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ABSTRACT. We consider the problem of selecting an optimality criterion, when total costs diverge, in deterministic
infinite horizon optimization over discrete time. Our formulation allows for both discrete and continuous state
and action spaces, as well as time-varying, i.e., non-stationary, data. The task is to choose a criterion that is
neither too over-selective, so that no policy is optimal, nor too underselective, so that most policies are optimal.
We contrast and compare the following optimality criteria: strong, overtaking, weakly overtaking, efficient and
average. However, our focus is on the optimality criterion of efficiency. (A solution is efficient if it is optimal
to each of the states through which it passes.) Under mild regularity conditions, we show that efficient solutions
always exist and thus, are not overselective. As to underselectivity, we provide weak state reachability conditions
which assure that every efficient solution is also average optimal, thus providing a sufficient condition for average
optima to exist. Our main result concerns the case where the discounted per-period costs converge to zero, while
the discounted total costs diverge to infinity. Under the assumption that we can reach from any feasible state
to any feasible sequence of states in bounded time, we show that every efficient solution is also overtaking, thus
providing a sufficient condition for overtaking optima to exist.

1. Introduction

The problem of optimally selecting a sequence of decisions over an infinite horizon is complicated by the
criterion issue of imposing preferences over the collection of associated cost streams. Even in the case where
the infinite stream of cost flows is discounted, the resulting discounted total costs may all be infinite. Failure
of an optimality criterion to distinguish among different policies is a problem of under-selectivity of the
criterion. At the other extreme is a notion of optimality so strong that none of the feasible policies satisfies
its conditions, a problem of over-selectivity. In a recent paper, Schochetman and Smith (1998) considered
the notion of optimality termed efficiency (see Ryan et al (1992)) or sometimes finite optimality (Halkin
(1974)). A solution is termed efficient if, roughly speaking, it is optimal to each of the states through which
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it passes. Efficient solutions avoid being overselective in that their existence is assured by mild topological
conditions. Nor are they particularly underselective in that the requirement that they be optimal to each
state constrains prior states to be along optimal paths to those states. In this paper, we compare and contrast
the selectivity of efficiency with more traditional notions of optimality: namely, strong, overtaking, weakly
overtaking and average optimality. In particular, we develop a state reachability condition which, in the
presence of discounting, assures us that efficient solutions are overtaking optimal. Since efficient solutions
always exist, the latter condition provides a new sufficient condition for the existence of overtaking optimal
solutions. In the discrete control setting of Schochetman and Smith (1998), it was shown that, under a
state reachability condition, every efficient solution is average optimal. Here, we weaken this reachability
condition and extend this result to the continuous control case.

The discrete-time, deterministic framework within which we work, and the very general nature of the
underlying optimization problem, represent significant departures from the traditional context for the com-
parison of optimality criteria. We consider an extremely general deterministic infinite horizon optimization
problem, formulated as a dynamic programming problem. Essentially, the only restriction in this work,
apart from being a deterministic model, is the requirement that the set of feasible decision alternatives be
compact at each decision epoch. In particular, we do not assume that data are stationary. Moreover, we do
not assume complete reachability, i.e., the ability of the system to transition from any state to any state in
the very next period. This is not an uncommon assumption in the literature. Also since we have imposed
no linear space structure, we do not make any convexity assumptions. In general, our model framework
includes production planning under nonstationary demand, parallel and serial equipment replacement un-
der technological change, capacity planning under nonlinear demand, and optimal search in a time-varying
environment.

In this paper, we compare and contrast the selectivity of efficiency with the more traditional notions of
optimality including strong, overtaking, weakly overtaking, and average optimality. Strong optimality is
conferred on any strategy that attains minimum total cost. Of course, it can happen (Example 3.13) that all
total costs over the infinite horizon diverge, thus necessitating alternate notions of optimality. Overtaking
optimality was introduced in the economic literature by Gale (1965) and von Weiszacker (1967), and later
adopted by optimal control theorists. Shortly thereafter, the notion of weakly overtaking optimality was
introduced by Brock (1970) for economic growth models, followed by Halkin (1974) for optimal control
problems. In the latter paper, Halkin also implicitly defined the notion of finite optimality, which we refer to
here as efficiency. Finally, average optimality was extensively studied by Veinott (1966). See also Bertsekas
(1987, 1995).

We shall see that the efficiency criterion is not over-selective, since the existence of efficient solutions
is assured by relatively mild topological conditions. (We give a reasonable sufficient condition for efficient
optimal solutions to exist in our discrete-time, non-stationary, continuous state and control framework.) Nor
is it particularly under-selective, since such a strategy must be optimal to every state attained along that
path. In the discrete action setting of Schochetman and Smith (1998), it was shown that, under a (rather
strong) state-reachability condition, every efficient solution is average optimal. Here, we weaken this state-
reachability condition and extend this result to the case of continuous states and controls. Consequently,
this provides a sufficient condition for average optimal solutions to exist. Moreover, we give a stronger
state-reachability condition which, in the presence of discounting, assures us that efficient solutions are
overtaking optimal. Since (as we have noted) efficient solutions commonly exist, this state-reachability
condition provides a new sufficient condition for the existence of overtaking optimal solutions. Analogously,
we show that a “weaker” reachability condition is sufficient for the existence of average optima.

In section 2, we formulate the state-transition and cost structures of our discrete-time, infinite horizon,
deterministic, non-stationary, continuous state and control problem. In section 3, we introduce the optimality
criteria of interest (with and without discounting), and compare them in the absence of any additional
assumptions. In particular, we present a mild condition which is sufficient to guarantee the existence of
efficient solutions (Theorem 3.5). It is also known (Halkin (1974)), that weakly overtaking optima are
efficient for continuous time and vector states. We give a discrete-time proof of the fact that overtaking
optima are average optimal (Theorem 3.10). We also show by counter-examples that, in general:

e the optimal average value may or may not be attained (Examples 3.13, 3.15),
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overtaking optima need not be strong optima (Example 3.14),

weakly overtaking optima need not be overtaking optima (Example 3.13),

average optima need not be overtaking optima (Example 3.14),

efficient optima need not be weakly overtaking optima (Example 3.15),

efficiency and average optimality are not comparable criteria in general (Examples 3.13, 3.16), and

e weakly overtaking optimality and average optimality are not comparable in general (Examples 3.14, 3.16).

In section 4, we introduce various state reachability conditions which are considerably weaker than com-
plete reachability. In the presence of average cost reachability, we show that efficient solutions are average
optimal (Theorem 4.2). In the presence of total cost reachability, we show that the overtaking solutions are
precisely the efficient solutions (Theorem 4.4). Finally, as a consequence of this fact, we obtain an easily
verified sufficient condition involving bounded time reachability which guarantees the existence of overtaking
optimal solutions (Theorem 4.6).

Some of the results contained herein are known for either the continuous-time setting or the discrete-time
setting. In some instances, we give simpler, discrete-time proofs of certain of the continuous-time results. In
addition to the references already cited, we recommend Brock and Haurie (1976), Zaslavski (1995), Haurie
(1976), Leizarowitz (1987, 1996), Lasserre (1988) and Carlson et al (1991). Finally, in section 5.3 of the last
reference, the authors give a discrete-time version of their continuous-time model. However, implicit in this
model are stationarity and complete reachability. In addition, states are required to belong to R”. We make
no such assumptions here. Moreover, they do not consider the average optimality criterion at all there.

2. Problem Formulation

We formulate a deterministic infinite horizon optimization problem within a discrete-time framework.
Otherwise, our problem is quite general. In particular, it is non-stationary, allows for compact state and
action spaces, is discounted or not, and assumes no reachability properties (as part of the problem definition).
Moreover, by a familiar device, stochastic infinite horizon problems can be modelled by our framework (see
below).

Consider a sequence of decisions, where each decision is made at the beginning of each of a series of equal
time periods, indexed by j =1,2,.... The set of all possible decisions available in period j (irrespective of
the period’s beginning state) is denoted by Yj. For convenience, we assume that Y is a compactum, i.e., a
compact, non-empty metric space with metric p;, Vj = 1,2,.... Without loss of generality, we may assume
that pj(:cj,yj)gl, Ve, y; €Y, Vi=1,2,....

We consider a dynamic system governed by the state equation s; = f;(s;—1,v;), Vz;,y; €Y;, Vj=
1,2,..., where sg is the fixed and given initial state of the system (beginning period 1), s; is the state of
the system at the end of period j, i.e., beginning period j + 1, y; is the control (or action) selected in period
j with knowledge of the state s;_1, S; is the compact metric space of feasible states ending period j (with
So = {so0}), so that s; € S;, Vj=1,2,..., Y;(sj_1) is the given closed, non-empty subset Y; of feasible
controls available in period j when the beginning state is s;_1 € S;_1, so that y; € Y;(s;—1) C Y}, and f; is
the given continuous state transition function in period j, where f; : F; — S, with

Fj = {(ijlayj) € ijl X ij 1Yj; € }/j(sjfl)}ﬂ VJ = 1723"' .

(Note that the non-emptiness of Yj(s;_1), for s;_1 € S;_1, is equivalent to the assumption that all finite
horizon feasible solutions can be feasibly continued from state s;_; in period j.) We assume that the
set-valued mapping s;_1 — Yj(sj_1) of S;_; into Y; has the following (closed graph)

n

Continuity Property: For each j, if s

71 — sj—1 in Sj_1, and y} — y; in Y;, as n — oo, where
Yy € Yj(s] 1), Vn, then y; € Yj(sj-1).

In this event, each F) is the closed (hence, compact) graph of the set-valued mapping s;_1 — Y;(s;—1) in the
compact space S;j_1 x Y;. We require that S; = f;(F;) Vj=1,2,..., so that, in particular, S; = fi(F1),
where F; = {so} x Yi(so). Thus, each S consists of the set of feasible, i.e., attainable, states in period j.

Remarks. Before proceeding, it is worth noting that continuous-time optimization problems can be adapted
to our model. For the sake of simplicity, assume that strategies are the same as state trajectories, i.e.,
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decisions are system states. Then proceed as in Zaslavski (1995). Moreover, stochastic optimization problems
can also be adapted to our model. Once again, for simplicity, assume decisions are finite in number, so that
policies correspond to probability mass functions over underlying stochastic states. Then proceed as in
Leizarowitz (1987). We leave it to the interested reader to pursue those cases where decisions are not system
states and probability distributions are more general.

The product set Y = H;’il Y; of all potential decision sequences or strategies is then a compact topological
space relative to the product topology, i.e., the topology of componentwise convergence. The product
topology on Y is metrizable with metric d given by

d(.’ﬂ,y) :Zﬁjpj(xjayj)v Vif,yEY,
j=1

where (3 is chosen arbitrarily so that 0 < § < 1.

Now let y € Y and fix a positive integer N. Then y is feasible through period N if y; € Y;(s;—1), where
s; = fj(sj—1,y;), forall j =1,2,... , N. Denote all such strategies by X, which is thus a closed, non-empty
subset of Y. Note that if y is feasible through period N and M < N, then y is feasible through period M,
i.e., Xy C Xjps. Moreover, y is a feasible strategy if y is feasible through period N, for each N =1,2,....
We define the feasible region X to be the subset of Y consisting of all those y which are feasible through
each period N, ie., x € Xy, VN, so that X = NF_;Xn. This set is closed in Y and non-empty, since
Y;(s;j—1) is non-empty, for all j , and all s;_; € S;_1. In fact, as a consequence of this assumption, if y is
feasible through a given period N, then it may be feasibly extended over all remaining periods.

If y is feasible through period N, then we may define

s1(y) = fi(so,y1),  s2(y) = fa(s1(y)92), - s sn(y) = fn(sn—1(¥),yn),

so that sy(y) € Sy, and y € Xy if and only if y; € Yj(s;—1(y)), Vj = 1,2,... ,N. We will refer to
each such sy (y) as the state through which y passes at the end of period N. Thus, for each N, we obtain
a mapping sy : Xy — Sy, which is onto since Sy consists of feasible states. If y € Y, z € Xy and
y; = 25, ¥j =1,2,... N, then y € Xy and sy(y) = sn(z). Moreover, if z € X, then for each period
N, sy(z) is defined, and s € Sy implies there exists € X for which sy(z) = s. Finally, if z € X, then
(Sj_l(ZL’),LL‘j)GFj, V]ZI,Q,

2.1 Lemma. For each N, the mapping sy : Xy — Sy is continuous.
Proof. This follows from the continuity of the f;. ]

For convenience, we introduce the following notation. If N is a positive integer and z,y € Y, then we
define

(:E |N y) = (xl,x% <oy INYYN+1, YN+25 - - - )
The following is then immediate.

2.2 Lemma. If N is a positive integer and z,y € X are such that sy (x) = sn(y), then z = (x | y) is also
in X. Moreover, sp;(z) = sp(x), YM < N, and sp(2) = sp(y), VM > N.

Turning to the objective function, we allow the cost of a decision made in period j to also depend
(indirectly) on the sequence of previous decisions, or more directly, on the state resulting from these decisions.
Specifically, we let ¢j(s;—1,y;) be the (undiscounted) non-negative cost of decision y; in period j, when s;_1
is the state beginning period j. We thus obtain cost functions ¢; : F; — [0,00) which we require to be
continuous. Thus, each ¢; attains its maximum, denoted by ||c;||, Vj. We say that the period costs ¢; are
ezponentially bounded if there exists B > 0 and v > 1 such that ||¢;|| < B4/, i.e.,

0 S Cj(sj—lvyj) < B’Yja v(sj—layj) € Fja V] = 1723 cee e

Of course, if v = 1, then the period costs are actually uniformly bounded by B.
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Throughout the following, let o be a discount factor, 0 < a < 1. For each strategy = € X and positive
integer N, we define the associated total N-horizon cost Cn(x|a) by

N(z|a) = ZaJ i(sj—1(x), ),

so that 0 < Cn(z]a) < o0, and Cni1(z|a) = Cn(z|a). If o < 1, this cost is discounted. If o = 1, then the
cost is undiscounted; in this event, we will write Cn(z) for Cny(z|1), so that Cn(z|a) < Cn(z), for all N,z
and «. Note that each Cn(*|e) is a continuous real-valued function on X.

Our general problem is to find an infinite horizon feasible strategy x € X which, in some suitable sense,
is optimal, i.e., minimal. The fundamental question is: what does “optimal” mean? There is no guarantee
that the total cost of any strategy over the infinite horizon will be finite, even if it is discounted. In the
next section, we compare and contrast five more-or-less familiar optimality criteria, each of which responds
to this question.

3. Optimality Criteria

There are many optimality criteria which exist in the literature, the most popular being strong optimality.
Others include overtaking optimality, weakly overtaking optimality, finite optimality, also known as efficiency,
and average-optimality. In this paper, we contrast and compare these optimality criteria for our discrete-time
problem, with and without discounting. We begin with strong optimality.

For each z € X and discount factor «, define the infinite horizon total cost C(x|a) by

C(z|la) = Zoﬂ Yei(sjo1(z), x5) :J\;iinooCN(x\a) :S}%,pCN(xla)'

Thus, the function C(*|e) : X — [0,00] is both the pointwise limit and the supremum of the continuous
functions Cy(*|a). Hence, C(*|) is lower semi-continuous on X (Hewitt and Stromberg (1965), p.89), for
each a. As above, we will write C'(z) for C(z|1). Thus,

0<C(zla) <C(z) <o, VO<a<l, VrelX.

Consequently, for a given x € X, if C(x) < oo, then C(x|a) < oo, for each a. However, for 0 < o < 1, if
C(z) = oo, it’s posssible that C(z|a) < co. This depends on the behavior of ¢;(s;—1(x),x;) versus that of
ad~1 with respect to j. Accordingly, for each z in X for which Cy(z) > 0 eventually, i.e., C(x) > 0, we

define n(Cy (2))
T n N(T
k(x) = hm;up -~
Note that if C'(z) < oo, then k(z) = 0; if C(x) = oo, then In(Cn(z)) T 0.

3.1 Theorem. Fiz x € X for which C(x) > 0. If 0 < k(z) < oo, then C(z|a) < oo, for all a such that
0<a<e @ <1,

Proof. Fix 0 < a < 1. For 0 = —Ina, we have
N N
I’|Oé ZC] Sj— 1 I] Oé] ! ZC] Sj— 1 j)(eig)jil7 VN = 1,2,....
j=1 j=1

Applying Theorem 2.5 of Widder (1946), with A\, = n — 1 and a, = c¢,(sp—1(2),2,), We obtain that
C(z]a) < oo, for all « satisfying
—lna> limsupM

> 0.
N N1
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But
C mew@) . In(Cx()
limsup ————= = limsup —————= = k(x),
sup — Sup —— (z)
so that C(z]a) < oo, for all « satisfying — Ina > k(z) > 0; equivalently, o < e~ #(*) < 1. O

Our total cost optimization problem is then formulated as follows:
C*(a) = inf C(zla),

so that 0 < C*(a) < 00, and C*(a) < C*(1), V0 < a < 1. Note that C*(«) < oo if and only if there exists
at least one € X for which C(z]|a) < co. In any event, C*(a) is always attained. If C*(«a) = oo, then
C(zla) =00, Vo e X. If C*(a) < o0, since X is compact and C(*|«) is lower semi-continuous, it follows
that C*(«a) is attained.

Strong Optimality: Let x € X. Then z is strongly optimal (relative to «) if C(z|a) = C*(a) < oo, i.e.,
C(z]a) < oo and C(z|a) < C(yla), Vye X.

For each 0 < a < 1, we will denote the set of such strongly optimal solutions to our problem by X*(«).
Thus,
P CX%(a) C{zr e X :C(z|la) <0} CX,

in general, with all inclusions possibly proper. If C*(a) < oo, then X*(a) # (). It’s possible that C*(a) = oo
(see our examples), equivalently X*(«) = (), by our definition. (For our purposes here, this is the interesting
case.) At the other extreme, if the period costs ¢; are exponentially bounded by B~yJ, then, for o < 1/, we
have
R By
0<C*0) < Clalo) < —20— vreX,
1—ay

and C(*|a) is the uniform limit of the Cn(*|a), i.e., it’s continuous on compact X. Hence, it attains its
minimum value, so that X*(«) # ), in particular.

3.2 Lemma. For each 0 < a <1, the set X*(«) is closed in X.

Proof. For a fixed «, this set is the inverse image of the point C*(«) under the lower semi-continuous mapping
C(']or). Hence, it is necessarily closed (Hewitt and Stromberg (1965), 7.21(d)). O

The following well-studied optimality criteria are particularly useful if C*(«) = oo, in which case there
does not exist a strongly optimal strategy. We recall the familiar notions of overtaking and weakly overtaking
optimality.

Let z,y € X. As in the continuous-time case, we will say that z overtakes y (relative to «) if

limNinf[C'N(y|Oé) - Cn(z|a)] =20,

and x weakly overtakes y (relative to «) if

limsup[Cy (y|a) — Cn(z]a)] > 0.
N

Overtaking and Weakly Overtaking Optimality: Let x € X. Then z is overtaking optimal if x
overtakes y, for all y € X. Similarly for weakly overtaking optimal. Clearly, overtaking optimality implies
weakly overtaking optimality. Overtaking optimality was originally introduced by von Weiszacker (1965),
who called it catching up optimality, while weakly overtaking optimality, also called sporadically catching up
optimality, first appears in Halkin (1974).

Denote the set of such optimal strategies in X by X°(«) (respectively, X («)), so that

0 < Xa) CX) CX,

in general. Of course, the sets X°(a) and X* («) are different in general (Example 3.13), and they need be not
closed in Y (Example 3.14). Both overtaking and weakly overtaking optimality have received considerable
attention in the economics and optimal control literature, primarily for continuous-time problems.

The following can be found in Halkin (1974) for the continuous time case.
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3.3 Theorem. Suppose 0 < «a < 1. Then, in general, strong optimality implies overtaking optimality.
Specifically, if C*(a) = oo, then
f=X°) CX%a) C X a).

If C*(a) < o0, i.e., there exists x € X for which C(x|a) < oo, then strong optimality and weakly overtaking
optimality are equivalent, i.e.,
0 # X%(a) = X(a) = X"(a),

for such a.

Proof. Let v € X*(a). Then C(z]a) = C*(a) < o0, and C(z|a) < C(y|la), Yy € X. Let y € X. Then
either C(yla)) = 00 or C(y|a) < oo. In either case,

limNinf[C’N(y|oz) — Cn(z]|a)] = Nlim Cn(yla) — A}im Cn(z|a) = C(yla) — C(x]|a) = 0.

Therefore, z € X°(a).
Conversely, assume C*(a) < 00, i.e., there exists z € X*(a), so that C(z|a) = C*(a). Let z € X" ().
Then liminf y[Cn(2z|a) — Cn(z|a)] > 0, by definition and

C(elo) = Clafa) = Jim Cy(zla) — lim Cx(ala) = limsup[Cx(zla) - Cy(ala)] > 0.

so that C(z|a) < C(z]a). Necessarily, C(z|a) = C*(a) < oco. Thus, x € X*(«). O

Next we turn to the much less well-known finite-optimality notion which we call efficiency. The state-space
construction introduced above associated a unique state at the end of each time period with every infinite
horizon feasible strategy. Strategies that have the property of optimally reaching each of the states through
which they pass have been called efficient strategies (see Schochetman and Smith (1998, 1992), Ryan, Bean,
and Smith (1992), and also Lasserre (1986) for an early introduction of a similar concept. This efficiency of
movement through the state space suggests efficient solutions as candidates for optimality.

Efficiency (Finite Optimality): Let « € X. Then z is efficient (relative to «) if, for each y € X, and
for each N such that sy(y) = sy (z), we have Cn(z|a) < Cy(y|a). Also known as finite optimality, this
criterion was originally introduced in a special case by Halkin (1974), who called it finite horizon clamped
end-point optimality.

Let X¢(«) denote the subset of X consisting of efficient strategies. It was shown in (Schochetman and
Smith (1998), Lemma 3.5) that efficient strategies exist in our context, i.e., § C X¢(a) C X, provided each
of the spaces Y; and S;_1 is discrete. (Although in Schochetman and Smith (1998) we asssumed that the
period costs were uniformly bounded, while here we do not, this has no effect on the definition of efficient
strategy.)

Before continuing with our comparisons of optimality criteria, we give a sufficient condition for efficient
solutions to exist in the case of non-discrete Y; and S;_1. Fix N, and for each s € Sy, let Xy (s) denote the
set of N-horizon feasible strategies which attain state s at the end of period N, i.e.,

Xn(s) ={z € Xn:sn(z) =5} =5y ().

Since sy is continuous, we thus obtain a partition {Xn(s) : s € Sy} of X consisting of compact sets, as
well as a set-valued mapping s - Xn(s) of Sy into X with compact, non-empty values.
Now, for each NV and s € Sy, consider the optimization problem

min  Cy(z|a).
zEXN(S)
If we let X% (s|a) denote the set of optimal solutions to this problem, then this set is a closed, non-empty
subset of X . We thus obtain another compact-valued set mapping of Sy into Xy given by s — X% (s|a).
If we define
Xy (@) = Usesy X (sla),
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so that the X% («) are non-empty and nested downward, and
AT (@) = NF=1 Xy (@),

then it is not difficult to see that the efficient solutions are precisely the elements of X*(«), i.e., X¢(a) =
X* ().

The following gives a sufficient condition for the existence of efficient solutions - in the continuous ac-
tion/state case.

3.4 Theorem. If, for each N, the set-valued mapping s — Xn(s) is continuous in the sense of Berge (1964,
p.116), then efficient solutions exist, i.e., X¢(a) # 0, and X¢(«) is compact, for all 0 < o < 1.

Proof. It follows from our hypothesis and Berge (1964) that the set-valued mapping s — X% (s|c) is upper
semi-continuous in the sense of Berge (1964, p.109). Consequently, the space X7 () is compact (Berge (1964,
p.110)), for each N. Hence, X*(«) is the intersection of a descending sequence of compact, non-empty sets,
and is thus, compact and non-empty. O

The previous generalizes the following existence result for efficient solutions established in Schochetman
and Smith (1998, Lemma 3.5) - for the discrete action/state case.

3.5 Corollary. If the Sy are discrete, then efficient solutions exist in this case.

Proof. As is the case for single-valued functions, set-valued functions defined on discrete spaces are continous.

The next result compares X™(a) with X¢(«).

3.6 Theorem. In general, weakly overtaking optimality implies effficiency, i.e., X¥(a) C X¢(a), V0 <
a<l.

Proof. The proof given for Theorem 4.1 of Halkin (1974) for continuous time may be adapted here for discrete
time. We leave the details for the interested reader.
O

3.7 Corollary. Suppose 0 < a < 1. If C*(«) = o0, then

§=X°) CX°%a) CX"a) C Xa).
If C*(a) < o0, then

0 £ X(a) = X°(a) = X*(a) C X*(a),
for such a.

Finally, we consider the well-studied notion of average optimality. As is customary, we define the infinite
horizon average cost (per-period) of x € X to be

A(z|a) = limsup Ay (z|a), YO<a <1,
N

where, for all N =1,2,...

)

Cn (z])
N )
so that 0 < Ay (z]a) < Cn(z|a), and Ay (z|a) < An(z|1). Then A(z|a) < C(x|a), and

An(z|a) =

0 < A(z|a) < A(z|1) < oo,

in general. Note that the function A(*|a) = limsupy An("|e), where An(*|a) is continuous, for all N.
However, A(*|a)) need not be lower semi-continuous, as was the case for C(*|a).
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Our average cost optimization problem is then:

A*(a) = inf A(z|a).

zeX

Average optimality: Let x € X. Then z is average optimal (relative to «) if A(z|a) = A*(a) < o0, i.e.,
A(z|a) < oo and A(z|a) < A(y|la), Vy € X. This optimality criterion has been studied by a number of
authors. For example, see Arapostathis et al (1993) and Bertsekas (1995), as well as the references contained
therein.

We will denote the set of average optimal solutions to our problem by X%(a). As was the case for X°(«)
and X" («), the set X*(a) need not be closed in X (Example 3.13). Of course,

{r e X : A(z]a) =0} C X%a) C{z € X : A(z]|a) < oo},

in general. In particular, X%(a) = 0 if A*(a) = oo, i.e., A(z|a) = 00, Vz € X, or if A*(a) < oo and is not
attained. Moreover, we have the following properties for A*(a) versus C*(«).

e In general, 0 < A*(a) < C*(a) < 0.

o If A*(a) = o0, then C*(a) = oo also, in which case both X?*(«) and X(a) are empty.

o It is possible for X*®(a) to be empty while X*(«) is not, i.e., C*(a) = oo, while A*(a) < 0.

o If C*(a) < o0, i.e., there exists z € X such that C(z|a) < oo, then A(z|a) = 0, so that A*(«) = 0 and is
attained by all such z.

o We have A*(a) = C*(«) if and only if A*(a) = 00 or C*(«r) = 0.

o If A*(a) < o0 is not attained, then C*(«) = co necessarily.

3.8 Lemma. If the ¢; are exponentially bounded by By?, and a < 1/, then A(z|a) =0, Vz € X, so that
A*(a) =0 and X% () = X in this case.

3.9 Theorem. Suppose A*(a) < oo. Then overtaking optimality implies average optimality, so that
X*(a) € X%(a) € X(a),

for all such .

Proof. Suppose x € X°(a). Let y € X and € > 0. Then there exists M sufficiently large such that
Cn(z|a) < Cn(yla) +€, VN > M. Consequently,

Cn(la) _ On(yla) | e
N - N N
for all such N. Hence,
: Cn(zle) _ . Cn(yla)
1 — <1 —
1mj\?up N = 1m1$up N
ie., A(z|a) < A(y|a), so that z € X*(a), since A(z|a) is necessarily finite by hypothesis. O

In general, weakly overtaking solutions are not average optimal, i.e., X" (a) need not be contained in X*(«)
(Example 3.14).

3.10 Corollary. If C*(a) < o0, so that A*(«) = 0, then

0#X°(a) =Xa) = X"(a) C X*a)={z e X : A(z|a) = 0}.

Proof. Recall that X*(«) # () in this case. O
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We have shown that for « such that A*(«) < oo, and without any additional assumptions,

0 C X*(a) C X%a) C { f(j((aoé)) C X(a),

where:

o X () # 0 if and only if C*(«) < o0;

o C*(a) is always attained;

e X () # 0 if and only if A*(a) < co and is attained;

e A*(a) may or may not be attained, in general.

e it is always the case that X¢(a) # 0, if the set-valued mappings s — X (s) are continuous, for all N (e.g.,
discrete state spaces).

Moreover, we will see (by Examples 3.12-3.15) that:

¢ X°(a) may or may not be equal X°(«);

X °(a) may or may not be equal X% («);

o X" () may or may not be equal X°(a);

¢ X°(a) may or may not be equal X%(a);

e X¢(a) and X*(«) are not comparable in general; and
e X" () and X%(a) are also not comparable, in general;

Thus, the previous inclusions are the best possible, barring any additional assumptions.

3.11 Remarks. (1) Observe that if there exists € X for which C(z]a) < oo (i.e., C*(a) < 00), then
X?*(w) is not empty, is equal to X°(a) = X* (), and is contained in both X°(a) and X*(«) (Corollaries 3.7
and 3.10), i.e.,
s _ o _ w Xe(a>7

07 X5(0) = X°0) = X"(@) € { 1,0
In this case, X*(a) “dominates” all the other optimal sets in the sense that it is non-empty and contained in
each of them. Thus, if C*(«) < oo, then strong optimality is the optimality criterion of choice because such
optimal strategies exist and have all the other properties. However, if C(z|a) = co, Vz € X (ie., C*(a) =
00), then X*(a) = (), and the remaining optimality criteria become important, particularly efficiency, since
we have a reasonable sufficient condition for such optima to exist in our model (Theorem 3.4). Needless to
say, the strong emphasis here is on the case C*(a) = oc.
(2) Intuitively speaking, strong optimality is short-term biased, in that the earlier the decision, the greater
the impact on the total cost. On the other hand, average optimality is long-term biased because average cost
is influenced only by cost to go. However, efficiency appears to be neither short-term nor long-term biased.
It is reasonable to expect that a suitable infinite horizon optimization criterion should not be short-term
biased. The general concept of bias for optimality criteria has been studied formally by Chichilnisky (1993).
We will not pursue this issue here.

We next describe four examples. Without loss of generality, it suffices to consider only the case a = 1. If
a # 1, then replace each ¢;(s;j—1,y;) by ¢;(sj—1,y;)/a?~1 to get the same conclusions.

3.12 Example. Let the data be as follows for j7 > 1:
Y; :{Oal}a Sj :{(j,O),(j,l)}7 so = (0,0),

)/}(ijl) = YJ(J - 17k) = Yj = {071}7

(j,kerj), if k=0,

fi(sj—1,95) = fi((G — LK), y;) = { Gihmyy), fh=1, 52
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k

To introduce the cost structure, let r, = Zj:()(l/Q)j, for k=0,1,...,so that r; T 2, as k — oo. Define

L ify; #0,
¢j(sj—1,y5) = ¢i((j —1,k),y;) =4 0, ify; =0, j+kisodd
rj, ify; =0, j+kiseven.

(See Figure 1.)

1

Figure 1. State-Space Diagram for Example 3.13

Note that period costs are uniformly bounded. We leave it to the reader to verify that this example has
the following properties for o = 1, i.e., the undiscounted case:

(i) C*(1) = o0 and A*(1) = 1, which is attained.

(i) = X5(1) = X°(1) c{A} = X¥(1)=X¢(1) C {z € X : A(x) =1} = X*(1) = X, where 6 = (0,0,...),
so that X® is not contained in X", in general.

That is, there is exactly one efficient optimal solution, no overtaking optimal solution, and all feasible
solutions are average optimal.

3.13 Example. Let the data be as follows for j > 1:
}/}:{071}7 SJ:{(jaO)a(Jal)v a(jaj)}v SOZ(OaO)a

{0}, f0<k<j-—1,

Vi =vi-t={ oh V=

(4, k), fo<k<j—1, y; =0,

fj(sj—layj) — fJ((J — Lk)7yj) = { (j7k+ 1)7 if k :] — 1’ Y; = 1.

To introduce the cost structure, define

—_

L if0<k<j—1, y; =0,
Cj(Sj_l,yj):Cj((j*]-yk),yj): 07 lfk:‘y*]-v yj:()v

for y; € {0,1}. (See Figure 2.)
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Figure 2. State-Space Diagram for Example 3.14 -

Note that period costs are uniformly bounded. We leave it to the reader to verify that this example has
the following properties for the undiscounted case:

(i) C*(1) = oo and A*(1) = 1, which is attained.

(i) 0 = X5(1) C {2} = X°(1) = X¥(1) C {2/ : j > 0} = X%(1) C X¢(1) = X, where 27 is equal to 1 in
the first j positions and zero thereafter.

That is, there is exactly one (weakly) overtaking optimal solution, all but one of the feasible strategies are
average optimal, and all feasible solutions are efficient. Thus, X is properly contained in X¢, X€ is not
contained in X% and X® is not contained in X™.

3.14 Example. Let the state space structure be as in the previous example, but define the cost structure
as follows:

A 0<k<ji-1, =0,

1
($i_1,y:) = ¢ '—1716, ) = k+1°
ci(sj—1,y5) = ¢;((J ):Y5) { 1, iftk=j-1, y; =1,

(See Figure 3.)
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-
1 !
!
!
1
: 105 X -
!
| !
X !
X !
1l : 1: : -
! 1
1 : : :
! ! !
1.3 L 1.3 ! 1.3
1 ! : ! -
1 ! ! ' !
! : ! :
1.2 L 1.2 : 1.2 1.2 : -
1 I : ! ! 1
: | ! : !
1 ! ) !
1 1 L L1 L ! -
N T T y
! ! ! I ! !
! ! 1 ! : 1
! ! 1 ! \ 1
) 1 ! 2 . 3 1 4 5 )

Figure 3. State-Space Diagram for Example 3.15

Note that period costs are uniformly bounded. We leave it to the reader to verify that this example has
the following properties for a = 1, i.e., the undiscounted case:

(i) C*(1) = o0 and A*(1) = 0.
(i) 0 = X5(1) = X°(1) = X*(1) = X%(1) C X¢(1) = X.

That is, all feasible strategies are efficient, and no feasible strategy is optimal in any other sense. Thus, X%
is properly contained in X¢ and X ¢ is not contained in X*. Moreover, A*(1) is not attained.

3.15 Example. Let the data be as follows for j > 1:

0,1}, ifj=1,
v-{o

{0}, if j>1,
SJ:{(jaO)v(jv]-)}v 502(070);
{0,1}, ifj=1,
{0}, ifj=2,
(4, k), if j > 2,
17 lszlak:O7yJ:O7
27 lfj:17k:07y]:17
1, ifj>1,k=0,y9;=0,
ny, lf]>1ak:17y]:07

Yi(sj—1) =Y;(j —1,k) = {
ﬂ@awﬂ=EW—L@wﬂ={
cj(sj—1,y5) = c;((1 — 1,k),y;) =

where n; =0, if j 4+ 1 is not a power of 2, and n; = 2™, if j + 1 = 2™, for some integer m > 1. (See Figure
4.)
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gl 7l 2

Figure 4. State-Space Diagram for Example 3.16

Note that period costs are not uniformly bounded, but they are exponentially bounded; specifically,
0 < ¢;(sj—1,y;) < 27. Clearly, there are just two feasible solutions 2° and z?, given by z° = (0,0,0,...) and
x! = (1,0,0,...). Moreover, for each N > 1, we have Cy(2°) = N and
[logy (N+1)]
CN(xl) _ Z - 2(2\_10g2(N+1)J — ]_)7
j=1

so that C(2°) = 0o = C(z'), C*(1) = 0o and X* = (). For each Ny, = 2™ — 2, we have

Ony, (21) =202M71 — 1) = Cp,, (2°), VM > 2,

i.e., Cy(2%) and Cn(x!) are each equal to N, for all such N. Next suppose that N is strictly between two
such indices, i.e., 2M —2 < N < 2M+1 _ 9 for M > 2. Then

Cn(z') — Oy (2®) = 2MTT —2 — (2M+1 _3) =1,
for such N. From these facts, it follows that
Cn(z') = Cn(2") >0, VN,
and, in particular, for Ny, = 2M+1 — 3,

Cnyy (D) = Cn,y, (2%) =1, VM > 1.

Consequently,
limNinf (Cn(z") = Cn(2%) >0,
limNinf (CN(mo) - Cn(z") < -1,
and
limsup (Cy(2°) — Cn(2")) >0,
N
i.e., 20 overtakes ' (so that 2° weakly overtakes '), z' does not overtake x%, and z" weakly overtakes °.

Hence, X°(1) = {2°} and X* = X. Clearly, X¢(1) = X also since, for each state, only one of the strategies
attains that state.
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As we have observed, for each N > 2, there exist a unique M > 2 such that 2M — 2 < N < 2M+1 _ 9,
and Oy (z!) = 2M*! — 2, 50 that

Cvlal) _ COnlal) _ Cn(al)
9M+1 _ 9 — N T 2M 1
Consequently,
oM+1 _ 9
A@') = lmsup Oy(e)/N = lm =y = 2.

Thus, C*(1) = oo, A*(1) = 1 and X(1) = {2°}, since clearly A(z°) = 1.
We thus obtain the following inclusions:

f=X%(1) c {2} = X°(1) = X*(1) c X¥(1) = X°(1) = X,

so that, in particular, X® and X¢ are not contained in X*. There is exactly one overtaking (average) optimal
solution, no strongly optimal solutions, and all feasible solutions are weakly overtaking and efficient.

Remark. Example 3.14 shows that there exist problems for which our five optimality criteria are indis-
criminate. In such cases, other criteria are called for, of which there are many. See Carlson et al (1991), for
example.

4. Reachability Conditions

In this section, we consider certain additional state-reachability conditions for our problem which will
prove to be useful for comparing our optimality criteria in the case C*(a) = oco. These conditions are
controllability notions. A very strong version of such a notion in the literature is complete reachability, which
requires that the system be able to transition from any state in any period to any state in the very next
period. This was assumed in Zaslavski (1995), and most notably in section 5.3 of Carlson et al (1991).
Another strong controllability notion (used in Leizarowitz (1987)) requires that transition from any state
at any time to any future state be accomplished by a feasible stationary strategy. Our state-reachability
conditions are considerably weaker than these.

First, we recall (a slightly weaker version of) the Bounded Reachability condition introduced in Schochet-
man and Smith (1998).

Bounded Time Reachability (BTR): There exists a positive integer R such that for each 1 < K < oo
and each z,y € X, there exists K < L < K+ R and z € X, (depending on K, z,y) for which sk (z) = sk (y)
and s1,(z) = sp(x). If such R exists, then our problem is said to satisfy the Bounded Time Reachability, i.e.,
(BTR) property. Roughly speaking, there exists a strategy z which steers the system from state sk (y) at
time K to state sz (z) at some time L, which is at most R periods from K.

Note that property (BTR) is independent of the cost structure and the discount factor. Consequently, we
introduce two other notions of state-reachability which do depend on these data.

Total Cost Reachability (TCRJ|a): Let z,y € X, 0 < a < 1. For each € > 0, there exists a positive
integer M (depending on ¢), such that for all N > M, there exists 0 < K < N and z € X (depending on
N) such that sk (2) = sg(y), sn(z) = sy(z) and Cy(z|a) — Ck(z|a) < e. Thus, given € > 0, for sufficiently
large N, there exists an earlier period K and a strategy z which steers state sx(y) at time K to state sy (z)
at time N with cost less than e.

Average Cost Reachability (ACR|a): Let z,y € X. Given € > 0, there exists a positive integer M
such that for all N > M, there exists 0 < K < N and z € X such that sg(z) = sk (y), sn(z) = sy(x) and
Cn(zla) — Ck(z|a) < Ne. Thus, here the “steering” is as in the previous case, but with average cost less
than e.

Obviously, these reachability properties do depend on the cost structure and the discount factor. Moreover,
the Average Cost Reachability property is weaker than the Total Cost Reachability property, i.e., (TCR|«)
= (ACRJa), Y0 < a < 1. The converse is false, in general (Example 4.7).
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If the c; are exponentially bounded, say by Be" | and a < 1/, then strong optima exist (section 3), and
they are optimal in every other sense. However, if either @ > 1/7, or the ¢; are not exponentially bounded,
then what can we say? The next result sets the stage for our response to this question, which depends on
the relationship between o and the c;.

4.1 Theorem. Suppose property (BTR) holds.
(i) If v is such that
lim
J—0 ¥

then property (ACR|«) holds. In particular, if

o ey _o
. — Y,

tim 11—,

j—oo ]
then property (ACR|a) holds for all 0 < o < 1.
(i) If « is such that _
lim o/~ e;|| =0,
j—o0
then property (TCR|a) holds. In particular, if
lim [|e;]| =0,
j—00
then property (TCR|a) holds for all 0 < a < 1.
Proof. (i) Let R > 1 be as property (BTR). Given z,y € X and € > 0, let J be sufficiently large such that

el - v

Let M =J+Rand N > M. Set K =N — R > J. By property (BTR), there exists L such that
N-R=K<L<K+R=N,
and w € X, such that s (w) = sk (y) and s (w) = sp(z). Let 2 = (w | ) so that sk (z) = sk (w) = sk (y)

and sy (z) = sy(x). Also,

N
Cn(zla) = Ck(zla) = D o/ lej(s5-1(2), %)

J=K+1

IA

¢ N

= D
Rj=K+1

< N(N - K)e/R

eN.

Thus, property (ACR|a) holds. Part (ii) is proved similarly. O

Remark. It’s worth noting that, for each 0 < o < 1, it can happen that the hyptheses of Theorem 4.1 hold,
together with the property that C*(a) = co. For example, it happens when a =1 and ||¢;|| = B/j.

In Theorem 4.2 of Schochetman and Smith (1998), we showed that, in the presence of property (BTR),
every efficient strategy is average optimal, i.e., X¢(a) C X% «a), V0 < a < 1. We next give a stronger
version of this result. Thus, we obtain reasonable sufficient conditions for the existence of average optima -
which need not exist in general (Example 3.15). Note that if A*(«a) = oo, then X%(a) = (), for such «, and,
at least in the discrete case, X¢(«) can’t possibly be contained therein, since it is non-empty.
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4.2 Theorem. Suppose « is such that property (ACR|«) is satisfied and A* () < co. Then efficient implies
average optimal, i.e., X¢(a) C X% (), so that

X°(a) C X°%a) C XY (a) € X%(a) C XYa),

for such «. 1If, in addition, the set-valued functions s — Xn(s) are continuous, then there exists efficient
optimum which is also average optimal.

Proof. Let € X°(a), and suppose there exists y € X such that A(y|la) < A(z|a), ie, 2 ¢ X%(a). In
particular, A(y|a) < co. Let

6: { 1(A(z]a) — A(yle)),  if Az|e) < oo,
1, if A(z|a) = o0,

so that € > 0. Also let M be as in property (ACR|«) for z,y and e. Then, for each N > M, there exist
0 < K < N and z € X such that sx(z) = sk(y), sn(z) = sy(z) and Cn(z|a) — Ck(z|la) < Ne. If
K = N, then z = y, sy(2) = sn(z) = sn(y) and Cn(y|a) = Cn(z|a), ie., An(yla) = An(z|a), so that
An(y|a) + € > An(z|a) in this case.

If K < N, define w = (y |, 2), so that w € X and sy(w) = sy(z) by Lemma 2.2. Then, necessarily,
Cn(z|la) < Cy(w|a), since x € X¢(a) and w € X with sy(w) = sy(x). Moreover, Cn(y|a) = Ck(y|a),
since each c¢; > 0. Thus,

N (yla) + Z o ~lej(sj-1(2), 7)) = Crc(yla) + Z ol ~lej(s5-1(2), 25)

j=K+1 j=K+1
= Ck(w]a) + [Cn(w]a) — Ck (w]a)]
= Cn(w|e)
> Cn(z|a)
N

= " adei(sjm1(2), 75),

j=1
which implies that
—CN (y|o) + Z e (s ( > Zoﬂ i(sj—1(z), ),
] =K+1

An(yla) + 5 (On(zla) ~ O (o)) > Aw(afa).

Since Cn(z]a) — Ck(z]a) < Ne, we have that

An(yle) + € > An(yla) + %(CN(ZIOO — Ck(z]a)) = An(z|a),
for the case K < N. Thus, Ay(y|la) + € > An(z|a), VN > M. Consequently,
limNsup An(yla) +e= 1imNsup(AN(y\OA) +€)
— limsup(An (y]0) + ¢)

N>M

> limsup Ay (z|a)
N>M

=

= lim sup Ay (z|a),
N
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so that, A(yla) + € > A(z|a). If A(z]a) = oo, then A(y|a) = oco. Contradiction. Otherwise, substituting
for €, we conclude that A(y|la) > A(z|a). Contradiction. Hence, A(z|a) < A(y|a), Vy € X. This result,
together with our assumption that A*(«) < oo, implies that A(z|a) < oco. To complete the proof, apply
Theorem 3.5. ]

We next give a sufficient condition for the efficient strategies and the overtaking optimal strategies to be
the same. The following theorem is a central result of this paper, allowing us to conclude the existence of
an overtaking optimum (in particular) in the presence of easily verified conditions.

4.3 Theorem. If « is such that property (TCR|«) is satisfied, then every efficient strategy is overtaking
optimal, i.e., X¢(a) C X°(a), so that
X (o) C X%a) = XY (a) = X a).

If, in addition, A*(«) < oo, then

X(a) C X%a) = X"(a) =X (a) C X a).

Proof. By Corollary 3.7, it suffices to show the set inclusion for the first claim. Fix x € X°(a) and let
y € X. We show that x overtakes y. Let ¢ > 0. By property (TCR|«a), there exists a positive integer M
such that VN > M, there exists 0 < K < N and z € X such that sx(z) = sg(y), sn(z) = sn(z) and
Cn(zla) — Ck(zla) <e. Let w= (y |, 2). Then w € X, sk(w)=sk(y), sn(w)=sy(2))=sy(x)and

Cn(w|a) — Ck(w|a) = Cy(z|la) — Ck(z|a) <e.
Hence, by the efficiency of x at horizon N, we have

Cn(z|a) < Cny(w|a) = Ckg(w|a) + Cn(w]a) — Ck (w|a)
< Ck(y|la) + €
< Cn(yla) +e.

Therefore, € X°(«). To complete the proof, apply Theorem 4.2, together with the fact that (TCR|a) =
(ACR|a). O

4.4 Example. Let the data be as in Example 3.12. We leave it to the reader to verify that this example
has properties (BTR) with R = 1, (ACR|a), V0 < a < 1, and (TCR|a), V0 < o < 1, i.e., it does not have
property (TCRJ1).

4.5 Examples. Let the data be as in Example 3.13, 3.14 or 3.15. We leave it to the reader to verify that,
for each example, and for each 0 < o < 1, all three reachability properties fail.

Before leaving this section, we summarize our main results.
4.6 Theorem. The following are true for our general optimization problem.

(i) If the set-valued mappings s — Xn(s) are continuous, then X¢(a) # 0, i.e., efficient optima exist, for
each 0 < a < 1.

(i1) If C*(a) = o0, then X*(a) = 0.
(i11) If C*(a) < o0, then it is attained, A*(a) < 0o and

X"(a) C X¢(a),

0 # Xs(a) - Xo(a) < { X()

so that there exists a strong optimum which is optimal in every sense.
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(v) If A*(a) = oo, then C*(a) = 00, X*(a) = X%(a) =0, and

X°%(a) C X% (a) C Xa).

(v) If A*(a) < o0, then

X*(a) € X(a),

0 CX*(a) € X%a) C { X(a).

(vi) If A*(a) < oo and property (ACR|a) holds, then

X*(e) € X?(@) € X¥(a) € X%(a) € X%(a),

and, in particular, efficient optima are average optimal.

(vii) If A*(a) < oo and property (TCR|a) holds, then

X (o) C X% a) = XY (a) = X%(a) C X%a),

and, in particular, efficient optima are overtaking, weakly overtaking and average optimal.
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