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Abstract

Forecast horizons, i.e long enough planning horizons that ensure agreement of first period optimal
production decisions of finite and infinite horizon problems regardless of changes in future demand, are
shown to exist in the context of production planning under stochastic demand. The monotonicity of first
period optimal production decisions with respect to first order stochastic shifts in demand is the key to
the results. Finally, a stopping rule that is ensured to detect the minimal forecast horizon is presented.

1 Introduction.

Production planners face substantial uncertainty in the demand for their products that comes from a variety
of sources. For instance, demand could be sensitive to varying economic conditions such as GNP or interest
rates, alternatively, technical innovation may imply unexpected early obsolescence. Moreover, it is usually
the decisions in the first few periods that are of immediate concern for the decision maker and forecasting is
more difficult and costlier for problem parameters farther into the future.

Motivated by these issues, the concept of a forecast horizon (see for example, Bes and Sethi (1988)) has
long been studied in the litterature. The idea is that problem parameters changes far enough off should not
affect the optimal decisions of the first few periods.

In this paper, we provide forecast horizon’s existence and computation results for production planning
problems that satisfy the following monotonicity property; for any fixed finite planning horizon, there exist
first period optimal solutions that are monotone with respect to first order stochastic shifts in demand. In his
remarkable work, Topkis (1969) and (1978) developed a general theory of monotonicity of optimal solutions
that can applied to many production planning models. These results have also been extensively exploited in
the field of mathematical economics (see for example, Hopenhayn and Prescott (1992)).

Monotonicity of optimal production plans under stochastic demand has also been studied by Kleindorfer
and Kunreuther (1978), Denardo (1982) and Zhang (1997).

Smith and Zhang (1997) have recently exploited the above mentioned monotonicity property to prove
existence of forecast horizons in a deterministic setting.

Our emphasis on monotone optimal solutions as opposed to monotone bounds as in Morton (1978) allows
us to effectively detect the minimal forecast horizon by means of a stopping rule with an embedded selection
procedure, using results by Topkis (1978).

2 Problem Formulation.

Consider a single product firm where a decision for production must be made at the beginning of each period
t,t=0,1,2,.... Customer orders arrive during each time interval. We will convene to call the “demand” at
time period ¢, the total number of customer orders received during time interval (¢,¢ + 1), and shall denote
it by the random variable D;.



Thus, if at the beginning of time period ¢, there are I; units available on stock and a production decision of
x¢ is made, the inventory-production system follows the equation :

Liyn=Ii+x— Dy

Moreover, if D; exceeds I; + x4, the excess demand is assumed to be backlogged. The one stage cost incurred
is :

Cy (CL’t, It, Dt) = Ct ($t) + ht (InaX{O, It+1}) + Dt (maX{O, 7It+1})

where :
cy production cost function
hy holding cost function for excess inventory
Pt backlogging cost function

We assume that demand at time period ¢, D, is a non-negative random variable with compact support

[0,d] and probability distribution Fi(.).
Hence, the expected stage cost incurred is :
I+x
Ele(z, 1, D)) = ci(z) + / ho(I + 2 — w)dFy(u) +
d I

pi(I + ¢ — u)dFi(u)

:3_\@-4

For a planning horizon of T+ 1 periods, the production planning problem is then :

T
min  E[Y alci(xe, I, Dy)]

P t=0
( T) s.t It+1:It+l‘t—Dt t2071,27...,T

M > x; > 0 integer

where M is the maximal production capacity and « € (0,1) the discount factor.

2.1 Stochastic Ordering.

We review briefly, the definition given in Lehmann[1955]. A set S in R™ is said to be increasing if s € S
and s < timply t € S. A distribution F' is stochastically larger than a distribution G if and only if for every
increasing set I € R™:

/ 1 (u)dF (u) / 11(u)dG (u)

where 1;(u) is the indicator function of the set I.

In the case of distributions on the real line, this order is equivalent to order classically known as stochastic
dominance :F = G < F(z) < G(x) Vx € R. However, for distributions on spaces of higher dimensions,

F = G = F(z) < G(z), but the converse does not hold.

Let A be a poset, a parameterized family of distributions {F}}sec4 is stochastically increasing in a, if
a > o implies F, = F,/. The next theorem by Topkis[1968] is of great importance :

Theorem (Topkis): A distribution family F, is stochastically increasing in a € A if and only if for
every increasing real valued integrable function v(.), the integral [ v(u)dF,(u) is increasing in a.



2.2 Notation for Parametric Analysis.

We assume that for any time period ¢, random demand D; may be any of the random variables in the indexed
collection {D,}qca, where A is a finite poset. To this collection we associate the family of distribution
functions {F, },c4, which is assumed to be stochastically increasing in a. Moreover, we will denote by a
and a, the supremum and the infimum of the set A, respectively, i.e :

- ot
a aglj‘{a} a= inf {a}

Moreover, we assume that a,a € A. Wg shall refer to a as the “zero” index to which we associate the

trivial distribution F (z) = 1, for x € [0,d]. In other words, to the “zero” index we associate zero demand.
Similarly, to the index @, we associate the trivial distribution :

0 1:<cz

Fx) = 1 xz=d

Let us denote by Dr the set of T-long sequences of independent random demands from period 0 up to
period T — 1. Formally,

T-1
Dr = [[{Da}aca
t=0

To every sequence of the form (Dg, Dy, ..., Dr_1) € Dr
we associate the production planning problem (Pr(D;, ..., Dr—1)) defined as follows :

T-1
min  E[ Y olei(xy, It, Dy))
=0

s.t It+1:It+fEt*Dt t:0,1,2,...,T*1
M > x; > 0 integer

(Pr(Do, D1, ..., Dr_1))

We endow the cartesian product set Dy with the product ordering “>=,”, i.e :

(D07D17 "~7DT71) ET (D67D/17 ...7D111171)
=
Dy=Dt=01,...,T -1

We shall denote by (Do, D1, ..., Dr_1) the first period production decision to an optimal solution to
problem (Pr(Dq, D1, ..., Dr_1)).

2.3 Infinite Horizon Production Planning.

We now introduce the infinite horizon production planning problem as a suitable modeling refinement to
problem (Pr), given the difficulties in defining what should be the “appropiate” finite planning horizon.
As above, in order to parametrize the infinite horizon production planning problem we define the infinite

o0
product D = [[{Dq}aca.
t=0
Hence, for every infinite sequence (Dy, D1, ..., Dr_1,...) € D, we associate the problem :

min  lim E[i aley(zy, Iy, Dy)]
(P(Do, Dy vesy D11, 12)) s.t Z::O: Itt:j—a:t—Dt t=0,1,2,..
M > x; > 0 integer
JFrom this definition, it is straightforward to relate infinite and finite horizon problems via the embedding :
(Do, D1, ..., Dyr_1) € Dy — (Do, D1, ..., D1_1,0,0,...) € D.

In words, we extend the finite sequence by appending “zero” demand for all time periods after the planning
horizon T'.



2.4 Standing Assumptions.

Our first assumption, requires that if it exists, the limit of finite horizon optimal production plans is an
optimal solution to the infinite horizon production planning problem.

Assumption 1: Let (Do, D1, ..., Dy_1,Dp,Dryq,...) € D and {z{(T), 25 (T), ....,x%_(T)}r be a col-
lection of optimal solutions to problems (Pr(Dgy, D1, ..., D7_1,0,0,...)).

If there exists a limit plan, say {«§,z7,....,2%_1, 2%, ...}, then it is an optimal solution to the infinite
horizon problem (P(Dq, D1, ...,Dr—1, Dr,Drp41,...)).

This assumption is fairly standard (see for instance Heyman and Sobel (1984)) and holds for example
when costs functions are uniformly bounded or decision spaces are compact.

Assumption 2 :(Monotonicity of Optimal Plans) For every T, there exist an optimal production
plan to problem
(Pr(Dg, D1, ..., Dr_1)) whose first period decision is monotone in (Dg, D1, ..., Dr_1) i.e :

(D(],Dl, ...,DTfl) ET (D(y /1, ""Dé"fl) = LCS(D(),Dl, ...,DTfl) 2 $8(D67 /1’ ...,Dlel)

Monotonicity of optimal production plans is a pervasive feature in production planning models (see for
example, Kleindorfer and Kunreuther (1978)).

3 Review of Solution Concepts.

The gains in modeling accuracy afforded by an infinite horizon are severely compromised by the technical
difficulties in accurately forecasting problem parameters. This consideration motivates the problem of find-
ing a finite horizon such that the first optimal decision for such horizon coincide with the infinite horizon
counterpart. If such a horizon exists (which is called a solution horizon), it not only provides a rationale
to set such horizon as the decision makers planning horizon, but interestingly enough motivates a finite
algorithm to solve an infinite problem via a rolling horizon procedure.

Definition 1: Planning Horizon T is called a Solution Horizon for demand forecast
(Do, D17 ey DT—la DT, DT+1, ) € D iff for every T> T*, we have :

x5(Do, Dy, ..., Dr—1) = 25(Do, D1, ..., Dr—1, D, D141, ...)

where z{(Do, D1, ..., Dr_1) and z{(Do, D1, ..., Dp_1, D7, D41, ...) are first period optimal decisions for the
T-planning horizon production planning problem and the infinite horizon production planning problem, re-
spectively.

However, the solution horizon concept is practically of little interest, for its computation may poten-
tially require an infinite forecast of data. Thus, the concept of a forecast horizon (see for example, Beés and
Sethi(1987)), that is, a long enough planning horizon that entails the insensitivity of first period optimal
production decision with respect to changes in demand distribution at the the tail is very attractive to
practitioners. In brief, in order to compute the first period optimal production decision, the planner need
only forecast demand distributions for a finite number of periods and this decision is insensitive to changes
in demand distribution at the tail.

Definition 2: Planning Horizon T™* is called a Forecast Horizon for D if and only if for
(Do, D1, ...; Dr—1, D7, Dryq,...) € D and for every T > T*, we have:

J,‘S(Do, D17 ceey DT,1, DT, DT+13 ) = SL’S(DB,D/D ceey Drlril,Déw,Déw+1, )

for every (D, D4, ..., Dp_y, D, D7y, ...) € D such that Dy = Dj for 0 <t <T.



4 Forecast Horizon Existence and Computation.

We begin our analysis by pointing out a key observation :

Remark :
LUS(DU7D1, ceny DT,1) = (ES(.D()7 Dl, ceey DT7170, 0, )

In words, solving the production planning problem with finite horizon T is equivalent to solving the infinite
horizon problem whereby we append “zero” demand after 7.
Let us define the map x§ : D +— {0,1,2,...M} as follows; for (Do, D1, ..., Dr_1,Dr,Dry1,...) €D :

X()(l)o7 D17 veny DT—17 l)T7 DT+17 ) = TIIH;O xS(Do, l)l7 ceey DT_1, 0, 07 )
Lemma 1 : The map x¢ : D +— {0,1,2,...M} is well-defined, continuous and monotone in D.

Proof : By the monotonicity of the optimal plan (Assumption 2) we have that :
x5(Do, D1, ..., Dp_1, Dy) > xi(Dy, D1, ..., Dp_1,0)
since this inequality is preserved by the embedding “—”, we have :
x4(Dy, D1, ..., Dr_1, D7,0,0,...) > z3(Do, D1, ..., Dr—1,0,0,0,...)

thus by this monotonicity property and the fact that first period production decisions are bounded the limit
exists. Moreover, the map xg(.) can also be seen as the uniform limit of the functions x7 () defined as :

Xg(Do, D17 ceuy DT—la DT, DT+1, ) = IS(D(), Dl, ceey DT—l; O7 O, )
which are trivially continuous (by finiteness of Dr) then it follows the map x¢(.) inherits continuity.
As for monotonicity, let us pick (Do, D1, ..., Dr—1, D7, Dry1,...) € D and
(Dy, Dy, ..., Dy, D, Dy, ...) € D such that :

Dy =D, t=0,1,2,...

By definition of x(.) there exists a planning horizon T, such that for T > T, we have
xo(Do, D1, ... Dr_1, Dy, Dpyy,...) = 25(Do, D1, ..., Dp_1)
Similarly, there exists a finite planning horizon 7T} such that for 7' > T}, we have
xo(Dy, DY, ....,Dp_y, D, Dy, ...) = x5 (D, DY, ..., Dip_y)
By monotonicity of optimal plans :

x0(Do, D1, ..., Dr—1,Dr,Dry1,...) = x5(Do, Dy, ..., Dp_1)

Y

z5(Dy, DY, ... Dp_y) = xo(Dy, DY, ....Dp_y,Dip, Dipq,...)
for every T > max{T,,Tp}. n
In view of Assumption 1, the first period decision map defined above “inherits” optimality and motivates

the next straightforward result :

Corollary :For every (Dy, D1, ..., Dr—1, D, Dryq,...) € D, there exists a solution horizon.



4.1 Forecast Horizon Existence.

By exploiting the monotonicity of the map x¢(.), we prove the existence of a forecast horizon.

Theorem : Under assumptions 1 and 2, there exist a forecast horizon for problem
(P(Do, D1, .. Dr—1, Dp, D1, ...)).

Proof : Let us consider forecasts (D, D1, ..., Dr_1,d,d,...) and (Dg, D1, ..., Dr_1, Dr,0,0,...):
Then by Lemma 1, it follows that :

XO(D07 D17 ceey DT*lvda Jv ) Z XU(DO; D17 ceey DT*I? DT7 DT+17 ) 2 XO(DOa D17 ceey DT*I? DT70707 )
By continuity :

Tlijnoo x0(Do, D1, ..., Dr—1,d,d, ...) = xo(Do, D1, ..., Dy—1, Dy, Dry1, ...)
and
TIEI;O xo(Do, D1, ..., D1, Dr1,0,0,...) = x0(Do, D1, ..., Dr—1, Dy, D141, ...)

Hence, there exists a finite T*such that for every T' > T* we have :
xo(Do, D1, ..., Dr_1,d,d, ...) = xo(Do, D1, ..., Dr_1, Dr, D141, ...) = xo(Do, D1, ..., Dr_1, Dr,0,0, ...)
In other words for any forecast (Dg, Dy, ..., Dy, D, D4, ...) € D such that Dy = D} for 0 <t < T :

Xo(D(/), Dll, "'7D{T71’ D'{T’ D'{T+1’ ) = Xo(DQ,Dl, ceey DT—laDTaDT+17 )

5 Stopping Rule.

The probable multiplicity of monotone optimal production plans leads to the existence of many forecast
horizons. The minimality of the Forecast Horizon identified in the above existence proof is thus of great
interest.

In his remarkable work, Topkis (1969) and (1978) developed a general monotonicity theory of optimal
solutions using lattice programming techniques that not surprisingly encompasses the production planning
model of Kleindorfer and Kunreuther’s (1978). This theory ensures the existence of a smallest and a largest
optimal solutions that are monotone which will be the basis for our selection procedure that we now introduce.

Assuming costs are uniformly bounded as follows :

sup c(-) < &) sup, hu(-) < h()  sup, pi(-) < ()

One can construct a pessimistic scenario, in which demand, production and inventory holding costs are at
their maximal levels, namely :

N-1  _
min lim sup > a'Ele(x, I, d)]
N—oo t=0 _
s.t It+1 :It—i—xt —d
M 2 Tt Z 0
x4, Iy integer t=0,1,2,...

where :

_ — a(x)+h({+x—(i) ifx+1>d
Eley(x, 1,d)] = ( c(x)+p(d—x —1I) otherwise



The above problem is very easy to solve by means of the functional equation :

(DP) V()= Mrgiréo{E[ct(x, Ld)]+aV(z+1—d)}

Let us now consider the next simpler finite dimensional problem :

T
min  E[Y alci(xy, Iy, D) + o7+ -V (I7))

P t=0
( T) s.t It-‘,—l = It —+ 2y — Dt
¢ > 0 integer t=0,1,... 7T -1

By Topkis (1969) and (1978) there exist optimal plans to the problem (Pr) such that their first period
production decisions are monotone in the demand parameters, let us pick 2 with the property that zl is
the smallest of such decisions.

Similarly, if we solve:

T
min  E[Y afei(x¢, I, Dy)]
=0

(BT) s.t It_;,_;: It‘i’xt*Dt

M > x; > 0 integer t=0,1,...T -1

we know that there exist and optimal plan such that its first period action say, zZ' is monotonically increasing
inT,ie:
x> af

and is also the largest of all such solutions. By the Forecast Horizon Existence Theorem, we know that these
sequences must meet, in other words the algorithm we are to describe below must stop after a finite number
of steps.

Step 1. Solve Functional Equation (DP). T=1
Step 2. Solve (Pr) and (Py) for Z} and zl’
Step 3. If 1 =zl then Stop.

Else T=T+1; Go to Step 2.

Proposition 1 Let T* be the Forecast Horizon detected by the above procedure, T* is also the minimal
Forecast Horizon.

Proof: By contradiction, let us assume there exists 7" < T™ such that 7" is the minimal Forecast Horizon.
By hypothesis:
Ty > al
But since Z} is the first period action of the smallest optimal solution to problem (Pr) and zf is the first
period action of the largest optimal solution to problem (P ), this implies that the above inequality is valid
for any chosen pair of optimal solutions to the problems (Pr) and (P;), but this contradicts T being a
Forecast Horizon. =

6 Conclusion.

We have presented existence and computational results for forecast horizons in the context of production
planning with stochastic demand. These results depend critically upon the monotonicity of first period
optimal production decisions with respect to first order shifts in demand distributions, a pervasive feature
of models with convex costs and backlogging. The minimality of the forecast horizon detected through the
proposed stopping rule is obtained via an adequate selection procedure.
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