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A b s t r a c t
A critical problem in decentralized route guidance is to
communicate anticipated congestion to individual drivers in such a
way that the routes chosen are likely to be consistent with the
forecast.  We propose a prediction technique for decentralized
route guidance architectures to identify time-dependent link travel
times which when communicated to drivers leads to time-dependent
fastest paths consistent with this forecast. The fixed point property
of the forecast is assured by an iterative process of traffic
simulations followed by dynamic route determinations until the
routes and hence the resulting dynamic link times become stable.
The resulting routes yield an inherently accurate forecast of
congestion as well as being user-optimal by construction.  A novel
back-dating process is utilized to insure the discovery of a stable
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routing after a finite and usually small number of iterations. An
empirical case study based on the roadway network in Troy,
Michigan is included.

* This research was supported in part by the University of Michigan ITS Research Center
of Excellen
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1.  Introduction.

The architecture of route guidance provision in ITS can be divided into two categories:  a

decentralized architecture, where the route selection function is located in-vehicle (or on-

passenger, in the delivery of multi-modal route guidance); and a centralized architecture,

where the route selection function is performed at some central site by an Independent

Service Provider (ISP).  These distinctions and the likely strengths and weaknesses of each

architecture have been addressed by researchers in precursor ITS architecture studies [1,2,3]

as well as documented in the National ITS Architecture [4,5].

Figure 1, adapted from the National ITS architecture document: Theory of Operations [6],

illustrates sample concepts of route guidance architecture, both decentralized and

centralized.  In the Autonomous form of decentralized architecture, all route guidance

functionality is in-vehicle.  Here route guidance is relegated to primarily static route

guidance applications, since there is no mechanism to systematically update the map

database with current link travel times.

In the Decentralized Dynamic architecture, link-travel times are broadcast to vehicles to

provide real-time estimates of network congestion.  This one-way communications link

supports dynamic route selection in-vehicle by performing map-matching with the data

stream from an ISP.  The ISP does not directly track route requests or location/destination

information from its clients.  In the Centralized architecture, the ISP moves from the

broadcast of link travel times to the provision of detailed, individualized routes to its clients.

In-vehicle functionality is reduced to simple route display, but the vehicle gains the

capability to communicate location and desired destination to the ISP.

Each of these approaches are in compliance with the National ITS Architecture, and no

single approach is favored overall by national policy.  However, the National ITS

Architecture does project a gradual progression over time from Autonomous to

Decentralized to Centralized route guidance provision [7].  Autonomous architectures are

replaced with Decentralized architectures as dynamic route guidance develops as a viable

service.  Centralized architectures are projected to replace Decentralized architectures in

mature route guidance markets with high market penetration. This second step in the

progression over time is projected because of instability in the allocation of alternative

routes using a dynamic decentralized route guidance architecture.  The decentralized feature
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of generalized link travel time forecasts broadcast to an uncertain number of guided vehicles

precludes detailed, individualized route assignment.  Therefore, route assignment techniques

developed for decentralized architecture are typically characterized by all-or-nothing

assignments.  At high market penetrations, this may result in highly inefficient routing – too

many vehicles following the same path at the same time.

Allocation of routes under high market penetration is projected to be more stable under a

centralized architecture because the route guidance service provider can control more

precisely the number of vehicles routed onto a specific route.  Research in the area of

dynamic traffic assignment suggests that predictive centralized strategies can effectively

counter instability at high market penetrations.  Lee [8], and others [9] have dealt with

instability at high market penetration by employing multi-path routing strategies.  These

multi-path routing strategies are associated with centralized route guidance architectures

because they rely on precise control of individual vehicle routing.  In some cases, arbitrary

fractions of vehicle streams are routed, resulting in assignments of fractional vehicles to

individual paths.

This paper argues that this second evolutionary step, from Decentralized to Centralized, may

not be necessary for efficient predictive route guidance at high market penetrations.  A

variant of the Decentralized architecture, Predictive Decentralized Route Guidance, is

proposed that includes a link travel time prediction function at the ISP (Figure 2).  Route

requests from the vehicle to the ISP are optional.  Such an architecture may be particularly

appealing to consumers who desire strict privacy about travel habits.

One example of a predictive approach consistent with a decentralized architecture is the

Simulation of Anticipatory Vehicle Network Traffic (SAVaNT) developed at the University

of Michigan [10, 11, 12].  This paper proposes a modified version of the SAVaNT travel

time prediction based on a heuristic search technique that mitigates a number of the

pathologies associated with decentralized, all-or-nothing route guidance provision at high

market penetrations.

First an overview of the SAVaNT method is presented in Section 2.  Section 3 provides

details of the link travel time prediction method in SAVaNT, while Section 4 discusses the

observed pathologies associated with the technique at high market penetrations (failure to

converge and sub-optimal routing).  Section 5 demonstrates a technique, “backdating”, to

adjust predicted link travel times to make them inherently more accurate.  However, this
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backdating technique can also be demonstrated to exacerbate the problem of divergence

where the exact number of vehicles taking a particular route cannot be determined (as is the

case with decentralized route guidance).  Section 6 discusses the relationship between link

travel time accuracy and the uncertainty surrounding the number of vehicles impacted by

route guidance with respect to the issue of divergence in SAVaNT.  Section 7 proposes a

heuristic search technique to find the most efficient, convergent amount of adjustment to

predicted link travel times.  Results from a simulated test network based on portions of the

Troy, Michigan arterial network demonstrate the effectiveness of the improved prediction

technique when compared to both the SAVaNT method and non-predictive dynamic route

guidance.  Section 8 presents some conclusions and extensions based on this work.

2.  Link Travel Time Prediction and Anticipatory Route Guidance

Anticipatory route guidance can be defined as paths calculated from a set of predicted future

link travel times, which when disseminated to drivers cause the same set of predicted link

travel times to be realized by vehicles in the network.  Thus the paths distributed as route

guidance were based on a correct assumption about future congestion conditions on the

network, corresponding to a user-optimal equilibrium condition.  Chen and Underwood

[13] provide a overview of anticipatory route guidance and its implementation.  Initial

applications of SAVaNT [10, 11, 12] demonstrated that anticipatory route guidance

computed by the SAVaNT method can be employed effectively in large-scale application

under low (<30%) market penetration rates.  Predictive route guidance at these levels was

found to be superior to non-predictive route guidance methods.  At market penetrations

above 30%, however, SAVaNT sometimes produced less efficient routings than non-

predictive methods and sometimes produced no solution at all.  Clearly, new ATIS

consumers are unlikely to subscribe to a SAVaNT-based decentralized guidance service as

market penetrations approach 30%.   Indeed, even if higher market penetrations were

realized, drivers of guided vehicles would be unlikely to trust or comply with the routes

calculated in-vehicle using SAVaNT-generated predictions of link travel times.

The SAVaNT concept is illustrated in Figure 3.  Combining a time-dependent fastest-path

calculation, R,  with a traffic simulation, A,  in an iterative manner, we can identify a routing

policy, π, as a "fixed point" if in consecutive iterations, the dynamic link travel time profiles,

C,  are identical, i.e., a stable set of predicted dynamic link travel times has been identified.

The link travel time profile comprises links travel times for all links and time periods over
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the horizon of time we are trying to predict.  Because we restrict our attention in this paper

to “all-or-nothing” policies (i.e., giving the same route to all vehicles having common

location and destination at a given time), the set of possible policies is finite. Thus, if

execution of SAVaNT does not result in a fixed point, the result must be the generation of a

repeating sequence of policies, π1 , π2 , π1 , π2 , π1 , π2 ,L , rather than convergence to a fixed

point.  We call this situation cycling.  The mechanics of the fastest path calculations are

discussed in [14].  For an investigation of this issue under multipath (as opposed to all-or-

nothing) routing, see [15].

SAVaNT uses a version of the INTEGRATION traffic simulation [16] for link-time

prediction, INTEGRATION-UM.  The INTEGRATION model was originally developed

by Michel Van Aerde at Queen’s University (Canada) and modified by researchers at the

University of Michigan.  INTEGRATION-UM retains the basic scope and modeling

approach of the model:  a strongly deterministic mesoscopic approach employing

macroscopic travel-time and flow relationships and microscopic individual vehicle control

and link queuing.  INTEGRATION allows the user to vary the fraction of vehicles on the

network receiving route guidance.  Non-equipped (background) vehicles are routed

according to a static fastest-path route.

3.  Accuracy of Predicted Link Travel Times in SAVaNT.

As observed in [10],  there is an inherent inaccuracy introduced into SAVaNT by a

difference in the way the simulation produces predicted time-dependent travel times and

interpretation of that data by the routing module.  Note that we impose a discrete-time lattice

on the solution horizon, H, over which we predict link travel times.  Let ∆t be the number of

seconds in each time slice, and let  t;t = 1,2KH  correspond the t th time slice in the horizon.

Let   cl t( ) be defined as the predicted link travel time for link   l  during time-slice t .

Consider the problem of constructing a link travel time profile   C = cl t( ): ∀ l,t{ } .  As

shown in Figure 4, the simulation reports experienced link travel times when vehicles finish

traversing links.  Let   cl
i t( ) represent the travel time reported by the vehicle making the i th

departure from link   l  during time-slice t .  Let   τ l
i t( ) be the simulation clock time when

cl
i t( ) is reported.  In the version of SAVaNT employed in [10],  cl t( ) is updated each time a
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departure occurs according to an exponential smoothing function,

  cl(t) = α cl(t) + 1 − α( )cl
i t( ), where α = 0.4.

The dynamic router interprets  cl t( ) as the expected average travel time required to traverse

link   l  for vehicles which begin travel on link  l  during time slice t .  But the value of  cl t( ) is

computed based on vehicle reports made by vehicles finishing travel on the link during time

slice t .  As illustrated in Figure 5, when a link departure reports a travel time for a link, it is

more precisely giving an estimate of vehicle travel time which begins earlier, at   τ l
i t( ) − cl

i t( ) .

Note that reducing the length of each time slice ∆t  does not correct  for this particular kind

of error.  Thus our estimating procedure is inherently inaccurate, but as we will see, this

inaccuracy is a crucial factor in the convergence of the SAVaNT iterative process.

4.  Benefit Reduction Related to Inaccuracy in Link Time Prediction.

As stated above, routing policies are generated in SAVaNT by interpreting   cl t( ) as the

expected average travel time for vehicles beginning travel on link   l  during time slice t .  This

inaccuracy has the effect of causing a lag in the feedback control of vehicles under route

guidance.

For example, if travel time is dynamically rising on a particular path, there will be a lag in

accurate reporting of that change in that path time equal to the maximum individual link

travel time in the path.  Consider the situation where, based on perfect information in the

system,  a path currently identified by the route as optimal becomes congested and an

alternative path becomes more attractive.  In the next iteration, then, vehicles currently on this

path cannot be re-directed to the alternate path until the router sees reports of travel times in

the constructed travel time profiles.  These profiles contain the time lag associated with link-

departure travel time estimates, and thus the router misdirects vehicles for the duration of

that time lag.  Vehicles on our initially optimal path will be erroneously routed on what will

be experienced as a slower path but which appears from the predicted travel time profile as

the fastest path.  This inaccuracy cannot be corrected in an future iteration of SAVaNT,

since the travel time profile generated on all paths will be constructed with identical lag time.

Thus, the inaccuracy is carried forward from iteration to iteration, and cannot be corrected

within the current SAVaNT concept.
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Hence, a fixed point in SAVaNT corresponds to a routing policy that is consistent with the

reproduced travel time profile, a travel time profile which necessarily contains some

inaccurate information.  Thus the routings identified by SAVaNT are the minimum travel

time paths with respect to a predicted travel time profile, but not necessarily consistent with

experienced travel time.

This inaccuracy can be compared to the nature of the inaccuracy encountered in routing

vehicles in a non-predictive manner.  These methods provide a fastest-path routing policy

based on the assumption that currently reported conditions persist indefinitely.  The policies

generated are consistent with the expected (static) travel time profile, but not consistent with

experienced travel time.

The result of inaccurate link travel time prediction is a reduction in benefits to both the

traffic system as a whole and to the individuals receiving route guidance.  Figure 6

illustrates the benefits seen in a 500-link, 200-node network of Troy, Michigan.  Note that at

near 50 percent guided vehicles on the network, the performance of anticipatory vehicles

drops to the same level as the background (unguided) vehicles.  At 80 percent, the guided

vehicles (assumed to follow fastest predicted paths) have longer trips on average than the

background vehicles, which would not be possible if their anticipatory fastest paths were

being computed from perfectly accurate link travel time forecasts.  This difference, although

small, is statistically significant.  As noted in [10], when SAVaNT was configured to correct

for this inaccuracy, the method always terminated with the construction of a cycle, rather

than a fixed point.  We will discuss the nature of this phenomenon in more detail in section

5.
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5.  Improved Predictive Fixed Point Solutions

SAVaNT can be constructed to provide accurate predictive link times.  The link travel time

estimated by link departures which occur in time slice t  can be "backdated" to the time at

which travel on the link began, namely   τ l
i t( ) − cl

i t( ) .  There may be several link travel time

estimates for each time slice, so these values are averaged together to come up with a value

for   cl
i ′t( ) where   τ l

i t( ) − cl
i t( )  is contained in time slice ′t (the time slice in which travel on

the link began).  These values of link travel time can be used in SAVaNT in the place of

values identified above in Section 2.  However, such an implementation invariably results

with SAVaNT terminating in a cycle, even for market penetration levels which have fixed

points for SAVaNT implemented without backdating.  This result is consistent with the

observation made Kaufman et al [15] that the existence of a fixed point in SAVaNT cannot

be guaranteed given the discontinuities inherent in all-or-nothing routing policies and

discrete-time traffic simulation.

The dilemma of SAVaNT can be summarized by the following:  the inaccurate link time

forecasts cause the method to identify sub-optimal solutions for anticipatory route guidance,

yet only with the inaccuracy in link time forecasting will SAVaNT converge (albeit

inconsistently).  However, we will show that it is possible to implement a heuristic based on

incrementally backdating travel time data that significantly improves the performance of

SAVaNT.  Under this heuristic approach, SAVaNT is demonstrated to be reliably

convergent and to result in improved travel times for guided vehicles at all market

penetrations (even above 30%).  While the heuristic cannot guarantee the identification of an

global optimal fixed point, it does offer a practical solution to the dilemma of SAVaNT and

can be viewed as a starting point from which further research on predictive guidance

algorithms can be conducted for decentralized route guidance architectures.

The heuristic tuning approach attempts to reduce the inaccuracy to the smallest amount

without causing a cycle to occur.  This would allow for the maximum amount of benefit to

accrue to both the system and the guided vehicles without cycling.  We define δ, 0 ≤ δ ≤ 1 ,

as the fractional amount of backdating implemented in SAVaNT.  As illustrated in Figure 7,

as δ  increases, the accuracy of the link time prediction scheme increases.  When δ = 0 ,

SAVaNT is configured as in [10].  When δ = 1, SAVaNT is configured for accurate link

travel time prediction, but always diverges.  By manipulating this fractional amount of

backdating, we alter both the accuracy of the link travel time forecast as well as the fraction
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of vehicles impacted iteration-to-iteration by forecasts which include their own experience in

the previous iteration.  The remainder of Section 5 deals with the impact of improved link

travel time accuracy.  In Section 6, the issue of iteration-to-iteration forecasts are examined.

To test the behavior of SAVaNT with respect to δ , a corridor subnetwork (TroyCor) of the

Troy, Michigan network was constructed (20 links, 10 nodes).  This network corresponds

to a pair of parallel, six-mile long arterial segments of John R and Dequindre Roads.  The

two facilities are comparable, although Dequindre Road has slightly higher capacity and

higher speed limits. While both facilities have signals using fixed timings coordinated for

progression based on free-flow link travel times, there are significant delays at each of the

major signalized intersections.  Accuracy in link-time prediction is especially important in

signalized corridors since the link travel time experienced can be strongly influenced by the

coordination of node arrival and the signal phasing.  Links in this arterial network are 1 mile

or less in length.  A network comprised of longer links (e.g., 10 miles) like those found in

highway networks would put an even larger premium on predicted travel times, because

current link reports would be 15 minutes or more out-of-date.

An experiment was performed on the TroyCor network using 50 percent guided and 50

percent unguided vehicles.  The unguided vehicles were assumed to take the fastest free-

flow path, that is, the fastest expected path when the network is empty of vehicles

(Dequindre).  Over 2500 vehicles were introduced traveling southbound in the network over

a 30 minute period.  This travel demand exceeds the capacity of either Dequindre or John R

alone but does not exceed the capacity of the two facilities in combination. The network

(Figure 10) was initially empty of vehicles.  Therefore, the level of travel demand

necessitates efficient allocation of  guided vehicles over time between the two facilities

taking into account predicted delay at each of the downstream signalized intersections.

Travel times were measured for all the vehicles generated in the 30 minute period in ten

second time slices.  An initial travel time forecast corresponding to a 100 percent unguided

vehicle loading was used to seed each run of the test.  At the tested congestion level, vehicles

experience between 4-6 minutes of delay on a trip of between 10.5-12.5 minutes.

Under no backdating, δ = 0 , a fixed point was identified using SAVaNT.  The value of δ
was then incremented by 0.1 to 0.7 until a cycle appeared at 0.8.  A cycle also results when

δ = 0.75. The results are graphically illustrated in Figure 8.  In comparison with the initial

SAVaNT fixed point, a 12 percent improvement in benefits was obtained for the system as a

whole, and travel time for guided vehicles improved by 6 percent.  Note that for smaller
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values of δ , guided vehicles have higher travel times than at larger values of δ  but enjoy a

minute or more advantage over unguided vehicle travel time.  As delta increases, the

improved accuracy of the travel time prediction allows guided vehicles to judiciously avoid

the most serious intermittent signal delays at points along both Dequindre and John R.  The

result is reduced travel time for the guided vehicles as well reduced delay for unguided

vehicles (both because the queues are smaller without the guided vehicles and because

progression in the corridor is more likely to be maintained).  When δ = 0.7, the travel times

of the two vehicle classes are nearly the same.  Although an interesting result, as we will see

in Section 7, identical travel times for guided and unguided vehicles are not always obtained

with the largest possible values of δ .

The number of iterations to convergence trended upwards with an increasing level of

accuracy in the link time prediction method (Table 1).  SAVaNT requires fewer iterations to

identify routing policies that remain relatively stable from time-slice to time-slice, and more

iterations when identifying highly time-variant policies.  The increased link time accuracy

provides the router with the ability to implement new routing policies with a shorter time-lag

on control, and for the Troy Corridor model, translates this into more frequent switching

between identified fastest predicted paths.

For comparison, alternative routing schemes for guided vehicles were tested.  A network of

100 percent unguided (fastest free-flow path) vehicles averaged 18.15 minutes to traverse

the corridor.  Note that the use of fastest free-flow path in this case results in all the travel

demand attempting to use Dequindre Road and no travel demand on John R, so this value

should be considered a “worst-case” assignment and not representative of current

conditions on the two facilities.  A more complex test was also conducted using a mix of 50

percent shortest free-flow path and 50 percent non-predictive guided vehicles (fastest path

based on current travel times).  This test resulted in an average travel time of 10.99 minutes

for the guided vehicles, 11.23 for the unguided vehicles, and 11.11 for the system as a

whole. Note that the presence of signalization in TroyCor penalizes less accurate predictive

methods compared to non-predictive methods.  When δ = 0 , SAVaNT returns a system

travel time of 11.52 minutes, compared with 11.11 for the test case using non-predictive

dynamic route guidance, an increase of 3.7 percent.  However, when δ = 0.7 then system

travel time under SAVaNT is 7.3 percent smaller than the non-predictive method.

6.  Resolution of Cycling Through Delayed Link-Time Estimation
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The results described in section 4 suggest a method which is initialized with a convergent

solution in SAVaNT and then seeks the maximum value of δ  where a convergent solution

may still be obtained.  From another perspective, we might consider the complement of that

situation, namely when SAVaNT has terminated with a cycle, rather than a fixed point.  We

might then incrementally decrease the value of δ  until a convergent solution is obtained.

As indicated in Figure 9, δ  is not necessarily bounded below at δ = 0 .  The effects of

decreasing δ  are qualitatively the same whether δ  is positive or negative.  The first effect is

that link travel times generated are inherently less accurate.  The second effect is that

SAVaNT is made more likely to find a convergent solution.

For example, SAVaNT does not find a fixed point withδ = 0  in the Troy corridor model

when 80 percent of the traffic on the network are guided vehicles.  However, when

δ = −0.2 , a fixed point is found resulting in a system travel time of 10.33 minutes.  In

general, the higher the fraction of guided vehicles traversing the network, the smaller the

value of δ  required to force convergence in SAVaNT.

If we consider the effect of travel time profiles in a sequence of iterations in SAVaNT, the

effect of a changing the value of δ  becomes more clear.  Consider the simple case where

δ = 1.0 and we have a single guided vehicle traversing the network.  Let P1  be the fastest

volume-independent path in the simulation, with predicted freeflow travel time C P1( ).  In the

simulation, a guided vehicle traverses the set of links   L1:l ∈ P1 , and reports link travel times

which are higher than freeflow times (because of the presence of traffic).  Let the difference

between these higher reported travel times and the predicted travel time be ∆C P1( ) .  Assume

there exists some alternative path,  P2  , which contains at least one link not contained in L1.

If C P1( ) < C P2( )  and  C P2( ) < C P1( ) + ∆C P1( ), then a cycle must develop.

When δ <1.0 , however, the single vehicle in the example above cannot impact the same

route guidance decision in following iterations.  But we may have many link departures

within a time slice, so the marginal cost impact of our routing decision is also dependent on

the number of vehicles getting the same next-link information.  In this case, for virtually any

δ , the marginal cost of a particular assignment can potentially yield a cycle.  When δ
decreases, the marginal cost effects are pushed downstream in time, causing some guided
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vehicles to remain on a suboptimal path due to the time lag in providing information about

predicted conditions.  The remaining vehicles, making their routing decisions later and

hence unaffected by earlier routings despite the time lag, will be fewer in number and thus

have little effect on observed link travel times.  Therefore they will be less likely to change

routes from one SAVaNT iteration to the next, making it easier to obtain a fixed point.

Within SAVaNT, for example, if route guidance for all vehicles remains constant for two

consecutive iterations through some intermediate period h , where h < H , our solution

horizon, then that partial routing policy will remain stable even if SAVaNT fails to converge.

In the case of a fixed point, stable routing forecasts are constructed with monotonically

increasing values of h  until finally h = H .

7.  A Convergent Approach for SAVaNT

Consider H , our solution horizon.  If we set δ  to be strongly negative ( δ  large), then the

effect in SAVaNT would be to push the delay downstream in time past the solution horizon.

Thus, the simulated traffic would have no effect on the travel time forecasts generated in

SAVaNT.  SAVaNT would only construct travel time forecasts based on the default link

time travel times (free flow) and converge immediately.  A more precise proof of this claim

is stated below.

Claim:  There exists some finite value of δ  such that SAVaNT must converge.

Pf. Assume H  finite.  Let L  be the set of links in any finite

network.  Under the non-restrictive assumption that

  cl t( ) > 0 ∀ l ∈ L, t = 1,2,LH  , there exists some finite

  δl t( ) ∋ δl t( ) cl t( ) < −H ∀ l ∈ L, t = 1,2,LH  .

Let δ < δl t( ) ∀ l, t .  Then δ  is finite since every δl t( )  is finite.

If we set δl t( ) ≤ δ ∀ l ∈ L,t = 1,2,LH , the simulation module in

SAVaNT produces link travel time estimates

  cl t( ) = cl
0 ∀ l ∈ L, t = 1,2,LH , where   cl

0  is the free-flow link

travel time of link  l .  In any two consecutive iterations of

SAVaNT, the travel time profiles
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  Cn = Cn−1 = cl
0 ∀ l ∈ L, t = 1,2,LH  .  Since Cn = Cn−1 ,

SAVaNT has converged to a fixed point.

We may thus force convergence in SAVaNT by choosing a sufficiently small value of δ .

However, we seek a value of δ  as close to 1.0 as possible to realize the highest link time

prediction accuracy and the resulting improvement in travel time savings.  The extreme case

δ = δ  corresponds to a prediction of free-flow travel times across the network for all time

slices, the least accurate depiction of a network which has nonzero travel demand.  A

solution procedure exploiting a variable-δ  accuracy method is outlined in Algorithm 1.

This approach was tested on the Troy corridor model with σ  = 0.05.  Note that we could

have started from δ = 1.00and monotonically decreased δ .  These approaches are

equivalent if there exists δ* such that SAVaNT cycles for all δ > δ*  and converges for all

δ < δ* .  Such a condition is difficult to prove, but is empirically borne out in TroyCor.

Practically, very small values ofδ  do not appear necessary  for convergence.  Convergence

thresholds for SAVaNT-CNV are presented in Table 2.

For TroyCor, δ  is observed to be roughly -50.0. However, SAVaNT obtained stable results

with δ  as high as 0.9, and no worse than -0.2 (implying the use of an induced reporting

delay as in Figure 9), operating at forecast accuracy far superior to the worst case δ .  When

δ ≤ δ , the percentage of links reported at free-flow over the entire horizon is 100%,

whereas forδ  in the stable range identified for TroyCor, there were no links reported at

free-flow over the entire horizon.  In general, how small δ  must be for SAVaNT to find a

stable forecast is likely a function of network geometry, the level of congestion, and market

penetration.

Fixed points were identified at all market penetration levels.  Comparable evaluations were

made of both non-predictive route guidance and the version of SAVaNT applied in [10].  As

in the experiment from Section 4, link times are assumed to be distributed every 10 seconds

over a solution horizon of 30 minutes.

In terms of both system and guided vehicle performance, SAVaNT-CNV identified better

solutions than either non-predictive route guidance or the version of SAVaNT employed by

Kaufman et al.  Figure 11 graphically illustrates the benefit of improved link time prediction
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accuracy in SAVaNT.  Under guidance from SAVaNT-CNV, equipped vehicles

experienced up to 9% percent faster travel times when non-predictive methods were

employed.  SAVaNT-CNV also significantly outperformed the older version of SAVaNT.

Travel time savings were most pronounced as the percentage of guided vehicles ranged

between 40-90%.  In all market penetration levels, SAVaNT-CNV returned faster travel

times for guided vehicles than either of the methods tested, although differences for some

lower market penetrations (<40%) were not statistically significant.

As indicated from Figure 12,   SAVaNT-CNV also proved most effective in reducing

system travel time.  Solutions for SAVaNT-CNV provided 1-9% improvements over the

solutions obtained by either of the other two competing methods.  Note that the travel time

reduction for SAVaNT-CNV is not monotonically decreasing both because the forecasts are

not perfectly accurate, and because individual vehicles choose routes according to a user-

optimal criterion rather than a system-optimal criterion.  Table 3 summarizes the results

obtained for each approach.

8.  Conclusions and Future Work

This work demonstrates that an effective predictive route guidance can be supported within

the constraints of a decentralized architecture and all-or-nothing assignment.  The poor

performance of previous computational approaches under the constraints of decentralized

architecture are shown to be mitigated by judicious adjustment in the accuracy of link travel

time profiles.  As an example, a version of the SAVaNT anticipatory guidance method has

been configured to demonstrate this effect. The revised method, SAVaNT-CNV, configured

to produce the most accurate link travel time prediction possible before the onset of cycling,

improves over non-predictive route guidance, even in the scenarios most difficult for

predictive logic.  This technique may prove useful to traveler information service providers

utilizing current-day decentralized architectures who wish to postpone or avoid conversion

to a centralized architecture or reconfiguration to support multi-path assignment.

SAVaNT may require additional iterations to find fixed points given a more accurate

method of link time prediction, however.  The SAVaNT-CNV method can require the

identification of several fixed points or cycles, since we are applying SAVaNT with different

values of δ .  In practice, this can be done in parallel, so SAVaNT-CNV can be implemented

in the same real-time application as SAVaNT.
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Several issues remain to be addressed. A closer examination of anticipatory route guidance

should be considered in relation to more complex characterizations of driver behavior.  In

this paper, we assume drivers of unguided vehicles follow fixed paths based on shortest

free-flow routes and do not divert or change behavior with respect to experienced delay.

Similarly, we assume drivers of guided vehicles follow the fastest paths calculated from the

predicted travel times.  Other factors such as route complexity [17], driver familiarity, and

route scenery all play into traveler behavior. At this point, however, how one can predict

traveler behavior is not well understood, particularly in relation to traveler information.

Another potential research area is the effect of initial point selection.  The selection of a

initial point which is "close" to the best solution will drastically speed the convergence of

SAVaNT.  However, this must be weighed against the possibility that many fixed point

solutions may exist and that the selection of a fixed point may be critical in determining

which of those solutions is identified.

Finally, the impact of having δ  vary with time and location in the network has not yet been

addressed.  It may be possible to identify fixed points when link travel time prediction is

more accurate on some links and less accurate on others, yielding additional improvements

in system average and guided vehicle travel time.
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Figure 10.  The Troy Corridor Network: Subset of the Troy Model
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Figure 11.  Guided Vehicle Travel Time Performance
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Table 1 Number of Iterations to Convergence
Under Varying Predictive Accuracy

δ   Iterations to Convergence  

0.0 14
0.1 16
0.2 15
0.3 20
0.4 22
0.5 19
0.6 27
0.7 36

 0.8+ CYCLE

Algorithm 1 SAVaNT-CNV Method

Step 1.  Set δ = 0  and i = 1, and choose some small increment value, σ .
Step 2.  Run SAVaNT, producing Si , the result of the iterative process.

Step 3a. If Si  is a cycle, set δ = δ − σ .  Goto Step 4.

Step 3b. If Si  is a fixed point, set δ = δ + σ .  Goto Step 4.

Step 4. If Si ,Si−1  both cycles or both fixed points, set i = i +1.

Goto Step 2.

Otherwise, STOP.

Table 2 Convergence of SAVaNT-CNV

Pct. Guided Vehicles  
Maximum Convergent

Value of   δ
10% 0.90
20% 0.70
30% 0.70
40% 0.80
50% 0.70
60% 0.05
70% -0.10
80% -0.20
90% -0.20
100% 0.05
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Table 3 Summary of Travel Times Obtained in Troy Corridor Model

Average System Travel Time
(min)

Improvement vs. NP

Mkt. Pen. N P SAVaNT SAVaNT-CNV SAVaNT SAVaNT-CNV
0% 18.15 18.15 18.15 0.00% 0.00%

10% 15.36 15.28 14.95 0.52% 2.67%
20% 13.25 13.45 12.72 -1.51% 4.00%
30% 11.71 12.48 11.28 -6.58% 3.67%
40% 11.04 11.99 10.44 -8.61% 5.43%
50% 11.11 11.72 10.30 -5.49% 7.29%
60% 11.13 11.51 11.01 -3.41% 1.08%
70% 11.16 CYCLE 10.74 NA 3.76%
80% 11.27 CYCLE 10.33 NA 8.34%
90% 11.53 CYCLE 11.06 NA 4.08%
100% 11.70 11.91 11.58 -1.79% 1.03%

Average Guided Vehicle Travel
Time

Improvement vs. NP

Mkt. Pen. N P SAVaNT SAVaNT-CNV SAVaNT SAVaNT-CNV
10% 6.75 6.70 6.68 0.74% 1.04%
20% 7.72 7.95 7.63 -2.98% 1.17%
30% 9.02 9.13 9.02 -1.22% 0.00%
40% 10.40 10.06 9.99 3.27% 3.94%
50% 10.99 10.95 10.3 0.36% 6.28%
60% 11.23 11.27 10.95 -0.36% 2.49%
70% 11.28 CYCLE 10.62 NA 5.85%
80% 11.38 CYCLE 10.46 NA 8.08%
90% 11.57 CYCLE 11.15 NA 3.63%
100% 11.70 11.91 11.58 -1.79% 1.03%


