Parallel Algorithms for Solving Aggregated Shortest
Path Problems*

H. Edwin Romeijn Robert L. Smith!
Rotterdam School of Management Department of Industrial and Operations Engineering
Erasmus University Rotterdam The University of Michigan
Rotterdam, The Netherlands Ann Arbor, Michigan

November 25, 1997

Scope and Purpose Many deterministic sequential decision problems can be viewed as
problems of finding a shortest path in a directed network whose links represent decisions
and whose link lengths represent the costs of the corresponding decisions. The task of
efficiently solving for shortest paths in directed networks is thus an extremely important
problem. We consider in this paper a way of dividing up the network into pieces that can
be solved independently and in parallel to yield approximate shortest paths for large-scale
networks.

Abstract

We consider the problem of computing in parallel all pairs of shortest paths in a
general large-scale directed network of N nodes. A hierarchical network decomposition
algorithm is provided that yields for an important subclass of problems log N savings in
computation time over the traditional parallel implementation of Dijkstra’s algorithm.
Error bounds are provided for the procedure and are illustrated numerically for a
problem motivated by Intelligent Transportation Systems.

*This work was supported in part by the ITS Research Center of Excellence at the University of Michigan.
fCorresponding author. Fax: (313) 764-3451, e-mail: rlsmith@umich.edu.

1 Introduction

It is a well-known principle that every additive deterministic dynamic programming formu-
lation can be equivalently viewed as the problem of finding the shortest path in a directed
network where the states, decisions, and decision costs of the former correspond to the nodes,
arcs, and arc lengths of the latter [Dreyfus and Law, 1977]. It is perhaps for this reason that
the task of efficiently computing shortest paths figures so prominently in the mathematical
programming literature. Our focus in this paper is directed toward solving very large scale
shortest path problems in cyclic networks, motivated by the problem of finding minimum
travel time paths for an ITS or Intelligent Transportation System [Kaufman and Smith,
1993].

There are fundamentally two types of shortest path problems that arise in an ITS context.
The first is a subproblem of the dynamic traffic assignment problem. The problem is to
anticipate vehicular volumes along links in a traffic network by routing future trips, each
characterized by an origin, departure time, and destination. The assumption made is that
vehicles will take the path achieving minimum trip time based upon dynamic link travel
times. These dynamic link travel times are updated recursively in an attempt to asymptot-
ically obtain a stable link time forecast. It is easy to demonstrate that these trips then are
in dynamic equilibrium [Kaufman, Smith, and Wunderlich, 1991]. The second application
arises in real time wherein a vehicle requests a minimum travel time path from its origin to
desired destination based upon forecasted dynamic link travel times. In both cases, shortest
path computations constitute the greater part of the computational effort where a realistic
problem may have hundreds of thousands of nodes, all of which may be potential origins and
destinations. In this paper we will focus on computing or approximating the length of the
shortest path, as well as identifying the corresponding policy. That is, we obtain sufficient
information to easily recover the shortest path for any desired origin-destination pair. This
is justified, since the recovery of the shortest path will take an amount of time (in terms of
complexity) independent of the algorithm or heuristic used. Moreover, in the context of the
ITS application, it is not actually necessary to compute shortest paths for all pairs of nodes,
but only for all origin-destination pairs that are requested.

We begin in Section 2 with a review of conventional sequential and parallel shortest-path
algorithms for both acyclic and cyclic networks. In Section 3 we develop a corresponding
decomposition algorithm, with the aim of reducing computational effort. We show how the
parallel nature of the algorithm induces a natural choice for how the network should be aggre-
gated. In Section 4, the results of computational experiments are reported suggesting several
orders of magnitude improvement in computational times over conventional approaches.

2 Background

In this section some of the sequential and parallel shortest-path algorithms from the literature
will be discussed. We will start by introducing some notation.

Let G = (V,A) be a graph, where V' = {1,..., N} is the set of nodes, and A C V x V
is the set of arcs. Here (i,7) € A if there exists an arc from node i € V to node j € V.
Furthermore, let ¢;; > 0 denote the distance (or travel time, or some other measure of cost)
from ¢ to j. If (i,7) & A then t;; = +00. Note that the travel time from node i to node j
is assumed to be stationary, i.e., independent of the actual arrival time at node ¢. Let f;;
denote the length of the shortest-path from ¢ to j in the graph.

2.1 Sequential shortest-path algorithms
2.1.1 Acyclic graphs

If G is a graph without (directed) cycles, then without loss of generality we can assume
that the elements in V' are topologically ordered. That is, (i,7) € A implies ¢ < j. The
shortest-path lengths then satisfy the following recursion:

fij = ig}gj {fir +t;}

fori =1,...,N—1and j =4+ 1,...,N. We can solve for the f-values using dynamic
programming, using either the recursive-firing method or the reaching method:

(i) Recursive-fizing method:
DO fori=1,...,N —1
SET f; =0and f;j =ccfor j=i+1,...,N
DO for j=i+1,...,N
DO fork=14,...,5—1
fij = min(fij, fix + tr;)

(ii) Reaching method:
DO fori=1,...,N —1
SET fi; =0and f;; =occfor j=i+1,...,N

DOfork=i+1,...,N—1
DO for j=k+1,...,N
fij = min(fi;, fix + tr;)

For both methods the time necessary to compute all shortest-paths in the graph is O(N?3)
for dense graphs, and reduces to O(nNN?) for sparse graphs, where n is the average number
of arcs emanating from a node [Denardo, 1982].

2.1.2 Cyeclic graphs

For cyclic graphs the lengths of the shortest-paths satisfy the following functional equation:

fij = Ilggl {fir +ti;}

fore,7=1,...,N.

(i)

Digkstra’s method:

This method is basically an adaptation of the reaching method for acyclic graphs
discussed above. For fixed 7, this method computes the values of f;; in nondecreasing
sequence:

DO fori=1,...,N
SET f”:07 SET fij :tij fOI‘Z.#jzl,...,N, and SETT:V—{Z}
REPEAT
SET k = argminjer fi;
SET T =T — {k}. IF T = () STOP, otherwise
DO for j €T

fij = min(fi;, fix + tr))

The complexity of this algorithm is O(N?) for dense graphs, and O(nN?log N) for
sparse graphs [Dreyfus and Law, 1977].

Floyd-Warshall algorithm:

Let f;;(k) denote the length of the shortest-path from ¢ to j, where the shortest-path
only uses nodes from the set {1,...,k}. Then obviously fi;; = fi;(IV). We can now
solve recursively for the values of k:

SET fij (0) = tij for all (Z,j)
DO fork=1,...,N
FOR ALL (i,) SET fi;(k) = min (fi;(k — 1), fu(k — 1) + fr;(k — 1))

Again, the complexity of this algorithm is O(N3).

In the following section we will see that an adaptation of the last method (called the doubling
algorithm) is especially suited for use in a parallel-computing environment.

2.2 Parallel algorithms
2.2.1 The doubling algorithm

In the original version of the Floyd-Warshall algorithm, f;;(k) denotes the length of the
shortest-path from i to j using only intermediate nodes from the set {1,...,k}. As an
alternative, let us denote the length of the shortest-path from i to j using at most k — 1
intermediate nodes (i.e., using at most k arcs) by 1’; Then, using the inequality 2M°s(N=D1 >

N — 1, we have that f;; = f2"*" ™" since there is always a shortest path without directed
2k

cycles. Moreover, the f7,k =1,2,..., [log(N — 1)] can be computed recursively using the

following algorithm:

SET f; = t; for all (i, j).
DO for k=1,..., [log(N —1)]
FOR ALL (i, j)

SET ink = mingev (f;k_l + fg]k_l)

When implemented sequentially, this algorithm has complexity O(N31log N). However, the
part of the algorithm inside the outer loop can be implemented using a modification of a
parallel matrix multiplication algorithm (see e.g., [Bertsekas and Tsitsiklis, 1989]). For the
latter problem, a variety of algorithms exists, one of which we will discuss in some more
detail in the next section.

2.2.2 Parallel matrix multiplication

Consider the problem of multiplying two N x N matrices, say A and B. Let C = AB. An
algorithm for computing C' is:

FOR ALL (i, §)
SET Cij = 0
FOR(=1,...,N

SET Cij = Cij + aigbgj

Insert Figure 1 about here.‘

In Figure 1 we illustrate how this algorithm can be implemented in a synchronous parallel
fashion by using a mesh-connected parallel computer with N? processors. The time complex-
ity of this parallel algorithm can be shown to be O(N). Comparing the doubling algorithm
and the matrix multiplication algorithm it is clear that we obtain the innermost loop of the
former algorithm from the latter algorithm by replacing multiplication by addition and addi-
tion by taking a minimum. We thus obtain a parallel algorithm for shortest-path calculation
having complexity O(N log N), by using N? processors.

The complexity of parallel-matrix computation can be reduced to O(log N) if we use N3
processors, which are connected as the vertices of a hypercube. Using an algorithm of this
type yields a parallel algorithm for shortest-path computation with complexity O(log? N).
For more detail on parallel algorithms for matrix computation, and their use in parallel
shortest-path computation we refer the reader to [Quinn, 1987], [Akl, 1989], and [Bertsekas
and Tsitsiklis, 1989].

2.2.3 Another “parallel” algorithm

An obvious way of parallelizing (for example) Dijkstra’s algorithm for the all-pairs shortest-
path problem is to use P < N processors working in parallel, and to let each processor com-
pute all shortest-paths from at most [N/P] origins to all possible destinations. In this way
we obtain a parallel implementation having time complexity O([N/P]N log N) for sparse
graphs, and O([N/P]N?) for dense graphs. If we choose the number of processors to be
equal to the number of nodes, the complexities become O(N log N) and O(N?) respectively.

Note that the notion of “processor” used in this context differs from the one used in the
preceding section, since the tasks that have to be performed by the two processors differ

6

greatly. Alternatively, the latter algorithm is only pseudo-parallel in the sense that there
is no communication necessary between the processors. This, of course, is an enormous
practical advantage, since no real parallel computer architecture is necessary.

3 Aggregation

In the previous section we have seen that we can solve the all-pairs shortest-path problem
in O(N?log N) time (for sparse networks) when using a sequential algorithm. Moreover,
we saw that it is possible to reduce this time by a factor N to O(Nlog N) by using N2
small or N large processors in a parallel fashion. In this section we will investigate how by
aggregating nodes we can reduce the number of processors necessary to solve the problem,
while keeping the time complexity of the algorithm equal to O(N log N). We will consider
the errors involved in this procedure in Section 4. See [Bean, Birge, and Smith, 1987] for a
serial aggregation procedure for shortest paths in acyclic networks.

3.1 A simple model

We will start by considering the following model. Let G = (V, A) be a graph, and suppose
every nonboundary node has exactly 4 neighbors. We will refer to this as a Manhattan
network.

Insert Figure 2 about here.‘

More precisely, suppose G is topologically equivalent to a v/N x v/N mesh (see Figure 2).
We will aggregate nodes by forming a partition of the nodes of the network into M classes
called macronodes. Moreover we aggregate in such a way that the “macronetwork” of M
macronodes is a v/M x /M mesh, and that every macronode itself is a \/ N/M x \/ N/M mesh.
A macroarc is present between two macro-nodes if and only if there is an arc connecting two
nodes in their respective aggregate classes. Define the arc lengths in the macronetwork to
be the shortest of the lengths of all (micro) arcs connecting two macronodes.

We can approximately solve the shortest-path problem for G by finding all shortest-paths
in the macronetwork, and also all shortest-paths within each macronode, and then combine
these to get paths connecting all pairs of nodes. Of course, these paths are not necessarily

shortest-paths in G, even if all subproblems are solved optimally. We will call this method
the hierarchical decomposition algorithm, or decomposition algorithm for short.

Suppose we have M + 1 processors. We can solve for all shortest paths inside each of the M
macro-nodes with M of the processors in parallel while the (M + 1)-st processor solves for

all shortest paths in the macronetwork. The following theorem derives the optimal value for
M.

Theorem 3.1 Consider the Manhattan network with N nodes. Then, using the decompo-
sition algorithm described above, it is optimal with respect to computational effort to use
O(VN) processors.

Proof: We have

1. the time necessary to compute all shortest-paths inside one of the macronodes is
O((N/M)*log(N/M)) if we use Dijkstra’s algorithm

2. the time necessary to compute all shortest-paths in the macronetwork is O(M?log M).

We now want to minimize the makespan, i.e., the time necessary for all M + 1 processors to
complete their task. That is, we want to solve the problem:

min_(max(O((N/M)?*log(N/M)), O(M?*log M))).

1<M<N

The solution M* can be easily shown to be attained by requiring the number of nodes inside
each macronode to be equal to the number of macronodes: N/M* = M*, or

M* = +/N.

Note that this remains the solution for a more general problem where the size of each square
macronode can be variable. So we conclude that using M*+1=+VN+1 (or M* = O(V'N))
processors is optimal with respect to computational effort. m

Although the model presented here is very simple, the general results still hold if we only
make the assumption that we only consider partitions of the network into macronodes having
the property that

1. each macronode has the same structure as the original network

2. the macronetwork obtained by aggregating the nodes inside each macronode to form
one node also has the same structure as the original network.

If the original network (and the macronodes) is dense, the results concerning the number
of macronodes again remain the same, but the time complexity of the algorithm becomes
O(N?) (see also Section 2.3 above).

Note that a problem can occur if there are “one-way-streets” in the network; i.e., if there
exists a pair i,j € V such that (,7) € A and (j,i) ¢ A. If link (4,) ends up inside a
macronode, it is possible that there exists a path from j to ¢ of finite length in the network,
while the decomposition algorithm returns with a path length of +o00. The reason for this
is that, for a given pair of nodes within a macronode, it is possible that there does not exist
a path between those nodes that is completely contained in the macronode.

The approximate solution to the all-pairs shortest-path problem that can be obtained in
O(Nlog N) time consists of tables of shortest-path lengths for each of the macronodes,
together with a table for the macronetwork. To obtain approximate shortest-path lengths
for the original micronetwork these results need to be combined.

Theorem 3.2 Computing approximate shortest-path lengths using the decomposition algo-
rithm described above yields a savings of at least O(log N) in time complexity over a parallel
implementation of Digkstra’s algorithm.

Proof: First note that the complexity of Dijkstra’s Algorithm, when implemented using
O(V/'N) processors, is O((N/v/N)-Nlog N) or O(N+/N log N). Moreover, from theorem 3.1
it follows easily that the complexity for computing shortest path lengths in each of the
subnetworks is equal to O(N log N).

Now consider the decomposition algorithm. After computing shortest path information
for the macronetwork and all macronodes, we first have to modify the entries in the ta-
ble corresponding to the macronetwork as follows: for every intermediate macronode on a
shortest-path in the macronetwork, add the shortest-path length from the entry-micronode
to the exit-micronode. This shortest-path length can be found in the shortest-path table of
the corresponding macronode. Since the number of nodes on a shortest macro-path will be
O(N'/*) on average, this can be performed in O((v/N)2N'4) or O(N®/*) time sequentially.
Obviously this procedure can easily be parallelized by using another v/ N processors, yielding
a time complexity of O(v/NN4) or O(N3/*), whose inclusion still keeps the complexity of
the total algorithm unchanged at O(N log N). For every pair (i,7), 4,7 € V in the original

micro-network the time to find an approximate shortest-path length is now reduced to 2 ad-
ditions and 3 table-lookups: the length of the approximate shortest-path from i to 5 equals
the length of the (approximate) shortest-path from i to the exit-node of the macronode con-
taining i; plus the (approximate) shortest-path length from the exit-node of the macronode
containing ¢ to the entry-node of the macronode containing j; plus the (approximate) length
of the shortest-path from the entry-node of the macronode containing j to j. Performing
this procedure for every pair (i,5) takes O(N?) time. Parallel implementation however us-
ing another v/N processors reduces this to O(N?/v/N) or O(N+v/N) time, yielding a time
savings of O(log N) for the decomposition algorithm.

In practice, the savings could be much larger. As an example, consider the case where not
all shortest paths are required at one time, for example when queries are made for on-line
shortest path information. An instance of the latter is the second I'TS application discussed
in the introduction where a single vehicle makes a real time request for a minimum travel
time problem. As another example, when the macronodes correspond to metropolitan areas,
many of the shortest-path requests will be for paths inside a macronode. This information
is immediately available (in constant time), and moreover, for many origin/destination pairs
this information will be exact instead of approzimate. The magnitude of the error would
depend upon the relative distribution of trips within as opposed to between metropolitan
areas.

Theorem 3.3 Computing approximate shortest-path lengths using the decomposition algo-
rithm described above yields a savings of at most O(v/ N) in time complezity over a parallel
implementation of Digkstra’s algorithm.

Proof: In the best case the last (and most time consuming) part of the decomposition
algorithm can be avoided. This reduces the complexity of the decomposition algorithm
to O(Nlog N). In contrast, an equivalent savings in time cannot be obtained when using
Dijkstra’s algorithm, yielding a time savings of O(v/N). =

3.2 Multi-Level Aggregation

In the preceding section we considered the case where aggregation takes place only one level
down. In this case we will say that the aggregation is over two levels. We now generalize
the results to the case of an arbitrary number of aggregation levels L. The idea is again to
aggregate the /N x v/N mesh into a macronetwork that is a v/ M x vM mesh. Each of

10

the M macronodes of level 1 itself is a \/ N/M x \/ N/M mesh. Then, aggregate each level 1
macronode into a v M x v/ M mesh. Each macronode of level 2 is then a \/ N/M? x \/ N/M?

mesh. Continue this until we have macronodes of level L—1 which are \/ N/ML=1x \/ N/ML—1
meshes. So now we have 1 macronetwork of level 1 having M nodes, M macronetworks of
level 2 having M nodes, ..., M*~2 macronetworks of level L — 1 having M nodes, and M*~!
level L micronetworks having N/MZ%®~! nodes. Assume we have 1 + M + --- + M1 =

]‘]@L:ll = P processors, each exactly solving a shortest-path problem.

Theorem 3.4 Consider the Manhattan network with N nodes. Then, using the decomposi-
tion algorithm with L levels as described above, it is optimal with respect to computational
effort to use O(N'~YE) processors.

Proof: Inductively using the same reasoning as in the case of L = 2 above we obtain that
it is optimal to choose M according to N/M*L=1 = M*, or

M* = NYE,

So, it is optimal with respect to computational effort to use (N —1)/(NYL —1) = O(N1~V/L)
processors. M

As in the case of L = 2 we need to combine the results of the exact solutions to the
subproblems to get shortest-path lengths in the original network.

Theorem 3.5 Computing approximate shortest-path lengths using the decomposition algo-
rithm with L levels as described above yields a savings of at least O(log N), and at most
O(N'=YL) in time complexity over a parallel implementation of Dijkstra’s algorithm.

Proof: First note that the complexity of Dijkstra’s algorithm, when implemented using
O(N'YE processors, is O((N/N*'/E) . Nlog N) or O(N'*'/L1og N). Moreover, from The-
orem 3.1 it follows easily that the complexity for computing shortest path lengths in each of
the subnetworks is equal to O(N?/*log N).

Similarly to the proof of Theorem 3.3, the (sequential) complexity of the first phase following
the computation of the shortest path lengths in the macronetwork and all macronodes is
given by M?v/M (the number of operations per network of M nodes), multiplied by ALLI; !
(the number of subnetworks of size M), yielding a complexity of O(M?*t£\/M). A parallel

11

implementation using P = O((M? — 1)/(M — 1)) processors then gives (after substitution
of M = O(NYE)): O(N*?L) < O(N¥F). The last phase takes O(N'*'/L) time when
implemented in a parallel fashion, yielding a time savings of at least O(log N). As in the
proof of Theorem 3.3, in the best case the second phase is not necessary, thus increasing the
time savings to O(N'"Y/1). m

4 Aggregation in practice

For a general network it is not clear how one should aggregate nodes into macronodes.
However, returning to the two level aggregation case of Section 2, the following theorem
gives an upper bound on the absolute error made in approximating the shortest-path length
for a given origin/destination pair.

Theorem 4.1 Let f;; denote the length of a shortest-path between nodes ¢ and j, and let fij
denote the length of an approrimate shortest path computed by the decomposition algorithm.
Furthermore, decompose each of those lengths as follows:

_ ¢C w
fii = i T Jij

F . fC W
fii = it Jij

where a superscript C' provides the length of all edges on a path that are connecting macron-
odes, and W denotes the length of all edges on a path that are entirely within macronodes.
Then

A~

i
Jij — fig < 1ij

Proof: By construction, fg < g, and by definition f}}" > 0. So we have

; cC c W w
i —Jfiy = i — 1 + 15 — T
Fw
ij -

IN

This theorem suggests that the network should be aggregated in such a way that edges within
macronodes are relatively short, and edges connecting macronodes are relatively long. One

12

way to do that is to cluster the nodes in the network in such a way that the total length
of all edges connecting clusters is maximal, or, equivalently, so that the total length of all
edges completely contained in a cluster is minimal. For exact and heuristic approaches to
this problem see, e.g., [Kernighan and Lin, 1970] and [Feo and Khellaf, 1990].

5 Experimental results

5.1 The decomposition algorithm

In this section we will report some experimental results on the comparison of Dijkstra’s
algorithm with the decomposition algorithm introduced in Section 3, for the case where the
number of levels of aggregation is L = 2. We have considered networks of the Manhattan
type, and we have aggregated the nodes in the obvious way, creating a situation where the
macronetwork looks exactly the same as each of the subnetworks inside the macronodes.
The distance matrices were randomly generated. In the first experiment, we generated the
matrices as follows: if (i, j) € A, then t;; is uniformly and independently distributed on [0, 1].
As a measure of the relative error of the approximation algorithm we used the following:

z']il Zj'vﬂ(fij B fw)
521 25‘21 fij

where f;; is the exact length of the shortest-path from 7 to j as found by Dijkstra’s algo-
rithm, and ﬁ-j is the approximate length of the shortest-path from ¢ to 5 as found by the
decomposition algorithm. The error € can be interpreted as the average percent error of
an origin-destination pair selected at random. Note that a better aggregate error measure
would incorporate information about frequencies of the various trips, to reflect the fact that
an error in a very infrequent trip is less important than an error in a frequently occuring
trip. However, in the absence of this information we will make the assumption that all
origin/destination pairs (7, j) occur with the same frequencies.

In the next experiments we changed the distribution of the distances to simulate metropolitan
areas: if we assume that each macronode represents a metropolitan area, the arc lengths
within a macronode will generally be smaller than the arc lengths connecting macronodes.
To model this, we generate arc lengths within macronodes from the uniform distribution
on [0,1], and arc lengths connecting macronodes from the uniform distribution on [0, r], for
varying values of > 1. This model will also illustrate Theorem 4.1 from the previous section:

13

the longer the arcs connecting macronodes are (compared to arcs inside macronodes), the
smaller the error in shortest-path lengths obtained using the decomposition algorithm should
be. The results from the experiments are reported in Tables 1 and 2. All entries are averages
over 10 runs. The entries in Table 1 represent the average relative error € in shortest-path
length. In Table 2, computation times for Dijkstra’s algorithm (sequential implementation
as well as implementation using v N processors) and for both phases of the decomposition
algorithm (using VN +1 processors) are given.

N|r=1]r=Nil|r= VN | r= Ni
16 || 0.19 0.09 0.05 0.02
81 0.41 0.18 0.04 0.01
256 || 0.44 0.20 0.04 0.01
625 || 0.53 0.21 0.05 0.01

Table 1: Average error in shortest-path lengths

N Dijkstra | Dijkstra in parallel with | Decomposition in parallel with
sequential VN processors V'N + 1 processors

16 0.033 0.008 0.003
81 1.340 0.149 0.020
256 15.260 0.954 0.093
625 100.480 4.019 0.310

Table 2: Computation times (seconds; Macintosh I1fx)

Table 1 supports the result of Theorem 4.1: increasing the value of r decreases the relative
error of the shortest-path lengths. The results also show that the difference between edge
lengths connecting macronodes and inside macronodes should be larger as the size of the
network increases in order to obtain a certain error level. Of course this experiment only
serves to illustrate the sensitivity of the error with respect to the value of r, as it is as yet
unclear what a reasonable value of » would be representing real-world networks, not in the
least because the value of r also depends on the way in which the network is aggregated.
Table 2 shows the computational advantage of the decomposition algorithm over Dijkstra’s
algorithm.

14

6 Summary and suggestions for future research

In this paper we have summarized existing methods for solving shortest-path problems. In
particular, we have addressed both sequential and parallel algorithms. Next, we have de-
veloped a new decomposition algorithm, thereby surrendering the optimality of the solution
obtained, but gaining in terms of computational effort and number of processors/computers
needed to solve the problem. The idea of the algorithm, for the basic 2-level case, is to
decompose the network into smaller subnetworks, and a macronetwork in which each of the
subnetworks is a node. Then all subproblems are solved exactly (in parallel), and the re-
sults are combined to obtain approximate shortest-paths for the original network. We have
empirically investigated the influence of the decomposition algorithm on the precision of the
solution obtained through a simulation study over a class of networks. These results provide
hope that acceptable error levels can be attained for a suitable choice of macronodes.

We also considered a hierarchy of L > 2 levels. In this context, it would be interesting to
address the question: what is the “optimal” choice for the number of levels L to be used?
To answer this question we have to define what we mean by “optimal.” However, one of the
elements that would certainly have to be included here is the effect of aggregating a certain
number of levels down on the precision of the solution obtained by the algorithm. Obviously,
there will be a negative influence of increasing the level of aggregation on the precision of
the solution, but at this point this is all we really can say about this effect. So for now the
question of optimal aggregation level choice remains an open issue for future research.

References

1. S.G. AKl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood
Cliffs, NJ (1989).

2. J.C. Bean, J.R. Birge, and R.L. Smith. Aggregation in dynamic programming. Oper-
ations Research 35, 215-220 (1987).

3. D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation. Prentice-
Hall, Englewood Cliffs, NJ (1989).

4. E.V. Denardo. Dynamic Programming: Models and Applications. Prentice-Hall, En-
glewood Cliffs, NJ (1982).

15

10.

S.E. Dreyfus and A.M. Law. The Art and Theory of Dynamic Programming. Academic
Press, New York, NY (1977).

T.A. Feo and M. Khellaf. A class of bounded approximation algorithms for graph
partitioning. Networks 20, 181-195 (1990).

D.E. Kaufman and R.L. Smith. Fastest paths in time-dependent networks for IVHS
applications. IVHS Journal 1(1), 1-11 (1993).

D.E. Kaufman, R.L. Smith, and K.E. Wunderlich. An iterative routing/assignment
method for anticipatory real-time route guidance. IEEE VNIS Conference Proceedings,
Dearborn, MI, October 20-23, 693-700 (1991).

B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal 49(2), 291-307 (1970).

M.J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill
(1987).

16

Figure 1: A parallel algorithm for multiplying two matrices.

17

Figure 2: “Manhattan Network”.

18

