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Abstract5

We develop novel dual-ascent and primal-dual methods to solve infinite-horizon nonstation-6

ary deterministic dynamic programs. These methods are finitely implementable and converge in7

value to optimality. Moreover, the dual-ascent method produces a sequence of improving dual8

solutions that pointwise converge to an optimal dual solution, while the primal-dual algorithm9

provides a sequence of primal basic feasible solutions with value error bounds from optimality10

that converge to zero. Our dual-based methods work on a more general class of infinite network11

flow problems that include the shortest-path formulation of dynamic programs as a special case.12

To our knowledge, these are the first dual-based methods proposed in the literature to solve13

infinite-horizon nonstationary deterministic dynamic programs.14

1 Introduction15

Industry is often accused of being short-sighted in its planning, obsessed with next quarter’s pro-16

jected profit margin. Many planning tools themselves exacerbate this focus by only considering17

decisions over a fixed finite horizon. Typically, tools that incorporate an infinite horizon make sta-18

tionarity assumptions that restrict the future to be exactly the world we confront today. Attempts19

to tackle infinite-horizon and nonstationary environments have been few in number. Examples20

of this nonstationary setting in practice include the sizing and timing of capacity expansions [4],21

planning for production scheduling [35], the replacement and acquisition of new equipment [5],22

dynamic traffic assignment [21], among others. These problems can be modeled as infinite-horizon23

nonstationary dynamic programs (or simply DPs), the context of this paper.24

How do we deal with a problem that is nonstationary and non-ending? Tackling this challenge25

invites many unsavory characters into our midst: an infinite amount of data, pathologies of infinite-26

dimensional spaces, challenges in expressing solutions finitely, etc. Past attempts to tackle this27
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problem have followed one of two approaches. The first approach, called the planning horizon28

approach, is to (if possible) find a finite horizon T sufficiently distant to make the associated errors29

from ignoring times beyond T negligible [3, 8, 9, 25]. A key insight here is that although end-of-30

horizon effect distort decisions close to T , the near term (in particular, the first decision) is less31

affected. This decoupling of the present and future decisions can be achieved by discounting [3],32

uncertainty [1, 19], or through tie-breaking selection [31, 33]. Luckily, the current decision is the33

only one the decision-maker must commit to at the time of implementation. If calculations are34

efficient, a rolling horizon approach is feasible.35

The second approach, typically called the strategy horizon approach, searches for optimal so-36

lutions within the space of infinite-horizon decision sequences, or strategies. Most success in this37

direction is for stationary problems, where the model is simplified to allow for analytic, and hence38

finite, solutions. An example is solving infinite-horizon homogeneous Markov decision processes39

that can restrict search within stationary strategies [10, 27, 29]. The difficulty here is that the40

necessary model simplifications may exclude many realistic problems.41

Since nonstationary data is sometimes unavoidable, other strategy-horizon approaches have42

been developed. Most notable are solving DPs as infinite-dimensional linear programs. Simplex43

methods and duality theory are then leveraged to establish properties of optimal strategies without44

resort to finite truncations of the horizon. References [16] and [24] develop simplex methods to45

solve nonhomogeneous versions of Markov decision processes (MDPs) based on their formulation46

as countably-infinite linear programs (CILPs). Several authors have also adapted Anderson and47

Nash’s [2] general framework for infinite-dimensional linear programs for Markov decision processes48

to solve uncountablestate space stationary Markov and semi-Markov decision problems using linear49

programming formulations of Bellman equations. See for instance, [14, 18, 22, 23].50

The simplex methods in [16] and [24] rely on the condition that all extreme points are nonde-51

generate, a crucial property for showing asymptotic convergence. By contrast, a deterministic DP52

corresponds to a CILP that is highly degenerate. To the authors’ knowledge, only three papers53

study deterministic DP via a strategy horizon approach using CILP formulations. Ghate, Sharma54

and Smith [17] develop a simplex-like method they call the shadow simplex method for a more55

general class of CILPs that have deterministic DP as a special case (see their Section 4). Sharkey56

and Romeijn [34] propose a simplex method for capacitated infinite network flow problems that can57

model deterministic dynamic programming as a shortest path problem (following the construction58

we set out in Section 2 below). Ryan, Smith, and Epelman [30] propose a model for uncapacitated59

network flow problems and model deterministic DP as an all-to-infinity shortest-path problem in60

their Section 5.2.61

All three approaches in these papers have their limitations. Each can be shown to converge in62

optimal value, meaning iterates of their respective simplex methods converge in value to optimality.63

However, each fails to guarantee solution convergence, where successive policy iterates converge to64
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an optimal solution unless there is a unique optimal solution to the problem. Moreover, the methods65

of [34] and [30] may not even be finitely-implementable, meaning each iteration of the algorithm66

may run in infinite time in the worst case.67

In this paper, we build on the “infinite network” view of dynamic programming, but instead of68

constructing a primal simplex method, as in [34] and [30], we generalize dual-ascent and primal-dual69

methods for finite network flow problems (see, for instance, Chapter 9 of [7]) to the infinite setting.70

This setting captures deterministic DP as a special case. Unlike the primal methods discussed in71

the previous paragraph, we show that the dual-ascent method is finitely-implementable and has72

guaranteed pointwise solution convergence. The primal-dual method adapts the dual-ascent method73

to concurrently generate primal feasible solutions in the form of spanning trees. An optimality error74

bound on the gap between objective value of these primal feasible solutions and the optimal value75

is provided, based on the current dual solution. This optimality guarantee is refined as the primal-76

dual method proceeds and the gap disappears in the limit. Both the dual-ascent method and77

primal-dual method leverage the special structure of the infinite graphs we study and cannot easily78

be seen as a straightforward extension of the corresponding methods in the finite-network case.79

To our knowledge, this paper is the first to develop dual-based algorithms for infinite network80

flow problems. There has been a recent surge of work on infinite network flow problems and their81

generalizations (see [26] and [15], in addition to [30] and [34] discussed above) but these works either82

focus on weak and strong duality properties or primal simplex methods, not dual-based methods.83

Moreover, in this paper we establish strong duality using dual-based arguments, a departure from84

previous approaches.85

Our work also relates to a flurry of recent progress on approximate solutions to infinite-86

dimensional LPs for solving stationary stochastic DPs (see, for instance, [11–13, 32]). These papers87

finds ways to approximate infinite LPs by finite-dimensional optimization problems under certain88

assumptions (compact state and action spaces, or sufficient continuity in the data) and provide89

explicit error bounds on the quality of their approximations.90

The algorithms that we describe in this paper are exact algorithms, but since the full run times91

of our methods are infinite, finite termination provides approximately optimal solutions. Like92

the existing literature, we show that if our algorithms run long enough these finite approximations93

converge in value. However, unlike some recent papers (for instance, those described in the previous94

paragraph) we are not able to provide explicit error bounds for our approximations. To the best95

of our knowledge, there are no explicit error bounds for the discrete, non-compact case for infinite-96

horizon dynamic programming in the literature.97

It is important to note that the approximation algorithms developed in the literature that do98

give explicit error bounds do not apply to our setting. This is because our effective state and99

action spaces are not compact while those algorithms, including [12, 13, 32], require compactness100

or strong continuity properties. For example, consider, the recent paper [13]. Assumption 2.1(i)101
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requires that the state and action spaces lie in the unit hypercube of the appropriate dimensional102

space (or at least can be transformed into such a hypercube). This requires that the state-action103

set is compact, as stated in the paragraph above Theorem 2.2 in [13]. In particular, one can note104

that the definition of the transition kernel in that paper Q(·|s, a) is not indexed by time. To put a105

nonstationary problem into this setting would include time as a component of the state and thus106

make the state space noncompact. (Details on such a formulation are included in Section 2.1.)107

Accordingly, these results to do not apply to our (noncompact) setting.108

To further underscore the difference between the compact and noncompact settings, another109

reference [32] shows asymptotic convergence properties of algorithms in the noncompact case (as110

we do in our paper) but must restrict to the compact case when deriving explicit error bounds.111

Other references, such as [12], allow noncompact state spaces in their derivation of explicit error112

bounds, but must impose strong continuity conditions on the transition kernel. These conditions113

fail in the discrete time setting when time is included in the state.114

This paper is organized as follows. In Section 2, we introduce the dynamic program we study115

and formulate it as an infinite network flow problem. In Section 3 the more general class of pure-116

supply network flow problems is introduced. Section 4 describes our dual ascent method. Section 5117

describes our primal-dual method which builds on the primal method of [30] and the dual ascent118

method of the previous section. Section 6 concludes.119

2 Infinite-horizon nonstationary dynamic programming120

We consider a nonstationary infinite-horizon deterministic dynamic programming problem (or sim-121

ply a DP) with finite per period state and action spaces, defined as follows. A system evolves over122

time periods t = 0, 1, 2, . . . in one of finitely many states st ∈ St in each period. The starting state123

s0 is arbitrarily chosen from the set S0. An action at is chosen from a finite and nonempty set As,t124

that depends on each state s ∈ St and time t. The system transitions to a new state according to125

the law s′ = τt(st, at) ∈ St+1, yielding a (nonnegative and undiscounted) immediate cost ct(st, at).126

If there exists a state s′ ∈ St+1 that is not reachable from any state in St (that is, if there does127

not exist an s ∈ St and a ∈ As,t with s′ = τt(s, t)) then we remove state s′ from St+1 since it is128

redundant.129

There is a time-discounting factor δ ∈ (0, 1) associated with costs. The discounted cost at time130

t is δtct(s, a). A policy d = {d(·, t) : t = 0, 1, 2, . . . } prescribes an action d(s, t) ∈ As,t for every131

s ∈ St and every t. Let D denote the set of all policies from starting state s0. The strategy π(d)132

corresponding to policy d is the sequence of actions πt(d) out of initial state s0 provided by policy d133

where πt(d) = d(st(d), t) and st+1(d) = τt(st(d), d(st(d), t) for t = 0, 1, 2, . . . and s0(d) = s0. Then134

V (π(d), s0) :=
∑∞

t=0 δ
tct(st(d), πt(d)) is the cost of policy d (and its corresponding strategy π(d))135

with starting state s0.136

We assume some additional structure as follows:137

4



(S1) immediate costs are uniformly bounded by c̄ <∞; that is, 0 ≤ ct(s, a) ≤ c̄ for all s, a.138

(S2) the cardinality of the set of states St at time t is uniformly bounded by a constant G;139

that is, #(St) ≤ G for all t = 0, 1, . . . .140

The focus of this paper is how to determine a policy that minimizes total discounted cost. That141

is, we solve142

V ∗ := min
d∈D

V (π(d), s0), (1)143

where s0 is a fixed starting state. We consider a non-stationary version of the problem, where state144

sets St, available actions As,t, immediate costs ct, and transition laws τt can all depend on t. Our145

approach to solving this problem is to formulate it as a minimum cost network flow problem on a146

network with countably-many nodes (see Section 3 below).147

We define the network N = (N ,A, b, c) as follows. The set N consists of nodes for each state-148

time pair (s, t) where t = 0, 1, 2 . . . and s ∈ St. The set A consists of arcs ((s, t), (s′, t+ 1)) between149

pairs of nodes for which there exists a ∈ As,t such that τt(s, a) = s′. Arcs are uncapacitated. Node150

(s0, 0) is endowed with a unit supply of 1 and all other nodes have a supply of 0, which defines the151

vector of supplies b. Each arc has an associated cost c((s,t),(s′,t+1)) = δtct(s, a), which defines arc152

costs c. Note that this assumes that there is only a single cost (namely ct(s, a)) for each action a in153

As,t that transitions the problem to state s′ at time t, otherwise c((s,t),(s′,t+1)) is multiply defined.154

This is without loss of generality. Only the lowest costs actions that transition from s to s′ at time155

t are considered and so we may assume that only one cost ct(s, a) persists. By the same reasoning,156

we may assume that only a single action exists that transitions from state s to s′ at time t.157

Remark 1. In the stochastic DP setting, we cannot remove “redundant” actions as we have done158

here simply based on comparing their costs. This is because two actions may give rise to the same159

cost, but not to the same transition probabilities. Only when two actions have the same costs and160

state transitions probabilities can one of them be considered “redundant”.161

Using this network we may define a min-cost flow problem as follows. For brevity, for every node162

(s, t) ∈ N , let O(s, t) denote the set {(s′, t + 1) : τt(s, a) = s′ for some a ∈ As,t} of nodes incident163

to outgoing arcs of (s, t) and I(s, t) denote the set {(s′, t− 1) : τt−1(s′, a) = s for some a ∈ As′,t−1}164

of nodes incident to incoming arcs into (s, t). Note that I(s0, 0) = ∅ since the system starts at time165

0 in state s0.166

The network formulation of (1), given the starting state s0, is:167

Z∗ := min
x

∑
((s,t),(s′,t+1))∈A

δtc(s,t)(s′,t+1)x(s,t)(s′,t+1) (2a)168

subject to
∑

(s′,1)∈O(s0,0)

x(s0,0)(s′,1) = 1 (2b)169

∑
(s′,t+1)∈O(s,t)

x(s,t)(s′,t+1) −
∑

(s′,t−1)∈I(s,t)

x(s′,t−1)(s,t) = 0 for (s, t) ∈ N (2c)170
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x(s,t)(s′,t+1) ≥ 0 for ((s, t), (s′, t+ 1)) ∈ A, (2d)171
172

where x((s,t)(s′,t+1)) is interpreted as the flow along arc ((s, t), (s′, t+ 1)). Let173

Z(x) :=
∑

((s,t),(s′,t+1))∈A

δtc(s,t)(s′,t+1)x(s,t)(s′,t+1).174

The next result relates problems (1) and (2). Details of the proof are contained in the appendix.175

The argument there follows familiar reasoning from the finite-dimensional case, but must take176

special care of some topological issues that arise in the infinite-dimensional setting.177

Proposition 1. Problem (1) and (2) are equivalent in the following sense:178

(i) every optimal policy d∗ can be used to construct an optimal flow x∗ where V (π(d∗), s0) =179

Z(x∗).180

(ii) there exists an optimal flow x∗ that can be used to construct an optimal policy d∗ where181

V (π(d∗), s0) = Z(x∗).182

A complete and careful proof of this proposition is in the appendix. Here, we provide the reader183

with an idea of how the proof works. Note that every feasible flow x to (2) must satisfy x ∈ [0, 1]A.184

This is an immediate consequence of constraints (3b)–(6c). Consequently, every integral solution185

satisfies x ∈ {0, 1}A and so (again by (6b)) can be associated with a unique path from node s0186

to infinity. This path corresponds to a policy that is feasible to (1). Moreover, it can be shown187

that every optimal solution to (2) is integral (see Lemma 14 in the appendix for details). Thus,188

the original formulation (1) and the network flow formulation (2) are equivalent in the following189

sense: every integral solution to (2) corresponds to a feasible solution to (1) (and vice versa) and190

they have the same objective value. Thus, since optimal solutions to (2) are integral, the result in191

Proposition 1 holds.192

We also note that the equivalence expressed in Proposition 1 is quite strong. There is a one-to-193

one correspondence between the optimal solutions of these problems. Other papers in the literature194

have discussed weaker forms of equivalence (see, for instance, Theorem 1 in [20]).195

The following provides an explicit example of the equivalence in Proposition 1.196

Example 1. Consider the following DP. The set of actions St is not changing with t and consists197

of two states; that is, St = S = {1, 2} for all t. The decision-maker has action set A1,t = {1, 2} in198

state 1 (for all t) and singleton action set A2,t = {1} in state 2 (for all t). The transitions are as199

follows:200

τt(s, a) =

1 if s = 1 and a = 1

2 if s = 2 or a = 2
201

202

6



2δ

1, 0 1, 1

2, 1

1, 2

2, 2

1, 3

2, 3

1 δ δ2 δ3

10 (10 + 1
2 )δ

1

2δ2 2δ3

(10 + 2
3 )δ

2 (10 + 3
4 )δ

3

Figure 1: A simple example of the network representation of a nonstationary DP. We follow the
conventions of [7] for drawing networks. Arc costs are found on top of arcs. Wide arrows (⇒)
represents node supplies.

for all t and the costs are203

ct(s, a) =


2 if s = 2

1 if s = 1, a = 1

10 + t
t+1 if s = 1, a = 2

204

205

for all t. Note that the costs are nonstationary. State 1 is the starting state s0. The network206

representation is found in Figure 1. The network formulation (2) in this instance is:207

min
x

∞∑
t=0

δtx(1,t)(1,t+1) +
∞∑
t=1

2δtx(2,t)(2,t+1) +
∞∑
t=0

(10 + t
t+1)δtx(1,t)(2,t+1) (3a)208

subject to x(1,1)(1,2) + x(1,1),(2,2) = 1 (3b)209

x(1,t)(1,t+1) − x(1,t−1)(1,t) = 0 (3c)210

x(2,t)(2,t+1) − (x(2,t−1)(2,t) + x(1,t−1)(2,t)) = 0 (3d)211

x(s,t)(s′,t+1) ≥ 0 for s = 1, 2 and t = 0, 1, . . . . (3e)212
213

2.1 Connection to infinite-horizon stationary stochastic dynamic programming214

The network formulation in (2) for nonstationary deterministic DP may be familiar to those familiar215

with the LP formulation of infinite-horizon stationary stochastic dynamic programming, discussed216

in detail in numerous references (see, for instance, Chapter 6 of [27]). We describe this formulation217

in detail here to draw comparisons with our formulation of the deterministic setting.218

In the stationary stochastic (Markov) DP setting, we have a set of states Σ and an action set219

Aσ for each σ ∈ S. Neither Σ nor Aσ change over time. The problem is stochastic, reflected by220

a transition probability p(σ′|σ, α) of transitioning to state σ′ when starting in state σ and taking221
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action α. Puterman [27] (among many others) gives an LP formulation of this problem:1222

min
x

∑
σ∈Σ

∑
α∈Aσ

c(σ, α)x(σ, α) (4a)223

subject to
∑
α∈Aj

x(j, α)− δ
∑
σ∈Σ

∑
α∈Aσ

p(j|σ, α)x(σ, α) = α(j) for all j ∈ Σ (4b)224

x(σ, α) ≥ 0 for σ ∈ Σ and α ∈ Aσ (4c)225
226

where the α(j) are positive scalars that sum to one and c(σ, α) is the cost of taking action α in227

state σ.228

The reader will certainly notice similarities between the deterministic formulation (2) and the229

stochastic formulation (4). Indeed, in both cases, the feasible vectors x have an interpretation as230

“occupation measures” that provide the (expected) number of times a given state-action pair will231

be visited.232

An important difference is that the deterministic problem (2) corresponds to a network flow233

problem (as seen in Example 1 and made formal in Section 3.1) while the stochastic formulation (4)234

does not. This was described in detail in [16]. Because of stochasticity, arcs may have multiple head235

nodes, corresponding to the set of states that could reached under different random realizations236

of the transition. Such an object is called a hypernetwork. This distinction of a network problem237

versus a hypernetwork problem is important, since the methods of this paper extend dual-based238

methods to solve network flow problems. To our knowledge, these methods do not have ready239

analogies in the hypernetwork setting.240

Another important difference is that, when the state and action sets are finite, the resulting241

linear program (4) in this case is finite dimensional. Notice that the “infinite horizon” part of the242

problem set up does not translate into an infinite formulation. The stationarity of the problem243

allows us to finitely handle infinite time, and the LP formulation (4) is in the dimension of the244

size of the state and action sets. Indeed, for the formulation of a stationary DP to be infinite245

dimensional, either an infinite state space or infinite action space is needed (for [12, 13, 24] for246

examples of this).247

Our problem is infinite-dimensional because of nonstationarity. Although the state and action248

sets are finite, data are indexed by time. Indeed, if one were to formulate our problem as a249

nonhomogenous DP (like in (4)) would require an infinite state space Σ. This formulation is as250

follows: state set251

Σ = {(t, s) : t = 1, 2, . . . , s ∈ St} (5)252
253

action sets A(t,s) = As for all t, costs c((t, s), a) = ct(s, a) for all states (t, s) and actions a ∈ A(t,s),254

1Puterman calls this the “dual” linear program of the MDP. In our context, it is more fitting to call it the “primal”
linear program.
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and transition probabilities pt((t
′, s′)|(t, s), a) = 1 if s′ = τt(s, a) and t′ = t + 1 and 0 otherwise.255

Under this approach, the state set Σ is infinite and unbounded and the formulation (4) is a CILP.256

As discussed in the introduction, existing papers in the literature on homogenous stochastic DPs257

do not apply to this X since those papers assume the state space Σ is compact. Clearly, the state258

space Σ in (5) is not compact.259

3 Pure-supply infinite network flow problems260

We now discuss a generalization of the network flow problem (2), which was introduced in [30]. We261

recall the necessary notions from that paper and describe how (2) is a special case of that setting.262

Let G = (N ,A) be a directed graph with countably many nodes N = {1, 2, . . . } and arcs263

A ⊆ N ×N . Let I(i) denote the set of nodes that are tails of arcs entering node i: I(i) := {j ∈ N :264

(j, i) ∈ A}. Similarly, the set of nodes that are heads of arcs leaving i is O(i) := {j ∈ N : (i, j) ∈ A}.265

Each arc (i, j) has cost cij . Each node has supply bi. The countably-infinite network flow problem266

(CINF) problem on network (N ,A, b, c) is to a find a real nonnegative flow vector x that minimizes267

the cost and maintains flow balance at every node:268

Z∗ := inf
x

∑
(i,j)∈A

cijxij (6a)269

(CINF) s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi for i ∈ N (6b)270

xij ≥ 0 for (i, j) ∈ A. (6c)271
272

Let Z(x) :=
∑

(i,j)∈A cijxij . A feasible solution x to (CINF) is called a feasible flow.273

For an arc (i, j) ∈ A, node i is called the tail node of arc (i, j) and node j its head node. The274

in-degree and out-degree of node i in G are the cardinalities of I(i) and O(i), respectively. A graph275

is locally finite if every node has finite in- and out-degree. A finite (undirected) path in G is a finite276

sequence of distinct nodes i1, i2, . . . , in, where (ik, ik+1) ∈ A or (ik+1, ik) ∈ A for k = 1, . . . , n− 1.277

A path to infinity is a sequence of distinct nodes i1, i2, . . . where (ik, ik+1) ∈ A or (ik+1, ik) ∈ A278

for k = 1, 2, . . . . We typically use Pij to denote a finite path from node i to node j, and Pi∞ to279

denote a path from node i to infinity. Two nodes i and j are finitely connected in G if there exists280

a finite path Pij . Two nodes i and j are connected at infinity if G contains two paths to infinity,281

Pi∞ and Pj∞, that share no common nodes. Nodes i and j are connected if they are either finitely282

connected or connected at infinity. The graph G is finitely connected if all nodes i and j in G are283

finitely connected.284

A finite cycle in G is a finite sequence of nodes i1, i2, . . . , in, i1 where i1, i2, . . . , in is a path and285

either (i1, in) ∈ A or (in, i1) ∈ A. An infinite cycle, also called a cycle at infinity, consists of two286

paths to infinity from some node i, (i, i1, i2 . . . ) and (i, j1, j2, . . . ), where all intermediate nodes ik287
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and j` are distinct.288

We also need directed versions of these definitions. A finite directed path from i1 to in, denoted289

P→i1in , is a finite path i1, . . . , in where (ik, ik+1) ∈ A for all k = 1, 2, . . . , n − 1. We call P→i1in an290

out-path from i1 and an in-path into node in. A directed path from node i to infinity, denoted291

P→i∞, is a path to infinity Pi∞ where each arc in the path is directed away from node i. A directed292

path from infinity to node i, denoted P←i∞, is a path to infinity Pi∞ where each arc in the path is293

directed towards node i. A directed finite cycle is a finite cycle that consists of a finite directed294

path i1, . . . , in and the arc (in, i1) ∈ A. A directed cycle at infinity is a cycle at infinity where both295

paths to infinity from a given node i are directed, one from infinity to i, and the other from i to296

infinity.297

A graph is acyclic if it contains no finite or infinite directed cycles. A subgraph of G is a forest298

if it contains no (undirected) cycles. A connected forest is called a tree. A tree that contains all299

the nodes of G is called a spanning tree. We are a bit sloppy when it comes to subgraphs of G, and300

will think of them alternatively as sets of arcs, sets of nodes, or entire subgraphs, as the context301

requires.302

An in-tree rooted at node r is a tree where from every node i in the tree there is a directed path303

to node r where all arcs are directed to node r. An out-tree rooted at node r has directed paths304

from node r to every other node in the tree, with now each arc directed away from node r. When305

r is designated as the node at infinity, we call the tree an in-tree rooted at infinity and has the306

property that every node i in the tree has a unique infinite directed path P→i∞.307

Following [30], we will assume that the network (N ,A, b, c)308

(A1) is locally finite,309

(A2) is finitely connected,310

(A3) contains no finite or infinite directed cycles,311

(A4) has finitely many nodes with in-degree 0312

(A5) has integer-valued supplies; that is, bi is integer for all i ∈ N313

(A6) has nonnegative supplies; that is, bi ≥ 0 for all i ∈ N ,314

(A7) has uniformly-bounded supplies; that is, b ∈ `∞(N ) and so there exists a b̄ = ||b||∞ is315

the uniform upper bound on all node supplies, and316

(A8) the arc costs are nonnegative; that is, cij ≥ 0 for all (i, j) ∈ A.317

Assumption (A8) is not assumed in [30] but is needed here for reasons that will be remarked on318

below.319

A vector x satisfying constraints (6b) is a basic flow if the arcs {(i, j) ∈ A : xij 6= 0} form a320

forest in G. Theorem 3.13 of [28] shows that every forest can be extended to a spanning tree of321

G. This ensures that every basic flow can be associated with (at least one) spanning tree. A basic322

flow is a basic feasible flow (bff) if the flow is also nonnegative.323

Until now we have not set any assumptions on the costs of arcs. To do so, we introduce another324
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concept: stages of nodes. As carefully detailed in [30], this requires some preprocessing. Identify all325

transshipment nodes with out-degree zero. Since no feasible flow will send positive flow along arcs326

into such nodes, they can be removed along with all of their incident arcs without loss of generality.327

Apply this rule recursively until no such nodes remain. Moreover, without loss of feasibility, each328

supply node has out-degree at least one — otherwise flow balance is violated. This establishes the329

following.330

Proposition 2 (Proposition 2.1 in [30]). In every feasible instance of (CINF) whose underlying331

instance satisfies (A1)–(A7), each node has out-degree at least one without loss of generality.332

We can now define stages of nodes. Stage 0 is the set of all nodes with in-degree 0. From333

assumption (A4), this set is finite. Stage 1 consists of all nodes with in-degree 0 in the modified334

graph that results from removing all stage 0 nodes and their incident arcs. Observe that all Stage 1335

nodes are incident to Stage 0 nodes in the graph. Repeat this procedure to construct the remaining336

stages. Since the graph is acyclic, each node is contained in exactly one stage. Let St denote the337

set of nodes in Stage t and s(i) denote the stage of node i. By construction, each stage is a finite338

collection of nodes. A key property for our dual-based methods is the following.339

Lemma 1. For every arc (i, j) ∈ A, s(i) < s(j).340

Proof. Only after removing node i will it be possible that j has an in-degree of 0 since the arc (i, j)341

itself gives node j an in-degree of at least one.342

Since there are countably-many nodes, they can be numbered 1, 2, . . . . There are many possible343

numberings, but we require that the numberings of nodes obeys the staging. That is, for every344

i ∈ Sm and j ∈ Sn with m < n, node i is numbered before node j. Succinctly we write this as345

i < j.346

We make the following assumptions on stages and structure of the costs of the graph.347

(A9) there exist β ∈ (0, 1) and γ ∈ (0,+∞) such that for every (i, j) ∈ A, |cij | ≤ γβs(i),348

where β can be interpreted as a discount factor,349

(A10) there exists a finite uniform upper bound G and the size of cardinality of each stage350

t; that is #(St) ≤ G for all t.351

It is straightforward to see (by the dominated convergence theorem) that these assumptions352

imply that the sequence c of costs is absolutely summable; that is, ||c||1 <∞.353

Remark 2. The uniform upper bound on the cardinality of each stage G is needed to get an354

analytical finite bound on the computational burden of each iteration of the algorithms we present355

below. Please see the proof of Proposition 6 for details. Finiteness of each iteration can still be356

established as long as357 ∑
βt#(St) <∞ (7)358
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holds, but an analytical bound is challenging to establish without additional structure. For sake of359

clarity, development for the more general condition (7) is not explored. Assumption (S2) is natural360

in the deterministic DP setting, since often the set of states S is not changing with time whereas361

costs and transitions between states do change.362

Definition 1. Following [30], we call a network that satisfies assumptions (A1)–(A10) a pure363

supply network. A (CINF) problem with an underlying pure supply network is called a pure supply364

problem.365

The name “pure supply” is inspired by assumption (A6), but also includes all the additional366

assumptions stated. As noted in [30], we can also handle the complementary setting where assump-367

tion (A6) is replaced by bi ≤ 0 for all i ∈ N , by simply reversing arc directions and changing the368

signs of the demands.369

3.1 Dynamic programming is a pure supply problem370

We next show that deterministic dynamic programming falls within our focus class of network flow371

problems.372

Proposition 3. The network flow problem (2) associated with dynamic program (1) is a pure-373

supply problem.374

Proof. Let N denote the network underlying problem (2) and G its associated graph. Hence, G is375

locally finite (condition (A1)) under the stated assumption that As,t is finite for all s and t. As for376

local connectedness (condition (A2)), this holds given our structure of action sets and transitions.377

Indeed, we have assumed that As,t 6= ∅ for all s, t and for every s′ ∈ St+1 there exists an s ∈ St378

and a ∈ As,t such that s′ = τt(s, a). This ensures finite connectedness since all nodes can trace a379

path back to (s0, 0) and so are connected (in the undirected sense that is required). Turning to the380

nonexistence of directed cycles (condition (A3)), there exists no arc from a node (s, t) to a node381

(s′, t′) with t′ ≤ t. This makes both finite and infinite directed cycles impossible. Regarding 0382

in-degree (condition (A4)), the only node with in-degree 0 is the starting node (s0, 0) and so there383

are clearly finitely-many such nodes. Conditions (A5)–(A7) hold since the right-hand of (2) only384

takes on values 0 and 1. Turning to the stage structure, observe that stage St = {(s, t) : s ∈ St}.385

Conditions (A9) and (A10) then follow immediately by boundedness of immediate costs (property386

(S1)), cost discounting by δ, and assumptions on the growth of states (property (S2)) stated in387

Section 2. Condition (A8) holds since ct(s, a) are nonnegative for all s,a, and t.388

Remark 3. The previous result shows that the dynamic programming network flow problem389

can be studied using the methodology of [30]. As we argued in Lemma 14, the primal shadow390

simplex method of [17] also applies. One may also check that the primal simplex method of [34]391

is valid for this setting. The network structure of (2), if we explicitly add the implied constraints392
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x(s,t)(s′,t+1) ≤ 1 to the formulation, does satisfy the basic assumptions of [34] as well as the critical393

condition that the flow between stages is uniformly bounded (Proposition 2.5). The latter property394

is needed to ensure their simplex method converges in optimal value.395

On the other hand, primal simplex methods described in [16, 24] do not directly apply. Their396

methods crucially rely on nondegeneracy properties of the underlying hypernetwork that corre-397

sponds to a stochastic dynamic program. By contrast, (2) is highly degenerate since all but one398

node has a supply of zero. /399

3.2 Constructing trees and basic feasible flows in pure supply networks400

The following properties of pure supply networks are used in our analysis of the dual-ascent method.401

Consider the following procedure:402

Procedure 1 (Constructing a spanning tree). Given a pure supply network,403

(i) for every node i select a single outgoing arc ai (such an arc is guaranteed to exist by404

Proposition 2), and405

(ii) construct the subgraph T with arc set {ai : i ∈ N}.406

Lemma 2 (Lemma 4.2 in [30]). A subgraph T of a pure supply network is a spanning in-tree407

rooted at infinity if and only if it can be constructed by Procedure 1.408

Consider also the following related procedure.409

Procedure 2 (Constructing a basic flow from a tree). Given a spanning tree T of a pure supply410

network, construct a flow xT as follows:411

(i) initially set xSi = 0 for all i ∈ N412

(ii) for each i ∈ N , identify the unique path Pi∞ from i to infinity in T , with forward arcs413

PFi∞ and backward arcs PBi∞, and add a flow of bi to all arcs in PFi∞ and remove a flow414

of bi from all arcs in PBi∞.415

For a general spanning tree T , xT need not be a basic feasible flow. However, when T is an416

in-tree rooted at infinity, this is indeed the case.417

Lemma 3 (Lemma 4.4 in [30]). If T is a spanning in-tree rooted at infinity in a pure supply418

network (e.g., if T is constructed by Procedure 1) then xT is a basic feasible flow.419

4 A dual-ascent method for pure-supply problems420

We construct a simple dual-ascent method to solve (CINF), inspired by the success of dual-ascent421

methods for finite network flow problems. From [30], the dual problem to (6) is422

D∗ := max
π

∑
i∈N

biπi (8a)423
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(CINFD) s.t. πi − πj ≤ cij for (i, j) ∈ A (8b)424

π ∈ c0, (8c)425
426

where c0 is the vector space of all sequences that converge to 0. Let D(π) :=
∑

i∈N biπi.427

Weak duality for (6) and (8) was proved in [30], which is critical to our Dual-Ascent Method.428

We restate the result here for completeness.429

Theorem 1 (Weak duality, Theorem 7.3 of [30]). In an instance of (6) where assumption (A1)–430

(A10) hold, every primal feasible x and dual feasible π satisfy Z(x) ≥ D(π). In particular, if there431

exist a primal feasible x∗ and dual feasible π∗ such that Z(x∗) = D(π∗) then x∗ is an optimal432

solution to (6) and π∗ is an optimal solution to (8).433

We also point out that that there is a natural pairing between the space c0 and the finite signed434

measures over the time-indexed state and action pairs (this was discussed in Section 2.1). Thus,435

the standard arguments of [2] for weak duality also hold in view of this pairing.436

The idea of a dual-ascent method is to iteratively generate dual feasible solutions πn that strictly437

improves D(πn) (unless a termination condition is reached). Each iteration of our algorithm adjusts438

π at a single node i, incrementing it by the slack value sij = cij + πj − πi of constraint (8b) for439

some j where (i, j) ∈ A. This construction implies that πi maintains the cost of a finite path from440

node i to some node j in the graph. Our algorithm chooses the node i that admits the largest441

possible increase in the value of π. That is, node i is chosen so that sij is as large as possible and442

yet still maintains dual feasibility. Since the sij are nonnegative for all (i, j) ∈ A, this implies that443

π is strictly increased at each iteration unless all sij are zero. Careful details follow.444

The following provides an alternate interpretation of the updating rule (12).445

Lemma 4. For all i and n, the iterate πni of the Dual-Ascent Method satisfies446

πni =

πn−1
in + sninjn if i = in

πn−1
i otherwise.

(13)447

Proof. Observe that cinjn + πn−1
jn = πn−1

i + sninjn by (9) and so we can alternately express the448

updating (12) of πni as in (13).449

Remark 4. It is important to point out the possibility that the same node in may be visited more450

than once by the algorithm. Observe that when an arc a = (in1 , jn1) is selected at time n1, then451

(12) ensures that sn1+1
in1jn1 = 0 when the algorithm next visits (9). That is,452

πn1
in1 − π

n1
jn1 = cin1jn1 (14)453

This implies sn1+1
in1jn1 = 0 and so node in1 will not be immediately selected as in1+1 at iteration454

n1 + 1. However, we now show it is possible for sn2
in1jn1 > 0 at a later iteration for some iteration455
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Dual-Ascent Method

1. (Initialization) Input a pure supply network (that is, an infinite network satisfying
assumptions (A1)–(A10)) and set π0

i = 0 for all i ∈ N and n = 1.
2. (Construct slacks) Set

snij ← cij + πn−1
j − πn−1

i for all (i, j) ∈ A, (9)

sni ← min
j∈O(i)

snij for all i ∈ N (10)

sn ← max
i∈N

sni . (11)

3. (Check for termination) If sn = 0 then terminate. Else go to 4.
4. (Update πn) Set in ∈ arg maxi∈N s

n
i and jn ∈ arg minj∈O(i) s

n
inj and update

πni ←

{
πn−1
jn + cinjn if i = in

πn−1
i otherwise.

(12)

5. (Update n) Increment n to n+ 1 and go to step 2.

n2, allowing the possibility that in2 = in1 . Suppose in2−1 = jn1 (that is, the head node of arc a456

is selected immediately before iteration n2) and neither node incident to arc a was selected since457

iteration n1. This implies that (14) still holds at iteration n2 − 1; that is,458

πn2−1
in1 − πn2−1

jn1 = cin1jn1 . (15)459

Now, suppose arc (jn1 , jn2−1) is the arc selected in iteration n2 − 1. This implies460

πn2
jn1 = πn2−1

jn1 + cjn1jn2−1 (16)461

and462

πn2
in1 = πn2−1

in1 . (17)463

Putting equations (15)–(17) together implies464

πn2
in1 − π

n2
jn1 = πn2−1

in1 − πn2−1
jn1 − cin1jn1465

= cin1jn1 − cin1jn1466

< cin1jn1 ,467
468

under the assumption of nonnegative costs and assuming for sake of argument that cjn−1jn2−1 > 0.469

This implies that sn2
in1jn1 > 0, allowing for the possibility that in2 = in1 . This return to a previously470

processed node may cause the reader to worry the algorithm cycles. The issue of cycling is addressed471
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below in Remark 6. /472

The following observations give us greater insights into the Dual-Ascent Method. The first473

key observation is that iterates are dual feasible solutions.474

Proposition 4 (Dual feasibility of iterates). For all n, the iterates πn of the Dual-Ascent475

Method are feasible to (CINFD).476

Proof. We argue inductively. For the base (n = 0) case, plugging π0 into (8b) reveals 0 ≤ cij for477

all (i, j) ∈ A and clearly π0 ∈ c0. Thus, π0 satisfies (8b) and (8c) and so is dual feasible.478

For the inductive step, suppose πn−1 is dual feasible and argue the same is true for πn. It479

suffices to check that sn+1
ij ≥ 0 for all arcs (i, j) ∈ A. If arc (i, j) is such that neither i nor j are480

equal to in then sn+1
ij ≥ 0 follows by induction. Next suppose j = in in arc (i, j) ∈ A and hence481

sn+1
iin = ciin + πnin − πni482

= ciin + πnin − πn−1
i483

≥ ciin + πn−1
in − πn−1

i484

= sniin485

≥ 0,486
487

where the second equality holds since πn = πn−1
i , the first inequality uses the fact that πnin ≥ π

n−1
in488

from (13) and the inductive hypothesis that sninjn ≥ 0, and the third equality holds by the definition489

of sniin and the final inequality holds by the inductive hypothesis.490

Next, suppose (i, j) is such that i = in. Then we have for all j ∈ O(i),491

sn+1
inj = cinj + πnj − πnin492

= cinj + πnj − πn−1
in − sninjn493

= sninj − sninjn494

≥ 0,495
496

where the second equality uses (13), the third equality uses the definition of sninj and the inequality497

uses the fact that sinjn = minj∈O(in) s
n
inj .498

It only remains to argue that πn ∈ c0. Note that the updating process of πn−1 in Step 3 of the499

Dual-Ascent Method changes at most one entry from πn−1 to πn. Hence, since π0
i = 0 for all500

i ∈ N , πn has at most n nonzero entries, implying πn ∈ c0.501

Proposition 4 implies, in particular, that snij ≥ 0 for all (i, j) ∈ A and for all n. The next result502

discusses the termination condition, which is related to the values of the slacks.503
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Proposition 5 (Optimality upon termination). If the termination condition sn = 0 in the Dual-504

Ascent Method is reached at iteration n, πn−1 is an optimal dual solution. Moreover, a primal505

optimal flow can be constructed at termination.506

Proof. By Proposition 4, πn−1 is a dual feasible solution. If sn = 0 then sni = 0 for all i and thus for507

every node i there exists an arc (i, j) with πn−1
i −πn−1

j = cij . Construct a tree T using Procedure 1508

where (i, j) is chosen for each node i. By Lemma 2, the resulting tree T is a spanning in-tree rooted509

at infinity and so the flow xT constructed using Procedure 2 is a basic feasible flow by Lemma 3.510

Next, we argue that πn−1 and xT have the same objective values; that is, D(πn−1) = Z(xT ).511

Indeed,512

Z(xT ) =
∑

(i,j)∈A

cijx
T
ij513

=
∑

(i,j)∈T

cijx
T
ij514

=
∑
i∈N

∑
(j,k)∈Pi∞

bicjk515

=
∑
i∈N

bi

 ∑
(i,j)∈Pi∞

(πn−1
j − πn−1

k )

516

=
∑
i∈N

biπ
n−1
i517

= D(πn−1),518
519

where the first equality is the definition of Z(xT ), the second equality uses the fact that xTij = 0 for520

(i, j) /∈ T , the third equality is the method of constructing basic feasible solutions in Procedure 2,521

the fourth equality uses the fact that sij = 0 for all arcs (i, j) in T and so cij = πn−1
i − πn−1

j , the522

fifth equality comes from telescoping along the path Pi∞, and the final equality is the definition of523

D(πn−1).524

Since Z(xT ) = D(πn−1) and xT is primal feasible and πn−1 is dual feasible, Theorem 1 implies525

πn−1 is an optimal dual solution and xT is a primal optimal flow.526

The next results discuss interpretations of the dual iterates πn.527

Lemma 5. For all i and n, the iterate πni of the Dual-Ascent Method is the cost of a finite528

out-tree from node i (and possibly an empty tree with no arcs and cost 0).529

Proof. This follows by induction. For the base case, note that π0
i = 0 is the cost of an empty530

directed tree. The inductive hypothesis is that for all i, πn−1
i is the cost of a finite out-tree from531

node i. By the updating formula (12), when i 6= in, πni = πn−1
i and clearly πn−1

i is the cost of a532

finite out-tree from node i by the inductive hypothesis. When i = in, we know that there is a finite533
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out-tree T from node jn with cost πn−1
jn . Consider adding arc (in, jn) to T . The only worry is that534

adding this arc creates a cycle, which only happens where jn is in T already. However, if jn is in T535

already, adding (in, jn) creates a finite directed cycle. Under assumption (A3) this cannot happen.536

Hence, adding (in, jn) to T creates a finite out-tree from node i and thus πni is the cost of that537

newly created tree. This completes the argument.538

Remark 5. Note that it need not be the case that the T defined in the proof of the previous lemma539

is a directed path. Indeed, the possibility that a node i is visited more than once by the algorithm540

(as discussed in Remark 4) gives rise to this possibility. /541

The next results concern the “computational finiteness” of the algorithm. In particular, there542

is an important step (equation (11)) that näıvely could involve infinite work if the maximum that543

defines sn is attained at all. The next two results resolve this issue. Observe that the minimum544

defining sni in (10) is attained since O(i) is a finite set by assumption (A1).545

Lemma 6. The slack variable sn defined in (11) is well-defined; that is, despite the fact N is546

infinite, the maximum defining sn is finite and attained.547

Proof. First, we show each snij is finite. All πi can be bounded above by ||c||1 since πi is the length of548

a finite out-tree in the graph (by Lemma 5) which is bounded by the sum of all costs ||c||1 of all arcs549

in the graph (this uses assumption (A8)). This implies that snij = cij + πn−1
j − πn−1

i ≤ 4||c||1 <∞.550

This gives a uniform upper bound on the snij , and so sni and sn are all finite.551

Next, we claim that sni converges to 0 as i → ∞. This will imply there exists an M such that552

maxi∈N s
n
i ≤ maxi∈{1,2,...,M} s

n
i . By Lemma 1, the stage s(j) of node j for any (i, j) ∈ A is in a553

stage greater than s(i). Hence, the out-trees that defines πni and πnj consist of arcs with tail nodes554

in stage at least s(i). As i goes to infinity, s(i)→∞ since nodes are numbered according to stages555

and each stage contains finitely many nodes. Thus, πni → 0, πnj → 0, and cij → 0 as i → ∞.556

This implies snij → 0 as i → ∞ for all j ∈ O(i) and thus sni → 0 as i → ∞. This completes the557

argument.558

Proposition 6 (Finite implementability). If sn 6= 0 then steps 2 to 5 of the Dual-Ascent559

Method can be executed in finite time at iteration n of the algorithm.560

Proof. It suffices to argue that, for a given n, only finitely many arcs (i, j) ∈ A need to be visited in561

step 2 to compute sn (in equation (11)). This also means that in and jn in Step 4 can be computed562

in finite time and equation (12) can be executed in finite time.563

The way we argue that only finitely many (i, j) ∈ A need to be visited is as follows. Since564

sn 6= 0 then there exists a first node i∗ such that sni∗ > 0. Let δn , sni∗ > 0. We will show how to565

construct an Mn such that566

snj ≤ δn for all j ≥Mn. (18)567
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568

This means that the arg maxi∈N s
n
i in equation (11) contain an element less than Mn. This implies569

that only the arcs (i, j) incident with a node i, j ≤ Mn need to be processed in equation (9) and570

only nodes i ≤Mn need to be processed in equation (10).571

Thus, the goal turns to constructing an Mn. We start by developing snj from the right-hand572

side of (18):573

snj = min
k∈O(j)

snjk574

= min
k∈O(j)

(cjk + πn−1
k − πn−1

j ) (19)575

576

using equations (9) and (10). Towards (18), we want to upper bound on (19). For the first term in577

the minimization we have578

cjk ≤ γβs(j) (20)579

from (A9). Next, we bound πkn−1, the second term in (19). From Lemma 5, πnk is the cost of a580

(finite) out-tree from node k. Thus, all the nodes in the tree associated with node k must be stage581

s(k) or later (and thus certainly the nodes involved in the arcs of that tree are labeled k or higher).582

Accordingly, we can write:583

πnk ≤
∑

(p,q):p≥k

cpq584

≤

 ∞∑
s=s(k)

∑
(p,q):s(p)=s

γβs

585

= γG
∞∑

s=s(k)

βs (21)586

587

Hence, we can continue from (19):588

snj = min
k∈O(j)

snjk589

≤ min
k∈O(j)

(cjk + πn−1
k ) (22)590

≤ min
k∈O(j)

(γβs(k) + γG

∞∑
s=s(k)

βs) (23)591

≤ γβs(j) + γG

∞∑
s=j

βsg(s) (24)592

≤ γ
(
βs(j) +Gβj

1

1− β

)
593
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≤ γ
(
βs(j) +Gβs(j)

1

1− β

)
(25)594

= γβs(j)
(

1 +
G

1− β

)
(26)595

596

where (22) follows by dropping the negative πn−1
j terms and (23) uses (20) and (21). As for (24),597

this follows since βs(j) ≤ βs(k) for all k ∈ O(j) by Lemma 1. Finally, (25) holds since s(j) ≤ j (each598

stage has at least one node).599

Recall our target condition (18). In (26) we have600

snj ≤ γβs(j)
(

1 +
G

1− β

)
601

602

and so we can guarantee (18) for any j that satisfies603

βs(j)
(

1 +
G

1− β

)
≤ δn

γ
604

605

We want to turn this into an expression of the form j ≥ .... Observe that606

βs(j)
(

1 +
G

1− β

)
≤ δn

γ
607

⇐⇒ βs(j) ≤
δn
γ(

1 + G
1−β

)608

⇐⇒ s(j) ≥
ln

(
δn
γ(

1+ G
1−β

)
)

lnβ
.609

610

That is, as long as j ≥Mn where611

Mn , s−1




ln

(
δn
γ(

1+ G
1−β

)
)

lnβ



 (27)612

613

then our target condition (18) holds.614

An important observation is that the termination condition sn = 0 of the Dual-Ascent615

Method cannot, in general, be verified in finite time. Interestingly, if the algorithm reaches a616

stage where the condition is true, then the current solution is optimal (via Proposition 5) but there617

is no way (in finite time) to know that this is the case. However, Proposition 6 says that if we ignore618

Step 3 and we happen to be in the condition that sn 6= 0, then all other steps of the algorithm619
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can be processed in finite time. It is in this sense that we say that the Dual-Ascent Method is620

finitely-implementable. A similar phenomenon was observed in [16].621

We now turn to the asymptotic performance of the Dual-Ascent Method. That is, we622

consider the limiting behavior of the iterates as n tends towards infinity.623

Lemma 7 (Convergence to dual feasibility). The sequence of iterates πn of the Dual-Ascent624

Method converges pointwise to a dual feasible vector π∗ as i → ∞. That is, πni → π∗i as n → ∞625

for all i ∈ N .626

Proof. We first show that the πn converge pointwise. As argued in the proof of Lemma 6, the πni627

are nonnegative and uniformly bounded above by ||c||1. Moreover, since cij ≥ 0, πni is monotone628

nondecreasing as a sequence in n. Hence, for each i, the sequence πni converges to some limit, say629

π∗i . Let π∗ = (π∗i : i = 1, 2, . . . ).630

Next, we argue that π∗ is dual feasible. From Proposition 4 we know cij + πnj − πni ≥ 0 for all631

n. Hence limn→∞(cij + πnj − πni ) ≥ 0 or cij + π∗j − π∗i ≥ 0 and π∗ satisfies (8b). It remains to argue632

that π∗ is in c0. Suppose otherwise. There exists a subsequence {ik}∞k=1 of nodes such that633

π∗ik > ε for some ε > 0 (28)634

As argued in the previous paragraph, πnik → π∗ik as n → ∞. Via Lemma 5, we know πnik is the635

cost of a finite out-tree Tn from node ik. By Lemma 1, all arcs in Tn have tails in stage s(ik) or636

higher. Thus by assumption (A9), the cost of every arc in Tn is bounded by γβs(i). Moreover, we637

can upper bound the number of arcs in Tn by
∑sn

t=s(ik)G, where sn is the stage of the largest head638

node of an arc of Tn (such an arc exists since Tn is finite). Thus, πnik ≤
∑sn

t=s(ik)Gγβ
s(ik), which639

converges to 0 as k goes to infinity. This implies that there exist k0 and n0 such that πnik ≤ ε for640

n ≥ n0 and k ≥ k0. Since πnik → π∗ik as n → ∞, this implies that π∗ik ≤ ε for k sufficiently large.641

This contradicts (28), completing the proof.642

Lemma 8 (Slacks tend to zero). The sni defined in (10) of the Dual-Ascent Method satisfy643

limn→∞ s
n
i → 0 for all i ∈ N .644

Proof. We proceed by contradiction. Suppose not so that there exists an i ∈ N , an ε > 0, and a645

subsequence snko of the sni such that snki > ε > 0 for all k. This implies that sn > ε for infinitely646

many n. Hence, from (13) in Lemma 4, an entry of πn is increased by at least ε > 0 infinitely often.647

But this is impossible since πni is the cost of a finite out-tree from node i, which is bounded above648

by ||c|||1.649

Theorem 2 (Convergence to dual optimality). The sequence of iterates πn generated by the650

Dual-Ascent Method converge pointwise to an optimal dual solution π∗.651
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Proof. By Lemma 7, the limit sequence π∗ exists and is dual feasible. Let s∗ij := cij + π∗j − π∗i ,652

which denotes the slacks of the dual constraints (8b) for the dual solution π∗. Since πnj → π∗j and653

πni → π∗i as n→∞,654

snij → cij + π∗j − π∗i = s∗ij (29)655

as n→∞. From Lemma 8, for all i, sni → 0. By the pigeon-hole principle, for every i there exists656

a j ∈ O(i) such that sni = snij for infinitely many n. Restricting to the subsequence nk of the n657

such that snki = snkij , s∗ij = limk s
nk
i = 0, using (29) and Lemma 8, respectively (and noting all658

subsequences of convergent sequences have the same limit). This implies that for each node i, we659

can identify an arc (i, j) such that s∗ij = 0.660

By Lemma 2, the subgraph T ∗ of G consisting of the identified arcs where s∗ij = 0 form a661

spanning in-tree rooted at infinity. Thus, by Lemma 3, the associated basic feasible flow xT
∗
,662

constructed by Procedure 2, is a basic feasible flow. We note that Z(xT
∗
) = D(π∗). This is663

precisely the same argument captured in the string of equalities in the proof of Proposition 5,664

replacing T with T ∗ and πn−1 with π∗. Finally, by Theorem 1, Z(xT
∗
) = D(π∗) implies π∗ is an665

optimal dual solution (and xT
∗

is a primal optimal flow).666

Remark 6. It is useful to note that it is impossible for the sequence of iterates to cycle; that is,667

revisit an earlier value for π. The reason is that the updating of π (as reformulated in (13)) always668

occurs when sninjn is strictly bigger than zero (otherwise the method terminates in step 3). /669

Remark 7. The proof of Theorem 2 establishes the existence of a primal optimal solution xT
∗

and670

a dual optimal solution π∗ with the same objective value, that is, Z(xT
∗
) = D(π∗). In other words,671

the Dual-Ascent Method can be used to establish the strong duality of (CINF) and (CINFD)672

under assumptions (A1)–(A10). This was established in [30] using a primal simplex method, and673

in previous papers (such as [26, 34]) using topological arguments. /674

As the above results show, the Dual-Ascent Method produces a sequence of improving dual675

feasible solutions that pointwise converge to an optimal dual solution. In other words, the Dual-676

Ascent Method is an approach to solve the dual of the pure supply problem (6). Another usage677

is to develop optimality error bounds for the primal problem in finite time. In [30], the authors678

propose a primal simplex method that generates an improving sequence of primal feasible iterates679

that converge in value to optimality. Running the primal simplex method and dual ascent method680

in parallel produces a primal feasible solution xn and dual feasible solution πn after n iterations of681

each algorithm. The optimality error Z(xn)−Z∗ of the primal is thus bounded by D(πn)−Z(xn)682

after finitely many iterations of both algorithms. In the next section, we show how to adjust the683

Dual-Ascent Method to produce a sequence of primal and dual feasible iterates simultaneously,684

and whose structures are related, by devising a primal-simplex method.685
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5 A primal-dual method for pure supply problems686

We now develop a primal-dual method. It is standard practice in the finite-dimensional setting to687

develop first a dual-ascent method and then modify it slightly (mostly by just tracking more of what688

is already generated in the dual ascent case) to construct a primal-dual method that maintains a689

sequence of both primal and dual feasible iterates. The connection between the primal and dual690

feasible solution is through the following notion.691

Definition 2. An arc (i, j) is balanced with respect to π ∈ RN if πi − πj = cij .692

In the finite-dimensional setting, the dual feasible iterates πn are built so that they correspond693

to costs of a forest of balanced arcs (with respect to πn). This forest can then be extended to a694

spanning tree, and thus a primal feasible flow (typically using some max flow algorithm). As the695

algorithm proceeds, arcs are added to this forest and eventually there is a dual feasible iterate found696

that corresponds (in cost) to a spanning tree of balanced arcs. Then an argument very similar to697

the proof of Proposition 5 produces an optimal dual solution and optimal primal feasible solution.698

The issue in our setting is that the dual iterates in the Dual-Ascent Method do not corre-699

spond to forests of balanced arcs. This was noted in Remark 4, that arcs can become “unbalanced”700

as the method proceeds. This highlights a difference between our Dual-Ascent Method and the701

typical methods in the finite-dimensional setting. We carefully leverage the pure supply structure702

of the underlying network to avoid running max-flow calculations in each iteration (as, for instance,703

is done in Chapter 7 of [7]). We adapt the method to maintain as much of its underlying simplicity704

as possible.705

Accordingly, we adapt the method not to maintain a forest of balanced arcs (as in the finite-706

dimensional case), but instead of growing set of balanced nodes, defined as follows.707

Definition 3. A node i is balanced with respect to π ∈ RN if there exists a j ∈ O(i) such that708

(i, j) is balanced with respect to π. That is, a node is balanced if it has an outgoing arc that is709

balanced.710

The updating step in the Dual-Ascent method has the potential to unbalance arcs (and thus711

possibly unbalance nodes). So in our revised algorithm (called the Primal-Dual Method) we712

add a “rebalancing step” that balances (potentially different) arcs to assure that every previously713

balanced node remains balanced. Accordingly, the set of balanced nodes grows monotonically in714

size with every iterations of the algorithm, while the set of balanced arcs typically loses arcs and715

gains others as the algorithm proceeds.716

In the limit, we will show that every node becomes balanced, and so a similar conclusion to the717

finite case can be drawn. Namely, there is a limiting dual solution that corresponds to a limiting718

primal feasible solution where every arc in the underlying spanning tree is balanced.719

We now look more carefully at the two major differences between the Dual-Ascent Method720

and the Primal-Dual Method: Step 5 (the rebalancing step) and Step 6 (the step that will721
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Primal-Dual Method

1. (Initialization) Input a pure supply network (that is, an infinite network sat-
isfying assumptions (A1)–(A10)) and set π0

i = 0 for all i ∈ N , B0 =
{i ∈ N : cij = 0 for some j ∈ O(i)}, and n = 1. For every i ∈ N select a single
arc ai = (i, j) such that cij = min {cij : j ∈ O(i)} and T 0 = {ai : i ∈ N}

2. (Construct initial slacks) Set

snij ← cij + πn−1
j − πn−1

i for all (i, j) ∈ A, (30)

sni ← min
j∈O(i)

snij for all i ∈ N (31)

3. (Termination check) Set sn ← maxi∈N s
n
i . If sn = 0 then terminate. Else go to

Step 4.
4. (Balancing step) Set in ∈ arg maxi∈N s

n
i , jn ∈ arg minj∈O(i) s

n
inj , and

πni ←

{
πn−1
jn + cinjn if i = in

πn−1
i otherwise.

(32)

snij ← cij + πnj − πni for all (i, j) ∈ A with i = i′ or j = i′ (33)

sni ← min
j∈O(i)

snij for all i ∈ N (34)

Bn ← Bn−1 ∪ {in} (35)

Tn ← Tn−1 ∪ {(in, jn)} \
{

(i, j) ∈ Tn−1 : i = in
}

(36)

5. (Rebalancing step)

while {i ∈ Bn|sni > 0} 6= ∅

i′ ← max{i ∈ Bn|sni > 0} (37)

j′ ← a node j′ ∈ O(i′) such that sni′j′ = sni (38)

πni′ ← πnj′ + ci′j′ (39)

snij ← cij + πnj − πni for all (i, j) ∈ A with i = i′ or j = i′ (40)

sni ← min
j∈O(i)

snij for all i ∈ N (41)

Tn ← Tn ∪
{

(i′, j′)
}
\
{

(i, j) ∈ Tn : i = i′
}

(42)

endwhile
6. (Update xn) Set

xn ← xT
n

(43)

where xT
n

is as constructed in Procedure 2.
7. (Update n) Set n← n+ 1 and go to Step 3.
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generate primal-feasible iterates). The rebalancing step is essential as it allows us to grow the set722

of balanced nodes. Before establishing this, we first point out that the algorithm does not get723

caught in the while loop in Step 5.724

Lemma 9. In every iteration of the Primal-Dual Method, the while loop in Step 5 finitely725

terminates.726

Proof. It suffices to prove that the set {i ∈ Bn : sni > 0} eventually becomes empty. Suppose i′ and727

j′ are chosen as in (37) and (38) for one iteration of the while. Setting sni′j′ to 0 in step (40) removed728

node i′ from the set {i ∈ Bn : sni > 0} at the end the end of the iteration of the while. Next, we729

argue that this node i′ never returns to the set {i ∈ Bn : sni > 0}.730

The only way that i′ re-enters the set {i ∈ Bn : sni > 0} is if πmj′ is changed from its value πnj′ at731

some later iteration m. However, by definition of i′, we know snj = 0 for all j ∈ Bn with j > i (by732

the definition of i′ as the maximum element of the set {i ∈ Bn : sni > 0}). This implies that πj′ will733

not be adjusted in the course of the rebalancing step, since only the tail nodes of arcs processed by734

the step have their π value adjusted, and all arcs (j′, k) with j′ as their tail node have snj′k = 0 and735

this slack will not be adjusted since the same property holds for the nodes k.736

Hence, a node is removed from {i ∈ Bn : sni > 0} at every iteration of the while, and since Bn
737

is initially a finite set and no nodes are added to Bn in the rebalancing step, this implies that738

{i ∈ Bn : sni > 0} is eventually empty, breaking the while loop.739

Remark 8. Implicit in the argument above is that the only nodes that be rebalanced are prede-740

cessor nodes of the node in that is balanced in Step 4 of the Primal-Dual Method. How such741

nodes can become unbalanced was explored in concrete terms in Remark 4. /742

As the algorithm proceeds, n is successively iterated, and according to (3), the set Bn grows743

with every iteration. We now show that the set Bn contains only balanced nodes. This explains744

the naming of Steps 4 and 5 as balancing and rebalancing steps, respectively.745

Proposition 7. Every node in Bn after the rebalancing step (Step 4 of the Primal-Dual Method)746

is balanced with respect to πn.747

Proof. The proof is by induction. This property is true for B0 by construction since every node i748

in B0 has an arc j ∈ O(i) such that cij = 0 and so749

π0
i − π0

j = cij750
751

since both sides are equal to 0. For the inductive step, note that in (35), the node in that is added752

to Bn is balanced by the nature of the updating in (32). Indeed, arc (in, jn) is balanced in step753

(32) (and, in particular sninjn is set to 0 in (33)) and so in is balanced when added to Bn in (35).754
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It only remains to argue that the nodes in Bn added at an earlier stage remain balanced with755

respect to the new value πn. For a node i ∈ Bn, if sni is unchanged in (34), then it remains at756

sni = 0 and so node i remains balanced. If, however, sni > 0 after step (34), this is addressed in757

the rebalancing step. Once this node is processed as i′ in (37) then after step (41) we have sni = 0758

and so node i is again balanced. As argued in Lemma 9, the while loop terminates with sni = 0 for759

all i ∈ Bn. That is, all nodes in Bn remain balanced with respect to πn at end of the rebalancing760

step.761

Next, we show that Step 6 generates a sequence of primal feasible flows.762

Proposition 8. For all n, the iterates xn of the Primal-Dual Method are feasible to (CINF).763

Proof. We first show that Tn contains exactly one outgoing arc for every node i ∈ N . We establish764

this by induction. The base case for T 0 is true by construction. For the inductive hypothesis, note765

that Tn is updated in (36) and revised in (42). By the inductive hypothesis, Tn−1 has a single766

outgoing arc for every node i ∈ N and so in (36) the set
{

(i, j) ∈ Tn−1 : i = in
}

is a singleton.767

Thus, the update takes out one outgoing arc (in, j) of in from Tn−1 and replaces it with another768

outgoing arc (in, jn) of in. Hence, Tn maintains a single outgoing arc for every node after (36).769

By the same logic, this property is maintained every time (42) is invoked in the rebalancing step.770

Thus, in (43), Tn always contains a single outgoing arc for every node, and hence xn is a basic771

feasible flow by Lemmas 2 and 3.772

The proof of dual feasibility mimics that of the Dual-Ascent Method, applying the logic of773

the balancing step to the rebalancing step. Details are omitted.774

Proposition 9 (cf. Proposition 4). For all n, the iterates πn of the Primal-Dual Method are775

feasible to (CINFD).776

The previous results explain some of the logic of the Primal-Dual Method. It works to build777

balanced nodes and generates a sequence of both primal and dual feasible solutions. The concepts778

come together in establishing a bound on the gap in value between the primal and dual iterates.779

Theorem 3. For every iteration n, Z(xn)−D(πn) ≤
∑

Tn\TnB
cijx

n
ij , where TnB denotes the arcs in780

Tn that are balanced with respect to πn.781

Proof. This proof uses the following notation. As xn is constructed by Procedure 2 we may define782

Pi∞ as the unique directed path to infinity from node i in the spanning tree Tn. Using an analog783

of Lemma 5, which applies equally to the πn generated by the Primal-Dual Method, let Tni784

denote the finite out-tree of node i whose cost is represented by πni . Note that the set of arcs in785

Tni must contain the arcs Pni in Pi∞ with tail nodes in Bn. This is because every arc added to Tn786

in (36) and (42) that is on a directed path from node i is captured in Tni .787
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Using this notation we observe that (with careful justification below):788

Z(xn)−D(πn) =
∑
i∈N

bic(Pi∞)−
∑
i∈N

biπ
n
i (44)789

=
∑
i∈N

bi(c(Pi∞)− πni ) (45)790

=
∑
i∈N

bi(c(Pi∞)− c(Tni )) (46)791

≤
∑
i∈N

bi(c(Pi∞)− c(Pni )) (47)792

=
∑
i∈N

bic(Pi∞ \ Pni ) (48)793

=
∑

(i,j)∈Tn\TnB

cijx
n
ij . (49)794

795

Step (44) uses Procedure 2. Step (46) uses the definition of Tni . Since the set of arcs in Tni contain796

the arcs Pni in Pi∞ with tail nodes in Bn, this justifies dropping the costs of arcs in Tni not in797

Pni . The direction of the inequality follows since the costs of all arcs are nonnegative. Step (49)798

uses the fact that Pni is a subset of Pi∞ for all i. Finally, step (49) uses the understanding from799

Procedure 2 about how xn is constructed by sending flow bi along the unique paths Pi∞ from node800

i to infinity, for each arc i. This uses the fact that, since there are no demand nodes, all flow bi801

originating from node i must traverse the arcs in Pi∞ \Pni (which are precisely the arcs Tn \ TnB in802

the index of the sum in (49)).803

An immediate consequence of Propositions 8 and 9 and Theorem 3 and weak duality (Theo-804

rem 1) is the following non-asymptotic error bounds on the quality of the primal and dual feasible805

solutions generated by the Primal-Dual Method.806

Corollary 1. For every iteration n, Z(xn)−Z∗ ≤
∑

Tn\TnB
cijx

n
ij and D∗−D(πn) ≤

∑
Tn\TnB

cijx
n
ij .807

This is a non-asymptotic bound on the performance of both the primal method and dual as-808

cent method. Moreover, Theorem 3 yields asymptotic convergence results for the Primal-Dual809

Method. Observe that the optimality error bound value
∑

Tn\TnB
cijx

n
ij depends on how many810

nodes are balanced, and thus how many arcs are in Tn \ TnB. The next two results show that all811

nodes will eventually be balanced.812

Lemma 10 (Slacks tend to zero, cf. Lemma 8). The sni updated in (34) and (41) of the Primal-813

Dual Method satisfy limn→∞ s
n
i → 0 for all i ∈ N .814

The proof of this lemma is analogous to that of Lemma 8, adapted to the primal-dual setting,815

and thus omitted.816
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Proposition 10. All nodes are eventually balanced. That is, for all i ∈ N there exists an ni such817

that node i is balanced with respect to πn for all n ≥ ni.818

Proof. Suppose, by way of contradiction, that node i is never balanced and thus i /∈ Bn for all819

n ≥ 0. This implies, in particular since i /∈ B0, that820

min
j∈O(i)

cij > 0. (50)821

822

Also, for all n and k ∈ O(i) we have823

snik = cjk + πnj − πni ≥ cij (51)824

since i is not in Bn and πnj ≥ 0 for all j ∈ O(i). Thus, from (50) and (51) we have825

min
k∈O(i)

snij ≥ min
j∈O(i)

cij > 0,826

827

and so limn→∞ s
n
i > 0. This contradicts Lemma 10, thus completing the proof.828

Lemma 11. The optimality error bound
∑

Tn\TnB
cijx

n
ij from Theorem 3 (and Corollary 1) con-829

verges to 0 as n→∞.830

Proof. Since, by Proposition 10, all nodes are eventually balanced, there exists an ns such that all831

nodes in the first s− 1 stages are in Bns . This implies that Tn \ TnB can only contain arcs with tail832

nodes in stage s or later for n ≥ ns. Thus, the cost of every arc in Tn \TnB can be bounded by γβs.833

That is,834

∑
Tn\TnB

cijx
n
ij ≤

∞∑
k=s

∑
i∈Sk

∑
j∈O(i)

cijxij835

≤ ||b||∞γG
∞∑
k=s

βk (52)836

837

for n ≥ ns, where the second inequality uses assumptions (A7)–(A10). Taking n sufficiently large,838

we can send s → ∞ which sends the right-hand side (52) to zero under assumption (A10). This839

gives the result.840

Theorem 4. The iterates πn and xn converge in value to D∗ and Z∗. That is, D(πn) → D∗ and841

Z(xn)→ Z∗.842

Proof. This is immediate from Corollary 1 and Lemma 11.843

In Theorem 2, the stronger result of the convergence of πn to an optimal solution π∗, and844

not just convergence in value, was established. On the primal side, we cannot guarantee solution845
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convergence. The reason is that there is a choice of arcs in the spanning tree sets Tn, which may846

not converge to a unique spanning tree in the limit.847

However, we can also guarantee finite implementability of the Primal-Dual Method, as was848

argued in Proposition 6 for the Dual-Ascent Method. The same result holds for the Primal-849

Dual Method. Here both the primal and dual solutions need only to be constructed on a finite850

subgraph corresponding to nodes in Bn, since as Lemma 11 showed, costs of arcs outside of TnB can851

be made negligible. It should be noted that we cannot guarantee finite convergence of the overall852

algorithm, the termination condition in step 3 will, in general, be unreachable in finite time.853

5.1 Application to dynamic programming854

Returning to the deterministic DP problem, as established in Proposition 3, it corresponds to a pure855

supply network flow problem and so the Dual-Ascent Method and Primal-Dual Method856

both apply. To make this concrete, we may write the dual of (2) as857

max
π

π(s0,0) (53a)858

s.t. π(s,t) − π(s′,t+1) ≤ δtc(s,t)(s′,t+1) for all t ≥ 0 and ((s, t), (s′, t+ 1)) ∈ A (53b)859

π ∈ c0. (53c)860
861

Remark 9. As initially discussed in Section 2.1, there is a connection between the dual of (2)862

given above in (53) and the dual formulation of the stochastic DP in (4):863

max
v

v(s0) (54a)864

s.t. v(s)− δ
∑
j∈S

p(j|s, a)v(j) ≤ c(s, a) for all s ∈ S and a ∈ As (54b)865

866

where v(s) has the interpretation of the cost-to-go of state s.867

These two duals ((53) and (54)) also have related interpretations. The optimal solution π∗s,t to868

(53) has the interpretation of being the cost of an infinite path from state (s, t) to infinity. Thus,869

the optimal choice of π∗s,t corresponds to the cost of an optimal policy originating in state s at time870

t. Similarly, v(s) has the interpretation of the being the value of an optimal policy leaving state s.871

These two interpretations are analogous.872

To our knowledge, the Dual-Ascent Method and Primal-Dual Method are the first873

dual-based algorithms proposed to solve (2) and (53). These dual based methods directly provide874

computable bounds on the value error from optimal for the strategy provided by a separate primal875

algorithm or within the primal-dual algorithm for the nth iterate. These bounds would, in general,876

be superior to the crude bound heretofore provided by the maximum discounted cost-to-go as, for877

example, in traditional finite horizon approximations.878
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Figure 2: Illustration of a network with supply and demand nodes where a sequence of spanning
trees fails to converge to a spanning tree.

6 Conclusion879

In this paper, we establish a dual-ascent and primal-dual method for deterministic DP. In fact, we880

develop the methodology in the more general class of pure supply network flow problems. We show881

that these methods have desirable properties, including finite implementability, value and solution882

convergence (in the case of the dual-ascent method).883

We should remark that the dual-ascent method studied here is a simple one, where at each884

iteration only a single arc is balanced (or relaxed). More general dual-ascent methods (such as885

those described in [7] and [6]) are considered in the finite network case. Iterations of our dual-886

ascent method most closely resembles a single-node relaxation (or coordinate ascent) approach887

proposed in Section 3.3 of [6]. Single-node relaxations have been shown to be computationally888

efficient in practice, but for general finite networks (such as those with both supply and demand889

nodes) such relaxations do not suffice to compute an optimal dual solution, they must be combined890

with more general relaxation steps. The reason we can confine ourselves to single node relaxations891

is the simple structure of the pure supply network.892

For future work, one could explore analogs of more general dual-ascent methods from the finite-893

network settings and adapt them to the infinite setting. However, this path is fraught with potential894

difficulties, as demonstrated in the following example.895

Example 2. Consider the network in Figure 2 with bi indicated next to each i: odd-numbered896

nodes have supply 1 and even-numbered nodes have supply −1, i.e., demand 1. Any spanning tree897

in this network consists of all arcs except for one. Bold arcs in the figure depict one such tree898

(arc (0, 1) is excluded), and values next to the arcs form the corresponding basic flow. This is the899

unique feasible flow in this network; note that it is degenerate and a tree constructed by omitting900

the arc (i, i+ 1) for any even i has the same corresponding basic feasible flow.901

Consider the sequence of spanning trees that exclude the arcs (0, 1), (2, 3), (4, 5), etc. The limit902

of this sequence (in the product discrete topology defined in [30]) is the entire network, which is903

not a spanning tree.904

One reason this example is problematic is as follows. In the pure supply setting, the trees Tn905

always correspond to spanning trees due to Lemma 3. Moreover, the limit tree T ∗ (studied in the906

proof of Theorem 2) is also a spanning tree because of Lemma 3. The above example shows that907

this need not be true for the mixed supply and demand case. The dual-ascent and primal-dual908
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methods in this paper strongly leverage the properties of the pure supply network (and particularly,909

Lemma 3) and so careful thought must be put into adapting to more general settings.910
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A Proof of Proposition 1917

We begin with some preliminary lemmas. To state the lemmas we need the notion of the character-918

istic vector χS ∈ {0, 1}A of a subset of arcs S ⊆ A that is defined by χS(s,t)(s′,t+1) = 1 if ((s, t), (s′, t+919

1)) ∈ S and 0 if ((s, t), (s′, t+ 1)) ∈ A \ S. Note that Z(χS) =
∑

((s,t),(s′,t+1))∈S δ
tc(s,t)(s′,t+1) is the920

sum of the discounted costs of the arcs in S.921

Lemma 12. The following hold:922

(i) Every integral solution x to (2) is the characteristic vector of a path Px from (s0, 0) to923

infinity and so Z(x) = Z(χPx).924

(ii) Conversely, every path P from (s0, 0) to infinity corresponds to an integral feasible925

solution xP to (2), where Z(χP ) = Z(xP ).926

Proof. To establish (i), note that (3b)–(3e) and integrality imply that the arcs with flow 1 for any927

integral solution x precisely form a path P from (s0, 0) to infinity. Thus, x = χP . For (ii), observe928

that the characteristic vector of a path from (s0, 0) satisfies constraints (3b)–(3e). The result then929

follows.930

Lemma 13. The following hold:931

(i) Every policy d to (1) gives rise to a unique path Pd from (s0, 0) to infinity such that932

V (π(d)s0) = Z(χPd), where χPd is the characteristic vector of a path Pd from (s0, 0) to933

infinity.934

(ii) Conversely, every path P from (s0, 0) to infinity consisting of arcs (s0, 0), (s1, 1), (s2, 2), . . .935

corresponds to a set of policies DP where each policy d in that set satisfies:936

d(s, t)

= a ∈ At such that τt(st, a) = st+1 if s = st

∈ At if s ∈ St and s 6= st
(55)937
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and V (π(d), s0) = Z(χP ) for every d ∈ DP .938

Proof. To establish (i) note that given a policy d and starting with initial state s0 at time 0, the939

policy determines the unique path Pd consisting of arcs (s0, 0), (s1, 1), (s2, 2), . . . where st+1 =940

τt(st, d(st, t)) for t = 0, 1, 2, . . . . It is straightforward to see that V (π(d), s0) = Z(χPd).941

For (ii), clearly each d constructed in (55) has st+1 = τt(st, d(st, t)) for t = 0, 1, 2, . . . . This is942

all the information needed to specific the cost V (π(d), s0), as the choice of d(s, t) for s ∈ St with943

s 6= st is irrelevant to the outcome of the dynamic program. Hence, V (π(d), s0) = Z(χP ) for every944

d ∈ DP .945

The following result is standard in finite-horizon versions of the problem. The argument here946

relies on a couple of useful results in the CILP literature.947

Lemma 14. Problem (2) possesses an optimal flow that is integer-valued.948

Proof. Recall Proposition 2.7 of [17]: a CILP has an optimal extreme point solution if949

(a) the feasible region is non-empty,950

(b) every constraint has a finite number of variables,951

(c) the feasible region is bounded by some vector u; that is, x(s,t)(s′,t+1) ≤ u(s,t)(s′,t+1) for952

all ((s, t), (s′, t+ 1)) ∈ A for as feasible x, and953

(d)
∑

((s,t),(s′,t+1))∈A δ
tc(s,t)(s′,t+1)u(s,t)(s′,t+1) <∞.954

Condition (a) is clearly satisfied since every path from (s0, 0) to infinity corresponds to a feasible955

solution by Lemma 12(ii). Condition (b) follows by assumption (A1). As for (c), the vector956

u(s,t)(s′,t+1) = 1 for all ((s, t), (s′, t+ 1)) ∈ A suffices. Indeed, the only source of flow in the network957

is from node (s0, 0) with a supply of 1, hence no arc will ever have a flow larger than 1 (note that958

we do not impose this upper bound of flow explicitly, but it is implied by the data). Thus, (c)959

holds. As for (d) this follows since960

∑
((s,t),(s′,t+1))∈A

δtc(s,t)(s′,t+1)u(s,t)(s′,t+1) ≤ G
∞∑
t=0

δt · c̄ · 1 = Gc̄ 1
1−δ <∞,961

where the inequality follows from (S1) and (S2). Thus, (2) has an optimal extreme point solution.962

Next, by Theorem 3.14 in [28], every extreme point solution is integral, since the right-hand sides963

of the constraints (3b)–(6b) are integral. Taken together, this implies (2) has an integer solution964

that is optimal.965

Proof of Proposition 1. Lemmas 12 and 13 imply that (a) every feasible policy d to (1) gives rise966

to an integer flow xd of (2) where V (π(d), s0) = Z(xd) and (b) every integer flow x of (2) gives967

rise to policies dx that obey (55) where Px is the path associated with integer flow x described in968

Lemma 12(i) and Z(x) = V (π(dx), s0) for any such policy.969
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We now establish (i). By (a), d∗ has a corresponding integer flow x∗ with V (π(d∗), s0) = Z(x∗).970

Next, by (b), every integer flow x of (2) gives rise to a policy dx such that V (π(dx), s0) = Z(x).971

Taken together this implies that972

Z(x∗) = V (π(d∗), s0) ≤ V (π(dx), s0) = Z(x),973

where the inequality uses optimality of the policy d∗ in (1). Thus, x∗ has the minimum cost among974

all integer flows to (2). By Lemma 14, this implies that x∗ is an optimal flow for (2). This completes975

(i).976

Returning to (ii), there exists an optimal integer flow x∗ to (2). Let d∗ be any policy that obeys977

(55) where P = Px∗ with V (π(d∗), s0) = Z(x∗). Every feasible policy d corresponds to an integer978

vector xd with V (π(d), s0) = Z(xd) and so979

V (π(d), s0) = Z(xd) ≥ Z(x∗) = V (π(d∗), s0),980

where the inequality follows by the optimality of x∗ in (2). Thus, d∗ is an optimal policy since its981

value is no greater than that of any other feasible policy.982
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