + λv : λ ∈<}∩S. Given xn, sample un having the same distribution as U and

evaluate yn = g(xn, un).

SOSA with AP Sampler (AP-SO)

The same as IHR-SO but replace Step 1 by the following AP sampler.

Step 1: Given x1, y1, . . . , xn−1, yn−1, let x̃n−1 ∈Arg minx∈Xn−1
f̂n−1(x). Sample from the AP sam-

pler by sampling xn uniformly on S with probability 0.5, and otherwise, sample xn uniformly on

points that are within R of x̃n−1 on each dimension, i.e., {x∈ S : |xi− x̃in−1| ≤R for all i= 1, . . . , d},

where xi is the ith component of x and the radius parameter R is the tuning parameter of the

sampler. Given xn, sample un having the same distribution as U and evaluate yn = g(xn, un).

ASR with IHR Sampler (IHR-ASR)

Parameters: b and sequence {M(i) = bibc}; c and sequence {K(i) = dice}; δ, L and T .

For each x ∈ S, the algorithm keeps track of the following accumulators: Nk(x), the number of

objective function observations collected at x at iteration k; Sk(x), the sum of these Nk(x) objective

function observations; and f̂k(x) = Sk(x)/Nk(x).

Step 0: Let i= 1, k= 0, and X0 = ∅.

Step 1: Let k← k+ 1. If k=M(i), then go to Step 2. Otherwise, go to Step 3.

Step 2: Sample a new design point by performing the following steps.

2.1: If i= 1, sample xi uniformly on S. Otherwise, sample xi from the IHR sampler.

2.2: If i= 1, accept xi. Otherwise, accept xi if fL(xi)≤ f̂k−1(x∗k−1)+δ, where fL(xi) is an average

of L observations of f(xi). If xi is accepted, then let Xk =Xk−1 ∪{xi}. If xi is rejected, Xk =Xk−1.

Update N(xi) and S(xi).

2.3: For each x∈Xk, if Nk(x)<K(i), obtain K(i)−Nk(x) additional objective function observa-

tions of f(x) and update N(xi) and S(xi) accordingly.
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2.4: Let i← i+ 1. Go to Step 4.

Step 3: Resample from the existing design points by performing the following steps. Let k′ be the

last iteration that a new point is sampled.

3.1: Sample x from Xk−1 according to probability pk(x) where pk(x)∝ exp(f̂k′(x)/Tk′) and Tk′ =

T/ log(k′+ 1).

3.2: Obtain an estimate of the objective function value at x. Update N(xi) and S(xi).

3.3: Go to Step 4.

Step 4: Select an estimate of the optimal solution x∗k from X ∗k = arg minx∈Xk f̂k(x).

Step 5: If stopping criterion satisfied, stop. Otherwise, go to Step 1.

ASR with AP Sampler (AP-ASR)

The same as IHR-ASR but replace Step 2.1 by the AP sampler.

Theorem 4 establishes that IHR-SO and AP-SO satisfy Assumption 4 when the radii of the

shrinking balls are chosen appropriately. To satisfy Assumption 4, basically, the algorithm needs

to generate enough sample points to fill all the balls and the balls cannot shrink too fast. Sufficient

conditions that allow the algorithm to generate enough points are that the sampling densities

are bounded away from zero and the feasible region is a convex set. Theorem 4 then specifies an

appropriate shrinking rate of the balls.

Theorem 4. If S is a bounded convex set, rn is of Ω(n−β), where β = (1− γ)/d and 1/2< γ < 1,

and the algorithm based on SOSA employs sampling densities qn that are bounded away from zero

on S for all n, then the algorithm satisfies Assumption 4.

Proof: See the e-companion. �

Corollary 3. If Assumptions 1, 2, and 3 are satisfied, and we choose rn to be Ω(n−β), where

β = (1− γ)/d, 1/2< γ < 1 and in ↑∞ such that in ≤ ns where 0< s< γ, then any algorithm based

on SOSA with sampling densities qn that are bounded away from zero on S for all n generates a

sequence of optimal value estimates that converges to the optimal value f∗ with probability one.
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Proof: By Theorem 3 and Theorem 4, Corollary 3 follows. �

Observe that the sampling densities qn implied by IHR-SO and AP-SO on a compact set are

bounded away from zero. Therefore, IHR-SO and AP-SO generate sequences of optimal value

estimates that converge to the global optimum with probability one.

From Theorem 3 and Theorem 4, the three parameters γ,β, and s of IHR-SO and AP-SO cannot

be chosen independently if one would like to guarantee convergence because β = (1− γ)/d and

0< s < γ. A value of s, the order of slowing sequence, in, identifies how quickly we would like to

adopt new optimal value estimates. From pilot experiments, a small value of s will slow down the

algorithm. Therefore, we adopt a large value of s close to one, s= 0.9. This choice of s dictates a

large value of γ, γ = 0.91, and a small value of β, β = 0.009 for the ten-dimensional test problems.

Fortunately, a small value of β makes the ball shrink slowly and, hence, allows the algorithm to

collect more observations of the objective value at each design point, enhancing the accuracy of

the objective value estimates.

An appropriate value of the starting ball radius κr for IHR-SO and AP-SO is problem dependent.

It depends on the size of feasible region, the smoothness of the objective function and also the

adaptive sampling strategy qn. In this study, we experimented with several values for κr for each

test problem.

The two algorithms based on SOSA (IHR-SO and AP-SO) use the parameter values

γ = 0.91, β = 0.009, s= 0.9, and κr =


0.1 for Problem 1

1 for Problem 2.

With this set of parameters, the shrinking ball radii and the slowing sequence are set to

rn =


0.1n−0.009 for Problem 1

n−0.009 for Problem 2

and in = bn0.9c.

The two algorithms based on ASR (IHR-ASR and AP-ASR) use the same parameter values used

in Andradóttir and Prudius (2010),

b= 1.1, c= 0.5, δ= 0.01,L= 0.1, and T = 0.01.
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The tuning parameter R for AP sampler is set to 0.07 for Problem 1, and 0.4 for Problem 2, for

both AP-SO and AP-ASR.

We apply the four algorithms to two problems. The first problem is the shifted sinusoidal problem,

from Ali et al. (2005).

Problem 1: Shifted Sinusoidal Problem

min E [f(x) + (1 + |f(x)|)U ] s.t. 0≤ xi ≤ π, i= 1, . . . ,10

where f(x) =−
[
2.5Π10

i=1 sin(xi−π/6) + Π10
i=1 sin(5(xi−π/6))

]
+ 3.5

and x ∈ <10 and U ∼ Uniform[−0.1,0.1]. According to Ali et al. (2005), this problem contains

4,882,813 local optima with a single global optimum at x∗ = (4π/6, . . . ,4π/6) and f(x∗) = 0.

The second problem is the Rosenbrock problem. This problem is also employed as a test case

for AP-ASR in Andradóttir and Prudius (2010).

Problem 2: Rosenbrock Problem

min E [f(x) + (1 + |f(x)|)U ] s.t. − 10≤ xi ≤ 10, i= 1, . . . ,10

where f(x) = 10−6×
d−1∑
i=1

(
(1−xi)2 + 100(xi+1−x2

i )
2
)

and x∈<10 and U ∼Uniform[−0.1,0.1]. The global minimum is at (1, . . . ,1) and f∗ = 0.

We apply each algorithm to solve each problem 100 times. The initial point for each of these 100

replications is generated according to a uniform distribution on the feasible region and used for each

algorithm. Each time we run the algorithms for 12,000 function evaluations. Note that IHR-SO and

AP-SO require only one objective function evaluation per iteration. Therefore, each optimization

run requires exactly 12,000 iterations. For IHR-ASR and AP-ASR, we count the objective function

evaluations as the algorithms progress and stop once 12,000 function evaluations are reached, which

may require less than 12,000 iterations. We then record the following four measurements averaged

over 100 runs, at each iteration, for n= 1,2, . . . ,12,000:

• the optimal value estimate:

f̂∗n = min
x∈Xn

f̂n(x),
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• the (true) objective function of the optimal solution estimate (the best candidate):

f(x∗n) where x∗n ∈ arg min
x∈Xn

f̂n(x),

• the contributions to the optimal solution estimate (the counts of the sample points that con-

tribute to the objective function estimate of the optimal solution estimate):

l∗n = |{k≤ n : xk ∈B(x∗n, rn)}|

• the average noise of the optimal solution estimate:

ê∗n =

∑
{k≤n: xk∈B(x∗n,r)}

(1 + |f(x)|)Uk
l∗n

.

Figure 1 shows the four performance measurements of the four algorithms (IHR-SO, AP-SO,

IHR-ASR and AP-ASR) applied to Problem 1, and averaged over 100 runs, at selected number

of function evaluations. Panel (a) also shows the 95% confidence intervals of the optimal value

estimates, represented by vertical bars. The confidence interval represents the variation across

simulation runs. It is calculated as the mean estimate plus and minus 1.96 times the standard

deviation divided by 10 (the square root of the number of simulation runs).

The two SOSA algorithms, IHR-SO and AP-SO, outperform the two ASR algorithms, IHR-ASR

and AP-ASR. From panels (a) and (b) of Figure 1, we observe that the optimal value estimates

and the objective function value of the optimal solution estimates of SOSA (IHR-SO and AP-SO)

converge to the global optimum (target) more quickly than those of ASR (IHR-ASR and AP-SO).

Panel (c) shows how objective function observations accumulate at the optimal solution estimates

over the course of each of the algorithms. The errors of the optimal value estimates (panel (d))

decrease as more observations accumulate. The two ASR algorithms are designed to accumulate

observations uniformly over the course of the algorithms, as seen from panel (c) of Figure 1. Panel

(c) of Figure 1 also shows that IHR-SO accumulates more observations over the course of the run,

although adaptively. From panel (c) of Figure 1, IHR-SO and AP-SO are more aggressive at the

beginning stage of the algorithms when the quality of the optimal value estimates are poor, not
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Figure 1 Performance diagnostics for IHR-SO, AP-SO, IHR-ASR and AP-ASR with respect to Problem 1. Panels

(a) and (b) exhibit the optimal value estimate (with confidence intervals) and the true objective function

value at the optimal solution estimate (the best candidate), respectively. Panels (c) and (d) show the

contributions to the best candidates and the average noises of the optimal solution estimate as functions

of objective function evaluations, respectively.
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spending too many observations at the early sample points. The SOSA algorithms then adaptively

accumulate more observations for the optimal value estimates in the later stage of the algorithms,

when the quality of the estimates get higher. Observe that the ASR algorithms accumulate more

observations for the optimal value estimates at the early stage than SOSA algorithms do, slowing

the algorithms down. Consequently, as shown in panel (d) of Figure 1, the average noises of the

optimal value estimates reduce more rapidly at the early stage in the case of ASR algorithms.

Towards the end, the average noises of the four algorithms are not much different. Observe that the

errors at the optimal solution estimates are negatively biased. This is a common behavior found in

algorithms whose optimal estimates are chosen as the minimum among all the estimates, since the

ones that underestimate the true objective function value will be more likely to be chosen, causing

the average errors to be negative.

Table 1 shows the statistics of the optimal value estimates f̂∗n of the four algorithms at termi-

nation, when applied to Problem 1. As seen from Figure 1, the mean estimates of IHR-SO and

AP-SO are closer to the optimal value (zero) than those of IHR-ASR and AP-ASR. For Prob-

lem 1, the mean squared errors of IHR-SO and AP-SO are also significantly smaller than those

of IHR-ASR and AP-ASR. Furthermore, for Problem 1, IHR-SO consistently outperforms IHR-

ASR, and AP-SO outperforms AP-ASR at the 50 and 75 percentiles as well as the worst estimate

encountered.

Figure 2 shows the four performance measurements of the four algorithms (IHR-SO, AP-SO,

IHR-ASR and AP-ASR) applied to Problem 2, and averaged over 100 runs, at each number of

function evaluations, up to 4,000 function evaluations. Panel (a) also shows the optimal value

estimates with 95% confidence intervals, which are quite tight.

Again the two SOSA algorithms, IHR-SO and AP-SO, outperform the two ASR algorithms,

IHR-ASR and AP-ASR. From panels (a) and (b) of Figure 2, we observe that the optimal value

estimates and the objective function value of the optimal solution estimates of SOSA (IHR-SO

and AP-SO) converge to the global optimal value more quickly than those of ASR (IHR-ASR and

AP-ASR).
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Figure 2 Performance diagnostics for IHR-SO, AP-SO, IHR-ASR and AP-ASR with respect to Problem 2. Panels

(a) and (b) exhibit the optimal value estimate (with confidence intervals) and the true objective function

value at the optimal solution estimate (the best candidate), respectively. Panels (c) and (d) show the

contributions to the best candidates and the average noises of the optimal solution estimate as functions

of objective function evaluations, respectively.
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Table 1 shows the statistics of the optimal value estimates f̂∗n of the four algorithms at termi-

nation, when applied to Problem 2. At termination (n= 4,000), the optimal value estimates of all

four algorithms are very close to the true optimal value of zero. The mean squared errors of AP-SO

and IHR-ASR are the smallest, followed by that of IHR-SO.

Table 1 Statistics of the optimal value estimates f̂∗n of the four algorithms at termination. The experiments for

Problem 1 terminate with n = 12,000. The experiments for Problem 2 terminate with n = 4,000.

Percentile

Problem Algorithm Mean Mean Squared Error Best 25 50 75 Worst

Problem 1 IHR-SO 0.3181 0.5103 0.0631 0.0915 0.1073 0.1433 2.6569

AP-SO 0.5354 0.7961 0.1109 0.1211 0.1278 0.9007 2.5117

IHR-ASR 1.6085 3.8991 0.0751 0.2948 2.5052 2.5897 3.1575

AP-ASR 0.8905 1.6840 0.0436 0.0922 0.1780 1.8247 2.7173

Problem 2 IHR-SO -0.0402 0.0017 -0.0524 -0.0466 -0.0407 -0.0352 -0.0247

AP-SO -0.0079 0.0002 -0.0231 -0.0145 -0.0104 -0.0025 0.0615

IHR-ASR -0.0065 0.0002 -0.0274 -0.0144 -0.0070 -0.0010 0.0243

AP-ASR 0.0499 0.0035 -0.0020 0.0254 0.0471 0.0682 0.1593

5. Conclusion

We propose a single observation adaptive search (SOSA) framework for continuous simulation

optimization. Under this framework, an objective function value estimate of a sample point is

formed by the average of the observed function values within a neighborhood of that sample point.

The error of an estimate then consists of a bias and a random error. We show that the accumulated

random error of each objective function estimate can be decomposed into a non-martingale fixed

term and a progressive martingale term. By slowing down the reporting of the optimal value

estimate, the martingale property of the accumulated error ensures that the random error will

disappear in the limit. Additionally, the bias is controlled by the shrinking ball mechanism and

converges to zero. In conclusion, the optimal value estimate from an algorithm within the SOSA

framework converges to the true optimal value with probability one.
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We also demonstrate the effectiveness and the efficiency of the framework by modifying two

adaptive search algorithms, namely Improving Hit-and-Run (IHR) and Andradóttir-Prudius (AP),

to fit this framework. We also show that any algorithm with sampling density bounded away from

zero on the feasible region, in particular IHR-SO and AP-SO, satisfy the four assumptions and,

hence, converges with probability one to a global optimum. The two algorithms under the SOSA

framework outperform the same two algorithms under the adaptive search with resampling (ASR)

alternative, as demonstrated on two noisy objective functions. The performance confirms the theory

developed and illustrates the potential of the new continuous simulation optimization paradigm.
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