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1. Introduction

In this research/expository article, we suppose H is an arbitrary Hilbert space (real or complex) with K
and N closed subspaces of H. We consider the question of when the (ordinary) sum K + N is closed in H.
It is obviously true if either K ⊆ N or N ⊆ K. It is also true if either K or N is finite dimensional. If K or
N is of codimension 1 (i.e., one of the subspaces is a hyperplane through the origin), then K + N is clearly
closed. However, it is not closed in general (Example 2.2).

In what follows, we will give necessary and sufficient conditions for K + N to be closed. Although we
have found no such conditions in the published literature, conditions were evidently provided without proof
in unpublished course notes of Carl Pearcy [3]. In this paper, we state and prove a collection of similar
necessary and sufficient conditions in Theorem 2.1 Our first equivalent condition will involve orthogonal
complements and projections. Let L = K⊥ denote the orthogonal complement of K in H and M = N⊥ the
orthogonal complement of N in H. Also, let EL : H → L the corresponding orthogonal projection onto L
and EM : H → M the corresponding orthogonal projection onto M . In section 2, we shall see that EL(N)
is closed if and only if EM (K) is closed, and more importantly for our purposes, that K + N is closed if
and only if each of these subspaces is closed (Theorem 2.1(ii)). Thus, the closure of N + K is equivalent
to the closure of the orthogonal projection of N into L (resp., K into M). Our next equivalent condition
involves the (cosine of the) angle θ(K,N) between K and N . Its definition is given in section 2, where we
shall also see that K + N is closed if and only if θ(K,N) < 1, i.e., the angle between K and N is not equal
to 0 (Theorem 2.1(iii)). Finally in section 2, we give some sufficient conditions for Theorem 2.1 to hold in
terms of the orthogonal projections EK : H → K and EN : H → N (Theorem 2.2).

In section 3, we give an application of our main results. This involves an abstract positive semi-definite
quadratic programming problem given by minimizing the quadratic objective function 〈x,Qx〉 subject to the
linear equality constraint Ax = b, for x ∈ H, where Q and A are bounded linear operators, and Q is also
self-adjoint and positive semi-definite. For such a problem, we let K denote the kernel of Q, N the kernel
of A and F the feasible region, where F = N + x, for any x ∈ F . Then it is known that this problem will
admit an optimal solution if the (positive-definite) restriction of Q to L = K⊥ is strictly positive definite
(i.e., coercive) and the projection EL(F ) of F into L is closed [5]. The restriction Q|L is well-known to
be strictly positive definite if and only if its (positive) spectrum is bounded away from 0. That leaves the
question of when the projection EL(F ) is closed. Our main results give equivalent conditions for this to
happen. In particular, it happens precisely when K + N is closed, or if θ(K,N) < 1.

2. Main Results

We begin this section by defining the quantity θ(K,N), which is essentially the angle between the subspaces
K and N . Let

S(K,N) = {(x, y) : x ∈ K ∩ (K ∩N)⊥, y ∈ N ∩ (K ∩N)⊥, ‖x‖ = ‖y‖ = 1}.
Note that S(K,N) = S(N,K) and S(K,N) = ∅ if and only if either N ⊆ K or K ⊆ N . Let

θ(K,N) =
{

sup{|〈x, y〉| : (x, y) ∈ S(K,N)}, for S(K,N) �= ∅,
−∞, for S(K,N) = ∅,

so that 0 ≤ θ(K,N) = θ(N,K) ≤ 1. In particular, if N ∩K = {0}, then (K ∩N)⊥ = H, N = N ∩ (K ∩N)⊥,
K = K ∩ (K ∩N)⊥ and

θ(K,N) = sup{|〈x, y〉| : x ∈ N, y ∈ K, ‖x‖ = ‖y‖ = 1}.
If L = K⊥ and M = N⊥ are hyperplanes through the origin, then θ(K,N) is the (cosine of the) conventional
angle between the one-dimensional subspaces K and N .
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Theorem 2.1. The following are equivalent:
(i) EL(N) is closed in L.
(ii) K + N is closed in H.
(iii) θ(K,N) < 1.
(iv) EM (K) is closed in M .

Proof. Given the expository nature of this paper, we find it instructive to show all the implications involved.
(i) ⇐⇒ (ii) : Suppose EL(N) is closed. Let xk = νk + ηk, where νk ∈ N and ηk ∈ K, ∀k = 1, 2, . . . , and
xk → x ∈ H. To show that x ∈ N + K. Since L = K⊥, we have that

EL(xk)→ EL(x) ∈ L,

where
EL(xk) = EL(νk + ηk) = EL(νk) + EL(ηk) = EL(νk) ∈ EL(N), ∀k = 1, 2, . . . .

By hypothesis, EL(x) ∈ EL(N). Thus, there exists y ∈ N such that EL(x) = EL(y), i.e., EL(x− y) = 0, so
that η = x− y ∈ K = L⊥. Therefore, x = y + η, i.e., x ∈ N + K.

Now suppose N +K is closed in H. Let {ξk} be a sequence in EL(N) which converges to ξ ∈ L. To show
that ξ ∈ EL(N). For each k, there exists yk ∈ N such that EL(yk) = ξk. Let ηk = ξk − yk, ∀k. Then

EL(ηk) = EL(ξk)− EL(yk) = EL(EL(yk))− EL(yk) = EL(yk)− EL(yk) = 0,

so that ηk ∈ K, ∀k = 1, 2, . . . . Since ξk = yk + ηk ∈ N + K, ∀K, and ξk → ξ, it follows, by hypothesis,
that ξ ∈ N + K. Hence, there exist ν ∈ N and η ∈ K for which ξ = ν + η. Therefore,

EL(EL(yk)) = EL(ξk)→ EL(ξ) = EL(ν) + EL(η) = EL(ν),

and
EL(EL(yk)) = EL(yk) = ξk → ξ,

so that ξ = EL(ν), for ν ∈ N , i.e., ξ ∈ EL(N).

(ii) ⇐⇒ (iii) : First observe that if N ⊆ K or K ⊆ N , then N + K is closed in H and θ(N,K) = −∞.
Thus, we may assume that N � K and K � N .

Next we show that, without loss of generality, we may also assume that N ∩K = {0}. If not, then we
may write

N = N1 ⊕ (N ∩K), K = K1 ⊕ (N ∩K),

where N1 (resp. K1) is the orthogonal complement of N ∩K in N (resp. K). Then

N + K = (N1 ⊕ (N ∩K)) + (K1 ⊕ (N ∩K))

= (N1 + K1)⊕ ((N ∩K) + (N ∩K))

= (N1 + K1)⊕ (N ∩K).

Thus, N + K is closed if and only if N1 + K1 is closed, where N1 ∩K1 = {0}.
Suppose N + K is closed with N ∩K = {0}. Consider the canonical Hilbert space mapping

f : N ⊕K → N + K,
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given by
f(ν, η) = ν + η, ∀ν ∈ N, ∀η ∈ K.

This mapping is clearly linear and onto. It is also one-to-one since N ∩K = {0}. We next show that it is
also bounded.

Let ν ∈ N and η ∈ K. then

‖f(ν, η)‖2 = ‖ν + η‖2

= 〈ν + η, ν + η〉
= 〈ν, ν〉+ 〈ν, η〉+ 〈η, ν〉+ 〈η, η〉
= 〈ν, ν〉+ 2〈ν, η〉+ 〈η, η〉
= ‖ν‖2 + 2〈ν, η〉+ ‖η‖2

≤ ‖ν‖2 + 2|〈ν, η〉|+ ‖η‖2

≤ ‖ν‖2 + 2‖ν‖‖η‖+ ‖η‖2.

Moreover,
2‖ν‖‖η‖ ≤ ‖ν‖2 + ‖η‖2.

Hence,
‖f(ν, η)‖2 ≤ 2(‖ν‖2 + ‖η‖2) = 2‖(ν, η)‖2,

so that ‖f‖ ≤
√

2, i.e., f is bounded.
By the Open Mapping Theorem [2, p.57], f has a bounded linear inverse, i.e., there exists c > 0 such that

c‖(ν, η)‖ ≤ ‖f(ν, η)‖ = ‖ν + η‖ ≤
√

2‖(ν, η)‖.

Consequently,
c2(‖ν‖2 + ‖η‖2) = c2‖ν, η)‖2 ≤ ‖ν + η‖2 = ‖ν‖2 + 2〈ν, η〉+ ‖η‖2.

Hence,
c2(‖ν‖2 + ‖η‖2) ≤ ‖ν‖2 + 2〈ν, η〉+ ‖η‖2,

i.e.,
(c2 − 1)(‖ν‖2 + ‖η‖2) ≤ 2〈ν, η〉,

for all such ν, η.
Now assume in addition that ‖ν‖ = ‖η‖ = 1. Then

2(c2 − 1) = (c2 − 1)(‖ν‖2 + ‖η‖2) ≤ 2〈ν, η〉,

i.e.,
1− c2 � 〈−ν, η〉,

where −ν is an arbitrary element of N of norm 1, since ν is such. If 〈ν, η〉 ≤ 0, then 〈−ν, η〉 = |〈ν, η〉|, so
that 1 − c2 � 〈ν, η〉, and 0 < c ≤ 1. If 〈ν, η〉 � 0, then 〈ν, η〉 = |〈ν, η〉|, so that 1 − c2 � −|〈ν, η〉|. Letting
ν′ = −ν, we get

1− c2 � −〈ν′, η〉 = 〈ν, η〉 = |〈ν, η〉|.
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Hence, in either case,
|〈ν, η〉| ≤ 1− c2 < 1,

for all ν ∈ N, η ∈ K with ‖ν‖ = ‖η‖ = 1. Thus, θ(N,K) < 1.
Now suppose 0 ≤ θ = θ(N,K) < 1. Observe that N,K are weakly closed in H, as well as closed. Also,

from the definition of θ we have that
|〈ν, η〉| ≤ θ‖ν‖‖η‖,

so that
−2θ‖ν‖‖η‖ ≤ 2〈ν, η〉 ≤ 2θ‖ν‖‖η‖, ∀ν ∈ N, ∀η ∈ K.

Suppose {νk} is a sequence in N and {ηk} is a sequence in K such that xk = νk + ηk → x in H. To show
that x ∈ N + K. First we show that

sup
k
‖νk‖ <∞

and
sup
k
‖ηk‖ <∞.

We have:

‖xk‖2 = ‖νk + ηk‖2

= ‖νk‖+ ‖ηk‖2 + 2〈νk, ηk〉
� ‖νk‖2 + ‖ηk‖2 − 2θ‖νk‖‖ηk‖
= (θ‖νk‖ − ‖ηk‖)2 + (1− θ2)‖νk‖2,

i.e.,
‖νk + ηk‖2 � (θ‖νk‖ − ‖ηk‖)2 + (1− θ2)‖νk‖2.

Interchanging νk and ηk, we also obtain

‖νk + ηk‖2 � (θ‖ηk‖ − ‖νk‖)2 + (1− θ2)‖ηk‖2,

where 1− θ2 > 0 by hypothesis. We see from these inequalities that if either {νk} or {ηk} is unbounded, we
obtain a contradiction, since the convergent sequence {νk + ηk} must be bounded.

By the Banach-Alaoglu Theorem [2], passing to subsequences if necessary, we may assume that there exists
ν ∈ N and η ∈ K such that νk ⇀ ν and ηk ⇀ η (weak convergence), as k →∞. Thus, νk + ηk ⇀ ν + η and
νk + ηk → x, as k →∞. Necessarily, x = ν + η ∈ N + K, since the weak topology on H separates points.

(iii) ⇐⇒ (iv) : Interchange K and N in (i), (ii) and (iii). �

Example 2.2. For each j = 1, 2, . . . , let ψj = arcsin(1/j) so that cosψj =
√

j2 − 1/j. Define

H = {[yi ui]∞i=1 : yi, ui ∈ R,
∞∑
i=1

(y2
i + u2

i ) <∞},

K = {[yi 0]∞i=1 : yi ∈ R,
∞∑
i=1

y2
i <∞},



6 SCHOCHETMAN, SMITH AND TSUI

and
N = {[yi ui]∞i=1 ∈ H : yi = ui cotψi, ∀i}.

Clearly, K and N are closed subspaces of the real Hilbert space H with K ∩N = {0} and

L = K⊥ = {[0 ui]∞i=1 : ui ∈ R,
∞∑
i=1

u2
i <∞}.

Now, for each j = 1, 2, . . . , define xj = (xji )
∞
i=1 by

xji =
{

[0 0], for i �= j,

[1 0], for i = j,

so that xj ∈ K and ‖xj‖ = 1. Similarly, define νj = (νji )
∞
i=1 by

νji =
{

[0 0], for i �= j,

[cosψj sinψj ], for i = j,

so that νj ∈ N and ‖νj‖ = 1. Note that

νjj = [cosψj sinψj ] = sinψj [cotψj 1], ∀j.

We then have

|〈xj , νj〉| = |
∞∑
i=1

〈xji , ν
j
i 〉|

= |〈[1 0], [cosψj sinψj ]〉|
= cosψj . ∀j = 1, 2, . . . .

Consequently, we see that
θ(N,K) � sup

j
cosψj = 1,

i.e., θ(N,K) = 1, so that EL(N) is not closed by Theorem 2.1.
We next show that EL(N) is not closed. Suppose it is. Observe that EL(N) is the set of ([0 uj ])∞j=1 ∈ L for

which there exists yj ∈ R such that yj = uj cotψj , ∀j, and (yj) is square summable. For each j = 1, 2, . . . ,
let uj = 1/j, so that u = ([0 uj ]) ∈ L. Set yj = uj cotψj , and define

xji =
{

[yi ui], for i ≤ j

[0 0], for i > j,

so that xj ∈ N , and uj = EL(xj) ∈ EL(N), where

uji =
{

[0 ui], for i ≤ j

[0 0], for i > j,
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for all j = 1, 2, . . . . Clearly, {uj} is a Cauchy sequence in EL(N). Since EL(N) is closed, then there
must exist u ∈ EL(N) such that uj → u, as j → ∞. Therefore, there must exist y = (yj) such that
yj = uj cotψj , ∀j, and

∑
y2
j <∞, i.e., ([yj uj ]) ∈ H. But

‖([yj uj ])‖2 =
∞∑
j=1

(y2
j + u2

j )

=
∞∑
j=1

(cot2 ψj + 1)u2
j

=
∞∑
j=1

u2
j

sin2 ψj

=∞.

Contradiction. Hence, EL(N) is not closed in this example.
We next show that N + K is not closed. Let [yi, ui] be an arbitrary element of N , so that

∑∞
i=1 u

2
i ≤ ∞,

in particular. Once again let

xji =
{

[yi ui], for i ≤ j

[0 0], for i > j,

so that xj ∈ N , and

zj =
{

[yi 0], for i ≤ j

[0 0], for i > j,

so that −zj ∈ K, ∀j. Consequently, uj ∈ N + K, ∀j, where

uj =
{

[0 ui], for i ≤ j

[0 0], for i > j.

It follows that the sequence {uj} is Cauchy since
∑∞
j=1 u

2
i < ∞. By hypothesis, there exists u ∈ H such

that uj → u as j →∞. Necessarily, uji → ui, ∀i. Hence,

u = ([0, u1], [0, u2], . . . ).

If u ∈ K + N , then there exists z = ([z1, 0], [z2, 0], . . . ) ∈ K and x ∈ N such that z + x = u. Thus,

x = u− z = −([z1, u1], [z2, u2], . . . ).

Since this belongs to N , we must have
zi = ui cotψi, ∀i.

Consequently,

‖x‖2 =
∞∑
j=1

(cotψ2
i + 1)ui =∞,

which is a contradiction. Therefore, K + N is not closed.
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Theorem 2.3. The following are sufficient for K + N to be closed:
(i) ENEK = 0 or EKEN = 0.
(ii) ENEK − EKEN = 0.
(iiia) sup{‖ENη‖ : η ∈ K ∩ (N ∩K)⊥, ‖η‖ = 1} < 1.
(iiib) sup{‖EKν‖ : ν ∈ N ∩ (N ∩K)⊥, ‖ν‖ = 1} < 1.

Proof. (i) If ENEK = 0, then
EKEN = (ENEK)∗ = E∗KE∗N = 0,

so that L + M = L⊕M , and is therefore closed in H. Similarly for EKEN = 0.

(ii) We have
ENEK = EKEN = EN∩K ,

(where, in general, EX denotes the orthogonal projection of H onto the closed subspace X) and

N + K = (N ∩K)⊕ (N ∩ (N ∩K)⊥ + K ∩ (N ∩K)⊥).

We also have
EN (I − ENEK) = EN∩(N∩K)⊥ ,

where I is the identity operator on H and

I − ENEK = E(N∩K)⊥ .

Thus, by hypothesis,

EN (I − ENEK) = EN − E2
NEK = EN − ENEKEN = (I − ENEK)EN .

Similarly,
EK(I − ENEK) = EK∩(N∩K)⊥ .

But
EN (I − ENEK)(I − ENEK)EK = 2(ENEK − EKEN ) = 0,

by hypothesis. (Note that part (i) is valid for any closed subspace N and K and their corresponding
projections EN and EK .) Hence, by (i) applied to EN and E(N∩K)⊥ , we obtain that

(N ∩ (N ∩K)⊥) + (K ∩ (N ∩K⊥)

is closed in H. Consequently, N + K is closed in H.

(iiia) For convenience, let

β = sup{‖ENη‖ : η ∈ K ∩ (N ∩K)⊥, ‖η‖ = 1}.

(We may exclude the case where the defining set is empty. This happens only if K ⊆ N , in which case
K + N is trivially closed.) Then β < 1 and β2 < 1, i.e., δ = 1− β2 > 0. Fix

η ∈ K ∩ (N ∩K)⊥, ν ∈ N ∩ (N ∩K)⊥,
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such that ‖η‖ = ‖ν‖ = 1. Then
|〈η, ν〉| = ‖η‖‖ν‖ cosψ,

where ψ is the angle between η and ν, if this angle is at most π/2, or the supplement of this angle, if it is
greater than π/2. (Alternately, we can replace η by −η where necessary.) Thus, 0 ≤ ψ ≤ π/2. By the Law
of Cosines, we have

‖η + ν‖2 = ‖η‖+ ‖ν‖2 − 2‖η‖‖ν‖ cosψ = 2− 2 cosψ.

On the other hand, since ν ∈ N , and ENη is the best approximation in N to η, we have that

‖η − ν‖2 � ‖η − ENη‖2 = ‖η‖2 − ‖ENη‖2 = 1− ‖ENη‖2,

by the Pythagorean Identity, where η − ENη is orthogonal to ENη. Thus,

1− ‖ENη‖2 ≤ 2− 2 cosψ.

However, by definition of β, we have that
‖ENη‖2 ≤ β2,

so that
1− ‖ENη‖2 � 1− β2 = δ > 0.

Consequently,
0 < δ ≤ 2− 2 cosψ,

i.e.,
0 ≤ cosψ ≤ 1− δ/2 < 1,

so that
|〈η, ν〉| ≤ 1− δ/2 < 1.

This completes the proof of (iiia), since η and ν are arbitrary.

(iiib) The proof in part (iiia) depends only on the fact that N and K are closed subspaces of H. Thus,
simply interchange these spaces in the proof. �

3. An Application to Quadratic Programming

We consider the general infinite quadratic programming problem (G) given by:

min 〈x,Qx〉

subject to (G)

Ax = b,

x ∈ H,

where H and M are real Hilbert spaces, b ∈ M , the constraint operator A : H → M is a bounded linear
operator and the cost operator Q : H → H is a non-zero, (self-adjoint) positive semi-definite, bounded linear
operator. The feasible region

F = {x ∈ H : Ax = b}
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is a closed, affine subset of H (which we assume to be non-empty), and the kernel

N = {x ∈ H : Ax = 0}

of A in H is a closed subspace of H. Of course, F = N + x, for any x ∈ F .
Recall that Q is positive semi-definite if 〈x,Qx〉 � 0, ∀x ∈ H, and that Q is positive definite if 〈x,Qx〉 >

0, ∀x ∈ H, x �= 0. We say that the operator Q is strictly positive definite if it is coercive, i.e., if there exists
σQ > 0 satisfying

σQ‖x‖2 ≤ 〈x,Qx〉, ∀x ∈ H.

This condition is known [1, p.73] to be necessary and sufficient for (G) to admit a (unique) optimal solution
for any (non-empty) closed, convex subset F of H. Thus, even if F is a closed, convex set in H, and Q is
only positive definite, problem (G) may not admit an optimal solution. See [4] for an example.

In this section, we establish sufficient conditions for (G) to admit an optimal solution.
Since Q is positive semi-definite, its kernel K is given by

K = {x ∈ H : 〈x,Qx〉 = 0}.

Moreover, since Q is self-adjoint, it follows that K and L = K⊥ are invariant under Q. Hence, Q also
decomposes into 0 ⊕ P , where 0 is the zero operator on K and P : L → L is the restriction operator Q|L.
Note that P is a positive definite, bounded linear operator on L. It need not be strictly positive definite.

Also, since F ⊆ H, we have that the image of F under EK is

EK(F ) = {η ∈ K : η + ξ ∈ F, for some ξ ∈ L}.

It is non-empty and convex in K, since this is the case for F in H. It is also true that F is closed in H;
however, EK(F ) need not be closed in K.

Analogously, the image of F under EL is

EL(F ) = {ξ ∈ L : η + ξ ∈ F, for some η ∈ K}.

As with EK(F ), the set EL(F ) is non-empty and convex, but not necessarily closed in L. Moreover, F ⊆
EK(F )⊕ EL(F ). The same is true of N, EK(N) and EL(N).

We may now consider the following related problem (P) :

min
ξ∈EL(F )

〈ξ, Pξ〉 (P)

where, as we have seen, P is positive definite on L and EL(F ) is a non-empty, convex subset of L, which
may not be closed. Moreover,

〈ξ, Pξ〉 = 〈x,Qx〉,

for all ξ ∈ L, η ∈ K and x = η + ξ.
Note that solving (P) is equivalent to solving (G) in the following sense. If ξ∗ ∈ EL(F ) is an optimal

solution to (P) , then there exists η∗ ∈ EK(F ) such that x∗ = η∗ + ξ∗ ∈ F and x∗ is optimal for (G) .
Conversely, if x∗ ∈ F is optimal for (G) , then x∗ = η∗ + ξ∗, for η∗ ∈ EK(F ) and ξ∗ ∈ EL(F ), where ξ∗ is
optimal for (P).

We are interested in when the feasible region EL(F ) for (P) is closed.
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Lemma 3.1. The following are equivalent for F , K and N :
(i) EL(F ) or EL(N) is closed in L.
(ii) EM (K) is closed in M .
(iii) N + K is closed in H.
(iv) F + K is closed in H.
(v) θ(N,K) < 1.

Proof. Apply Theorem 2.1 together with the fact that F = N + x, for any fixed x ∈ F . �
Theorem 3.2. If Q|L is strictly positive definite and any one of the conditions in Theorem 3.1 holds, then
(G) admits an optimal solution.

Proof. Observe that (P) admits an optimal solution if P = Q|L is strictly positive definite and EL(F ) is
closed in L [1, p.73]. �
Acknowledgments. We wish to thank Peter Duren of the Department of Mathematics at the University
of Michigan at Ann Arbor and Stephan Richter of the Department of Mathematics at the University of
Tennessee for bringing the information of reference [3] to our attention.
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