
Journal of Global Optimization manuscript No.
(will be inserted by the editor)

Solving Infinite Horizon Optimization Problems Through
Analysis of a One-dimensional Global Optimization
Problem

Seksan Kiatsupaibul · Robert L. Smith ·
Zelda B. Zabinsky

Received: date / Accepted: date

Abstract Infinite horizon optimization (IHO) problems present a number of chal-
lenges for their solution, most notably, the inclusion of an infinite data set. This
hurdle is often circumvented by approximating its solution by solving increasingly
longer finite horizon truncations of the original infinite horizon problem. In this
paper, we adopt a novel transformation that reduces the infinite dimensional IHO
problem into an equivalent one dimensional optimization problem, i.e., minimizing
a Hölder continuous objective function with known parameters over a closed and
bounded interval of the real line. We exploit the characteristics of the transformed
problem in one dimension and introduce an algorithm with a graphical implemen-
tation for solving the underlying infinite dimensional optimization problem.

Keywords Infinite horizon optimization · Dynamic programming · Nonlinear
programming · Hölder and Lipschitz continuous functions

1 Introduction

Decision making over an unbounded horizon presents several challenges to their
formulation and solution. These include the necessity to forecast data over an
infinite horizon, and thereby face a computational challenge of dealing with an
infinite data set. One way to circumvent this issue is to simply assume that to-
day’s world is tomorrow’s world, which reduces the infinite horizon problem to a
one period problem via a dynamic programming recursion as in Markov decision
process models. Alternatively, a finite data set that incorporates time dependent
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data associated with a long finite horizon still introduces a challenging forecasting
and computational task, which realistically can only reliably deliver a limited fi-
nite horizon look ahead into the future. One can then attempt a planning horizon
approach by solving a sequence of ever longer horizon problems in an attempt
to approximate the next best decision that one must implement now [2,4,5,14].
These successive finite horizon problems are typically solved as dynamic programs
[1,3,15]. However when the sequential decisions are strongly correlated (in cost or
feasibility) the state space can rapidly grow to unmanageable sizes [9,11,16,18].

We adopt a novel approach in this paper to the task of finding the best initial
decision for the infinite horizon planning problem by transforming it into a single
one dimensional optimization problem. The resulting problem, although now finite
dimensional, typically has multiple local optima and is thus a global optimization
problem. However, we show the objective function is Hölder continuous and both
of its bounding parameters are analytically given by easily determined parameters
of the problem data. Moreover the feasible region is simply a closed and bounded
interval of the real line. For an earlier attempt in this direction, see [10]. We exploit
the characteristics of this transformed one dimensional problem to introduce an
algorithm with a graphical technique that is guaranteed to find the optimal first
decision to the infinite horizon problem whenever that decision is unique. Although
hard to verify, this is almost always the case (see e.g., [13]).

Since our transformation to a one dimensional optimization problem is invert-
ible, we have the opportunity to solve the original infinite horizon optimization
problem by solving a one dimensional optimization problem whose solution can
be transformed back to a solution of our original infinite dimensional optimization
problem. This interesting and deep connection between infinite horizon optimiza-
tion and the bounding parameters for a Hölder continuous function suggests the
potential to more efficiently recover the next optimal decision within the infinite
horizon optimization problem.

2 Mathematical Model

To study the infinite horizon problem, we consider, for purposes of exposition, the
case of an infinite sequence of binary decisions {0,1}, although the theory is easily
extended to arbitrary p-valued decisions. A familiar problem is the equipment
replacement problem, where the binary decision is to keep or replace a piece of
equipment over an infinite time horizon. A four-valued decision may include more
options, such as: keep and do nothing, keep and provide maintenance, repair, or
replace. Although this is an easily solved problem via dynamic programming when
the cost and feasibility of choice of asset to replace is independent of past acquired
assets, so that the age of the current asset represents the state variable, more
complex binary decision problems can present formidable challenges to a dynamic
programming formulation; in the worst case, the cost and feasibility of the current
decision could depend on the entire history of previous decisions, and therefore,
the state space becomes the nodes of an infinite binary tree.

In this case the number of states increases exponentially fast as one searches
deeper into the tree and moreover a dynamic programming solution approach
becomes pure enumeration of all decision sequences since all aspects of previous
decisions become relevant in assessing the optimality of future decision alterna-
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tives. Our approach from this point of view may be seen as a kind of branch and
bound approach for finding the best path in an infinite binary tree of decision
sequences. Challenging aspects here include that one cannot fathom an incumbent
path in finite time and strong bounds for pruning challenger paths are difficult to
come by. We use the analytical characteristics of the underlying Hölder continuous
function of the transformed one dimensional optimization problem to address both
of these challenges.

To formalize this problem, we define the space of all decision strategies, S, as
an infinite product space of {0,1}, i.e.,

S =
∞Y
n=1

{0, 1},

and, for each strategy s ∈ S, s is an infinite sequence of 0’s and 1’s, denoted,

s ≡ (sn) where sn ∈ {0, 1}, for all n ∈ N.

Throughout, N denotes the set of natural numbers, and R denotes the set of real
numbers. We refer to n ∈ N as the period n, and refer to sn as the decision for
period n.

We create a metric space (S, d), where the metric d is defined as

d(s, t) =
∞X
n=1

|sn − tn|
2n

, for all s, t ∈ S.

This metric induces the product topology of component-wise convergence on S.
That is, the sequence {sk} converges to t if and only if the real number sequence
{skn} converges to tn, for all n, as k goes to infinity. By definition, we also have
that {sk} converges to t if and only if d(sk, t) goes to zero as k goes to infinity.
Under this topology, S is compact by the Tychonoff theorem [2]. Let the set of
feasible strategies be denoted S, which is assumed to be a nonempty closed subset
of S. Note that S is compact since S is compact.

The undiscounted cost function for period n associated with strategy s is denoted
by c(s, n), where c : S × N → R. The cost c(s, n) represents the undiscounted cost
incurred in period n by following strategy s. The total discounted cost for strategy
s is denoted c̃(s), where c̃ : S → R, and is given by

c̃(s) =
∞X
n=1

c(s, n)

(1 + r)n
, (1)

where r > 0 is the rate of interest.

We impose two assumptions on the undiscounted cost function.

1. For each s ∈ S and n ∈ N, c(s, n) is deterministic and depends only on s1 to
sn; it does not depend upon sk where k > n. Consequently, for any s, t ∈ S, if
sk = tk, for all k = 1 to n, then

c(s, n) = c(t, n).
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2. For each s ∈ S and n ∈ N, c(s, n) grows at most geometrically fast in n at a
rate of growth γ less than r, i.e.,

|c(s, n)| ≤ B(1 + γ)n, for all s ∈ S, for all n ∈ N, (2)

where B > 0, and −1 < γ < r.

The two assumptions imply that the total discounted cost c̃(s) is finite for all
s ∈ S. They also imply that the total discounted cost c̃(s) is continuous over S.
The assumptions leading to continuity of c̃(s), and the compactness of S allow us
to state an optimization problem with the existence of an optimal solution.

The class of infinite horizon optimization (IHO) problems we consider is,

Program 1

min c̃(s)

s.t. s ∈ S.

We denote an optimal strategy by s∗, and the nonempty set of all optimal solutions
to Program 1 by S∗.

We show how to transform Program 1 into the following one dimensional global
optimization problem,

Program 2

min f̃(y)

s.t. y ∈ [a, b]

where a and b are real numbers with a < b and the objective function f̃ is a Hölder
function, i.e.,

|f̃(y)− f̃(z)| ≤M |y − z|α, for all y, z ∈ [a, b] ⊆ R, (3)

where M is a positive real number and α is a real number with 0 < α ≤ 1.
Our transformation provides closed form expressions for M and α in terms of

known parameters (specifically, r, B and γ from (1) and (2)). The transformation
has an inverse, allowing the set of optimal solutions of the transformed problem to
be mapped back to optimal solutions of the original problem. There exist several
solution methods in the global optimization literature for Program 2, especially
for the subclass of Lipschitz functions where α = 1 (see [6], [8], [19], [7], and [17]).

Program 2 can be a tractable global optimization problem, and if not solvable
exactly, at least good approximate solution techniques are known. An approxima-
tion may be enough, since in practical terms, only the first period decision s∗1 of an
optimal strategy is needed now within a rolling horizon framework. Towards this
end, we introduce a new algorithm, operating on the one dimensional real number
domain, to solve for the optimal first decision of the original infinite dimensional
problem. Furthermore, since the transformed problem is a one dimensional global
optimization problem on a closed interval, it also allows for graphical representa-
tions of the problem and the algorithm, enabling a decision maker to visualize the
problem and even solve it graphically. This connection between IHO and global
optimization may lead to future research between the two communities.
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3 Construction of a Global Optimization Problem Equivalent to the

Infinite Horizon Optimization Problem

Starting with the infinite horizon optimization problem as formulated in Pro-
gram 1, a natural mapping from a feasible strategy s in S to a real number in the
interval [a, b], for real numbers a < b, is by binary expansion. For example, the
strategy (0, 1, 1, 1, . . .) can be represented in base 2 by 0.0111 . . .2, which equals
one-half. Formally, we can define a function x̃ : S → [0, 1] by

x̃(s) =
∞X
n=1

sn
2n
, for all s = (sn) ∈ S. (4)

Note that x̃ is an onto function, but it is not one-to-one, because (0, 1, 1, 1, . . .) and
(1, 0, 0, 0, . . .) map to the same point, one-half.

We desire a mapping that is one-to-one, so that there exists an inverse mapping.
For that reason, we use a mapping x with a base-3 expansion. Since S ⊂ S, we
construct a function x that maps S into the interval [0, 1/2],

x(s) =
∞X
n=1

sn
3n
, for all s = (sn) ∈ S. (5)

This mapping x, as we next discuss, is now a one-to-one mapping.
Let the image of x over S be denoted by X. Defined in this way, X is the set of all

real numbers in [0, 1/2] that, when represented in the base-3 expansion, have digits
that are 0 or 1. We have no 2’s in our base-3 expansion because sn ∈ {0, 1}, and
thus we do not have to address the ambiguity between 0.1000 . . .3 and 0.0222 . . .3
(both base-3 expansions of one-third). For example, because our base-3 expansion
never ends in a string of 2’s, when we refer to the base-3 expansion of one-third,
we are referring to 0.1000 . . .3. This convention assures us that x is one-to-one, and
hence invertible. As we saw, had we adopted a binary representation, we would
lose this one-to-one property.

The inverse mapping x−1(y) for y ∈ X is easy to interpret; the kth digit in the
3-adic expansion of y represents the kth period decision in x−1(y). For example,
the inverse mapping of y = 0.1 is the strategy s1 = 1 and sn = 0 for n = 2, 3, . . ..
Even though the mapping x is easy to work with, its range X, the image of x over
S, is a special type of set, known in mathematical analysis as a Cantor set, and
is difficult to work with. In the following, we extend the range of X to achieve a
transformation that is easier to work with.

It is well-known from mathematical analysis that X, as a Cantor set, is compact
with Lebesgue measure zero. Also, x : S → X is a continuous mapping. To see this,
observe that, for s and t in S,

|x(s)− x(t)| =

˛̨̨̨
˛
∞X
n=1

sn − tn
3n

˛̨̨̨
˛ ≤

∞X
n=1

|sn − tn|
3n

(6)

where the inequality follows from the triangle inequality, and hence

≤
∞X
n=1

|sn − tn|
2n

= d(s, t).
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Therefore, if a sequence {sk} converges to t in S, then {x(sk)} converges to x(t)
in X as k goes to infinity, implying the continuity of x.

Consider now the set of feasible strategies S and denote the image of x over S
by Y , called the set of feasible solutions or simply the feasible region. The feasible
region Y is compact, because S is compact and the image of a compact set under
a continuous map is compact. Also, Y has Lebesgue measure zero, because Y ⊂ X
and X has Lebesgue measure zero.

Since the function x defined in (5) is a one-to-one mapping, the inverse function
x−1 exists. Define an objective function f : Y → R by

f(y) = c̃(x−1(y)), for all y ∈ Y (7)

where c̃ is the total discounted cost of Program 1. This is the first step in our
transformation of Program 1, and the following theorem states that the objective
function (7) preserves the set of optimal strategies.

Theorem 1 The optimal set of strategies S∗ to Program 1 is equal to an inverse

mapping of the set of optimal solutions Y ∗ to the following problem; min f(y) s.t.

y ∈ Y .

Proof The proof is straightforward because of the construction of the one-to-one
and onto mapping x and its inverse function x−1. If c̃(s) < c̃(t) for s, t ∈ S, then
f(x(s)) < f(x(t)) because f(x(s)) = c̃(x−1(x(s))) = c̃(s). Thus if s∗ is optimal to
Program 1, y = x(s∗) ∈ Y ∗. Similarly, if f(y) < f(z) for y, z ∈ Y , then c̃(x−1(y)) <
c̃(x−1(z)). Consequently, if y∗ ∈ Y ∗, then s = x−1(y∗) is optimal to Program 1.
Hence, Y ∗ = x(S∗) and S∗ = x−1(Y ∗). ut

The following theorem establishes the Hölder property of the objective function
f over Y .

Theorem 2 The objective function f(y) = c̃(x−1(y)) is a Hölder function on Y , i.e.,

|f(y)− f(z)| ≤M |y − z|α, for all y, z ∈ Y, (8)

where 0 < α ≤ 1, and M is a positive constant. In particular, we may set M =
4B/(1− β) and α = min{log3(1/β), 1} where β = (1 + γ)/(1 + r), 0 < β < 1.

Proof Consider y, z ∈ Y , and let s = x−1(y), t = x−1(z). Let k be the first period
where the decision differs between s and t. That is, if k = 0, then sn = tn for all
n = 1, 2, . . .; if k = 1, then s1 6= t1; and for any k = 2, 3, . . ., then sn = tn for
n = 1, . . . , k − 1, and sk 6= tk.

If k = 0, then y = z, because y =
P∞
n=1 sn/3

n =
P∞
n=1 tn/3

n = z, and hence
|f(y)− f(z)| = 0. Thus (8) holds for any positive M and 0 < α ≤ 1.

If k ∈ {1, 2, . . .} then

|f(y)− f(z)| = |c̃(s)− c̃(t)|

and because sn = tn for n = 1, . . . , k − 1, we know by Assumption 1 that c(s, n) =
c(t, n) for n = 1, . . . , k − 1, thus we have,
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=

˛̨̨̨
˛
∞X
n=k

c(s, n)/(1 + r)n −
∞X
n=k

c(t, n)/(1 + r)n
˛̨̨̨
˛

≤

˛̨̨̨
˛
∞X
n=k

c(s, n)/(1 + r)n
˛̨̨̨
˛+

˛̨̨̨
˛
∞X
n=k

c(t, n)/(1 + r)n
˛̨̨̨
˛

≤
∞X
n=k

˛̨
c(s, n)/(1 + r)n

˛̨
+
∞X
n=k

˛̨
c(t, n)/(1 + r)n

˛̨
by the triangle inequality, and

≤ 2
∞X
n=k

B ((1 + γ)/(1 + r))
n

by Assumption 2, and because 0 < β = (1 + γ)/(1 + r) < 1, we have

= 2B
∞X
n=k

βn

= 2Bβk/(1− β).

Now, for k = 1, 2, . . . ,

|y − z| ≥ 1

2 · 3k
. (9)

To see this,

|y − z| = |x(s)− x(t)|

=

˛̨̨̨
˛
∞X
n=k

sn
3n
−
∞X
n=k

tn
3n

˛̨̨̨
˛

≥
˛̨̨̨
sk − tk

3k

˛̨̨̨
−

˛̨̨̨
˛̨ ∞X
n=k+1

sn − tn
3n

˛̨̨̨
˛̨

≥ 1

3k
−

∞X
n=k+1

˛̨̨̨
sn − tn

3n

˛̨̨̨

≥ 1

2 · 3k

and thus (9) holds. Consequently, we have |y − z|α ≥
“

1
2·3k

”α
for all α > 0.

Therefore, (2α)(3α)k|y − z|α > 1, and thus

|f(y)− f(z)| ≤ 2B

 
βk

1− β

!
(2α)(3α)k|y − z|α =

(2)(2α)B

1− β (3αβ)k|y − z|α.

Let α be such that
0 < α ≤ min{log3(1/β), 1}.

Since α ≤ log3(1/β), we have 3αβ ≤ 1. Since α ≤ 1, we have (2)(2α) ≤ 4. Hence,

|f(y)− f(z)| ≤ 4B

1− β |y − z|
α
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and we conclude that f is a Hölder function, i.e.,

|f(y)− f(z)| ≤M |y − z|α

with 0 < α ≤ min{log3(1/β), 1} and M = 4B/(1− β). ut

Up to this point, we have transformed the original infinite horizon optimization
problem in an infinite dimensional space into a global optimization problem with
a Hölder objective function in a one dimensional space. However, our task is not
complete because the feasible region Y is a compact subset of a Cantor set, and
not the entire closed interval [a, b] as we intended.

To complete the task, we extend the objective function f to the whole interval
[a, b] = [0, 1/2] in such a way that the extended function f̃ preserves the same
Hölder condition of f , i.e., f̃ satisfies (3) with the same α and M as those of f .

In fact, there are a number of possible extensions that preserve the Hölder
condition, see, for example, [12]. For the ease of implementation on a computer
with a simple error bound analysis, as shown in Section 4, we choose a piecewise
linear extension, defined as follows,

f̃(y) =

(
f(y) if y ∈ Y,
f(y1) + y−y1

y2−y1 (f(y2)− f(y1)) if y ∈ [0, 1/2]− Y, (10)

where y1 = argminu∈Y {|y − u| : u < y} and y2 = argminu∈Y {|y − u| : u > y}. The
points y1 and y2 are the nearest adjacent points in Y to y, or the adjacent original

feasible points. These adjacent original feasible points, y1 and y2, exist because Y
is compact.

Theorem 3 The extended function f̃ is a Hölder extension of f over [0, 1/2] preserv-

ing the same Hölder condition as in Theorem 2.

Proof See the Appendix. ut

We have now constructed the mathematical program that we want, Program 2,
where the objective function is the Hölder extension in (10) and the feasible region
is [0, 1/2].

It remains to show that we can recover the set of optimal solutions of Program 1
from that of the transformed problem, Program 2. Let S∗ be the optimal set of
strategies to Program 1. Recall from, Theorem 1, that

x(S∗) = Y ∗ = argminy∈Y f(y) = argminy∈Y f̃(y),

where the last equality holds because f̃ = f on Y . Let

Ỹ ∗ = argminy∈[0,1/2]f̃(y)

be the set of optimal solutions to Program 2. We have Y ∗ ⊆ Ỹ ∗ because the
function value of any point in the extended domain is greater than or equal to
the function values of its adjacent original feasible points. However, there is a
possibility that there exists ỹ∗ ∈ [0, 1/2] and ỹ∗ /∈ Y that is optimal to Program 2.
This occurs only when its adjacent original feasible points, y1 and y2 in Y , are both
optimal. Therefore, whenever we find an optimal solution to the Program 2, we
can always recover an original optimal solution by moving to one of the adjacent
original feasible points and taking the inverse function.
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Example 1 Consider a stationary cost equipment replacement problem with a one-
year-old equipment at the beginning of period one, assuming no maximum physical
life. Model this problem by the binary sequences of buy-keep decisions, where 1
represents a “buy/replace” decision and 0 represents a “keep” decision. A sta-
tionary cost has the property that the cost of n periods of a strategy s, c(s, n),
is the same cost if the strategy starts at a different time. To illustrate, consider
strategy s = (s1, s2, s3, . . .) and strategy t = (t1, s1, s2, s3, . . .). If the cost structure
is stationary, then

c̃(t) =
c(t, 1)

(1 + r)1
+
∞X
n=2

c(s, n− 1)

(1 + r)n
. (11)

Now suppose for this example that the optimal solution of Program 2, denoted by
y∗, is unique, and the first period decision of y∗ is to keep the equipment. Then
we can write y∗ = (0, y∗2 , y

∗
3 , . . .), and using the transformation,

y∗ ∈ (0.000...3, 0.011...3) = (0, 1/6).

In contrast, consider a strategy z, where the first period decision is to buy a piece of
equipment, that is, z ∈ (0.100...3, 0.111...3) = (1/3, 1/2). Now, given that the first
period decision of z is to buy, and by the stationarity of the cost structure, the op-
timal subsequent decisions are y∗, because starting at period 2 of z is equivalent to
starting at period 1 of y∗ with a one-year-old piece of equipment. Therefore, if z1 =
1, then the optimal decision is (1, 0, y∗2 , y3∗, . . .) ∈ (0.100...3, 0.1011...3), and if z1 =
1, z2 = 1, then the optimal decision is (1, 1, 0, y∗2 , y3∗, . . .) ∈ (0.1100...3, 0.11011...3).

More generally, the unique optimal solution of f̃ over the open interval0@ nX
i=1

(1/3)i,
nX
i=1

1/3i +
∞X

i=n+2

1/3i

1A
for n = 1, 2, ... is given by z∗ =

Pn
i=1(1/3)i+

P∞
i=n+1 y

∗
i /3

i, representing a sequence
of buy decisions for the first n periods, followed by y∗.

An interesting feature of this example is that the function f̃ of this problem
has at least a countably infinite number of strict local optimal solutions. However,
in practice, we are only interested in the first period strategy which corresponds
to accuracy within the first “decimal” (actually, tri-adic) point. This suggests that
the analytical expressions for the parameters in the Hölder extension allows for an
efficient algorithmic approach that can eliminate intervals with an infinite number
of local optima.

A motivation for this transformation from an infinite dimensional problem to a
one dimensional Hölder function is that there exist numerical procedures, based on
branch-and-bound methods, to optimize Hölder and Lipschitz functions [6–8,17,
19]. With the extension, we can go one step further to devise a graphical algorithm
to visualize and, simultaneously, solve it. In fact, an approximate solution that is
accurate to the first decimal place would suffice as it would provide the optimal
first period decision, which is the decision we need to make now. In Section 4,
we introduce a graphical method to solve the problem for the optimal first period
decision.
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4 A Graphical Algorithm for Finding the Optimal First Decision and a

Numerical Illustration

A simple algorithm, Algorithm 1, that is based on branch and bound is now con-
structed to guarantee discovery of the optimal first period decision, when it is
unique, to the general IHO problem. It should be noted that the subintervals
[0, 1/6] = [0.00̇3, 0.01̇3] and [1/3, 1/2] = [0.10̇3, 0.11̇3] correspond to the first deci-
sion equal to 0 and 1, respectively. This is due to the definition of the transfor-
mation in the previous section. In the algorithm, we form a set of sample points
Qi for iteration i, compute the upper bound and the lower bound of the minimum
corresponding to each of the two subintervals based on Qi, then refine Qi until
the upper bound of one subinterval is lower than the lower bound of the other
subinterval, announcing the discovery of the first optimal decision. We formalize
the algorithm below.

To implement the algorithm on a computer, we need to approximate the cost
function by truncating the infinite series corresponding to a horizon T . In the
course of Algorithm 1, we opt to extend the truncated horizon Ti at each iteration
i, reducing the truncation error as i increases. For iteration i, let the truncated
cost be denoted by c̃(s, Ti) where

c̃(s, Ti) =
TiX
n=1

c(s, n)

(1 + r)n
.

The truncation error |c̃(s)− c̃(s, Ti)| is then

|c̃(s)− c̃(s, Ti)| =

˛̨̨̨
˛̨ ∞X
n=Ti+1

c(s, n)

(1 + r)n

˛̨̨̨
˛̨ ≤ BβTi+1

1− β . (12)

Denote the truncation error bound by εi where

εi =
BβTi+1

1− β .

We next transform the truncated cost function over the infinite sequence do-
main into the truncated objective function over the real numbers. For s ∈ S,
let y = x(s). Define the truncated objective function, with respect to truncation
horizon Ti,

fTi(y) = c̃(x−1(y), Ti).

With f(y) = c̃(x−1(y)) being defined as before and by (12), we then have

|f(y)− fTi(y)| ≤ εi.

It should be noted that fTi(y) is defined only on the Cantor set. We then extend
fTi(y) to f̃Ti(y) over the whole interval [0, 1/2] by the piecewise linear extension,
f̃ , discussed in Section 3. By the property of the piecewise linear extension, for all
y ∈ [0, 1/2],

|f̃(y)− f̃Ti(y)| ≤ εi. (13)

Now we construct the upper bound and the lower bound of the minimal objec-
tive function value based on the set of sample points Qi, taking into account the
truncation error.



Solving Infinite Horizon Optimization Problems via a One Dimensional Problem 11

Proposition 1 Given a set of sample points Qi, a truncation horizon Ti and its cor-

responding truncation error bound εi, let

f̄i([a, b]) = min
y∈Qi∩[a,b]

f̃Ti(y) + εi, (14)

and

f
i
([a, b]) = min

y∈Qi∩[a,b]
f̃Ti(y)− εi −M(∆i/2)α, (15)

where ∆i is the sample spacing size of Qi. Then f̄i([a, b]) and f
i
([a, b]) are upper and

lower bounds of the minimum value of f̃ over the interval [a, b], respectively.

Proof First, we show that (14) provides an upper bound of the minimum. Because
Qi ∩ [a, b] ⊂ [a, b] and (13), we have

min
y∈[a,b]

f̃(y) ≤ min
y∈Qi∩[a,b]

f̃(y) ≤ min
y∈Qi∩[a,b]

f̃Ti(y) + εi.

Now consider the lower bound of the minimum given in (15). Since f̃(y) is
continuous on a closed interval, it attains the minimum at a point y∗ ∈ [a, b]. Let
q∗ be the point in Qi that is closest to y∗, so

|y∗ − q∗| ≤ ∆i/2.

By Theorem 2 and Theorem 3,

f̃(y∗) ≥ f̃(q∗)−M(∆i/2)α.

By (13) and because q∗ ∈ Qi ∩ [a, b], we have,

f̃(y∗) ≥ f̃Ti(q∗)− εi −M(∆i/2)α ≥ min
y∈Qi∩[a,b]

f̃Ti(y)− εi −M(∆i/2)α.ut

Algorithm 1 is a simple demonstration of how we can employ the transforma-
tion to solve the problem. Proposition 2 formally states that the algorithm indeed
solves Program 1 for a unique optimal first decision in finite time.

Algorithm 1 Solving an Infinite Horizon Problem by Global Optimization

Require: A sequence of spacing {∆i}∞i=0 such that ∆i ↓ 0, and a sequence of truncation
horizon {Ti}∞i=0 such that Ti ↑ ∞. Set i = 0 and form an initial set of sample points Q0

with spacing no greater than ∆0.
1: while f̄i([0, 1/6]) ≥ f

i
([1/3, 1/2]) and f̄i([1/3, 1/2]) ≥ f

i
([0, 1/6]) do

2: Form a new set of sample points Qi+1, a refinement of Qi, with spacing no greater than
∆i+1. Extend the truncation horizon to Ti+1.

3: Set i = i+ 1.
4: end while
5: If f̄i([0, 1/6]) < f

i
([1/3, 1/2]), the optimal first decision is 0. On the other hand, if

f̄i([1/3, 1/2]) < f
i
([0, 1/6]), the optimal first decision is 1.

Proposition 2 If Algorithm 1 terminates, it delivers the first optimal decision. Con-

versely, if there is a unique optimal first period decision, Algorithm 1 terminates with

the optimal first decision in finite time.
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Proof Suppose Algorithm 1 terminates. If f̄i([0, 1/6]) < f
i
([1/3, 1/2]), by construc-

tion, the upper bound of the cost incurred by the optimal strategies in the infinite
horizon problem with 0 as their first decision is lower than the lower bound of the
cost incurred by the optimal strategies with 1 as their first decision. Therefore,
the optimal first decision is 0. On the other hand, if f̄i([1/3, 1/2]) < f

i
([0, 1/6])

the upper bound of the cost incurred by the optimal strategies with 1 as their
first decision is lower than the lower bound of the cost incurred by the optimal
strategies with 0 as their first decision. Hence, the optimal first decision is 1.

Suppose there is a unique optimal first period decision. Let

δ = | f̃∗([0, 1/6])− f̃∗([1/3, 1/2]) |

be the gain from adopting an optimal first period decision over the other one,
where f̃∗([a, b]) = miny∈[a,b] f̃(y). Since the optimal first period decision is unique,
we have δ > 0.

Without loss of generality, assume that the optimal first period decision is 1.
For each i, let

εi =
BβTi+1

1− β .

Since Ti ↑ ∞, εi ↓ 0. Therefore, there exists m such that

0 < εm < δ/3.

Let κ = δ − 3εm > 0. Since ∆i ↓ 0, there exists n > m such that the Hölder bound
error from the sample points to the remaining points is smaller than κ/2, i.e.,

M(∆n/2)α < κ/2.

Let y∗1 = argminy∈[1/3,1/2]f(y) and u ∈ Qn∩ [1/3, 1/2] be the sample point that
is closest to y∗1 . Hence,

f̄n([1/3, 1/2]) = min
y∈Qn∩[1/3,1/2]

f̃Tn(y) + εn

≤ f̃Tn(u) + εn

< f(y∗1) + κ/2 + εn

= f̃∗([1/3, 1/2]) + κ/2 + εn. (16)

Let y∗0 = argminy∈[0,1/6]f(y) and y0 = argminy∈Qn∩[0,1/6]f̃
Tn(y). Hence,

f
n

([0, 1/6]) = min
y∈Qn∩[0,1/6]

f̃Tn(y)− εn −M(∆n/2)α

= f̃Tn(y0)− εn −M(∆n/2)α

≥ (f̃(y0)− εn)− εn −M(∆n/2)α

≥ f̃∗([0, 1/6])− 2εn −M(∆n/2)α

> f̃∗([0, 1/6])− 2εn − κ/2. (17)

From (16) and (17) and because εn ≤ εm,

f
n

([0, 1/6])− f̄n([1/3, 1/2]) > f̃∗([0, 1/6])− f̃∗([1/3, 1/2])− 3εn − κ
= δ − 3εn − κ
≥ δ − 3εm − κ
= 0. (18)
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Observe that (18) is the terminating condition of Algorithm 1. Therefore, the
algorithm terminates at step n with 1 as the optimal first decision. ut

To illustrate our algorithm and graphical method, we construct a challenging
infinite horizon binary decision tree problem by setting the discounted cost at
period n given decisions up to period n as a randomly distributed cost between
zero and βn to emulate a highly unstructured problem with exploding state space.
Though satisfying the assumptions required in Section 2, this is a very challenging
dynamic programming problem since the cost at period n in general depends on
the entire history of decisions prior and up to n, rendering any efficiencies via
dynamic programming futile.

The numerical results use the values of r = 0.1 for the rate of interest, γ = −0.4
for the rate of growth, and B = 1, resulting in β = 0.5455, α = 0.5517 and M = 8.8.
The algorithm applied to this problem instance is executed on the R statistical
software platform. We set the schedules of ∆i and Ti as follows,

∆i =
1

10 + 10i
, Ti = max{20 + i, 61}.

We set the bound of Ti to 61 because the corresponding truncation error bound
εi will be equal to 2.22e− 16, which is the machine precision on the R platform.

Figure 1 shows the plots of the transformed objective function together with
f([0, 1/6]) and f̄([1/3, 1/2]) at i = 1, 10, 100. f̄([1/3, 1/2]) is plotted by the dotted
horizontal line, while f([0, 1/6]) is plotted by the solid horizontal line. The algo-
rithm terminates at i = 10 when the termination condition is reached, i.e., when
f̄([1/3, 1/2]) < f([0, 1/6]). From the graph, we can conclude that, in this specific
problem instance, the optimal solution is located in the interval [1/3, 1/2]. This is
equivalent to stating that the optimal first period decision to the corresponding
infinite horizon problem is 1.

The advantage of this method is that it enables us to graph the cost function
of an infinite dimensional problem and use visual inspection to study the problem,
as illustrated in Figure 1. From a visual inspection, it can easily be seen that the
minimum of the objective function f̃ in the interval [1/3, 1/2] = [0.10̇3, 0.11̇3] is
lower than that in the interval [0, 1/6] = [0.00̇3, 0.01̇3] without resorting to the
lower bound and the upper bound lines. With an ability to graph the objective
function, a decision maker can identify the optimal first period decision from visu-
ally inspecting the rough shape of the graph early in the course of the algorithm,
as shown this example. This leads to a simple approximation procedure. It should
be noted that the graphical representation requires both a continuous mapping
and continuous extension, which is the main idea of this article.

Another enticing feature of this procedure is that it enables us to graphically
drill down to investigate not only the optimal first period decision, but also the
second, third and beyond. This can be best illustrated by Figure 2 where we
can visually solve for the optimal first, second and third period decisions to this
complex infinite dimensional decision problem.

5 Discussion

The development in this paper provides the mapping to a one dimensional problem
and algorithmic approach for an infinite horizon optimization problem with binary
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Fig. 1 The development of the graph of the objective function pertaining to the problem
instance at different ith iteration in the course of Algorithm 1. (a) i = 1, (b) i = 5 and (c)
i = 10. Each plot also shows the corresponding f̄i([1/3, 1/2]) and f

i
([0, 1/6]), in the dotted

horizontal line and the solid horizontal line, respectively. The algorithm terminates at i = 10
when the solid line is first located higher than the dotted line.

decisions, however the approach is easily extended to p-valued decisions. A p-valued
decision may include, for example, different maintenance schedules (keep and do
nothing, keep and maintain, or keep and repair), or different replacement schedules
(trade-in when the machine is only a few years old, sell as a used machine, or pay
to have a worn-out machine removed as scrap).

To generalize to p-valued decisions, the strategy sequence would be modified
to sn ∈ {0, 1, . . . , p− 1}, and the mapping in (5) would be modified as

x(s) =
∞X
n=1

sn
(p+ 1)n

, for all s = (sn) ∈ S. (19)
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Fig. 2 The magnified objective functions of the global optimization problem. (a) The graph
of the objective function over the complete feasible set. It visually suggests the optimal first
period decision is 1. (b) The graph of the objective function over the feasible set corresponding
to the optimal first decision equal to 1. It visually suggests the second optimal decision is
0. (c) The graph of the objective function over the feasible set corresponding to the optimal
first period and second period decisions equal to 1 and 0, respectively. It visually suggests the
optimal third period decision is 0.

The analysis extends in a straight-forward manner, with a slight modification
in Theorem 2 by letting α = min{logp+1(1/β), 1} with the constant term M =
(2pB)/(1− β).

6 Conclusion

In this article, we have constructed an equivalence between infinite horizon op-
timization problems and global optimization problems. We have found a hidden
structure between the two optimization problems, leading to a bound of the ob-
jective function in the transformed problem that is easy to compute, enabling one
to construct a practical algorithm to solve the infinite horizon problem. Specif-
ically, we provide a simple algorithm based on the branch-and-bound algorithm
to solve the problem. The branch-and-bound operation on the transformed one
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dimensional Hölder function implicitly prunes the infinite binary tree in the orig-
inal state space, narrowing down the choices so that we can finally pin down
the optimal first period decision. This relationship also offers the opportunity to
explore graphical procedures to approximate the global optimization solution to
sequentially find the next optimal decision for the infinite horizon problem.

Appendix

Proof of Theorem 3.
The proof that the piecewise linear extension preserves the Hölder condition

can be carried out in a straightforward manner as follows. We are to show that
for any pair x, y ∈ [0, 1/2],

|f̃(x)− f̃(y)| ≤M |x− y|α. (20)

Case 1: if both x, y ∈ Y , (20) follows readily, since f̃ = f by construction of f̃ ,
and f satisfies the Hölder condition by Theorem 2,

|f̃(x)− f̃(y)| = |f(x)− f(y)| ≤M |x− y|α, for all x, y ∈ Y. (21)

Case 2: if exactly one of x, y /∈ Y , WLOG, let x ∈ Y , but y /∈ Y . Suppose y > x.
It is easy to check that the function g defined by

g(z) = f̃(x) +M(z − x)α = f(x) +M(z − x)α

is a concave function over z ∈ [x,∞). Therefore, the hypograph of g on [x, 1/2]
is a convex set. Denote this convex set by K. Since y /∈ Y , there exist y1 =
argminu∈Y {|y − u| : x ≤ u < y}, and y2 = argminu∈Y {|y − u| : u > y}. Since
y1, y2 ∈ Y , by (21), (y1, f̃(y1)), (y2, f̃(y2)) ∈ K. Since K is convex, (y, f̃(y)), which
is the convex combination of (y1, f̃(y1)) and (y2, f̃(y2)), is also in K. Hence,

f̃(y) ≤ g(y) = f̃(x) +M(y − x)α. (22)

Similarly, it is easy to check that the function h defined by

h(z) = f̃(x)−M(z − x)α = f(x)−M(z − x)α

is a convex function over z ∈ [x,∞). Therefore, the epigraph of h on [x, 1/2] is a
convex set. With this fact, applying the same argument, it follows that

f̃(y) ≥ h(y) = f̃(x)−M(y − x)α. (23)

By (22) and (23),
|f̃(y)− f̃(x)| ≤M(y − x)α.

Similarly, when y < x,
|f̃(y)− f̃(x)| ≤M(x− y)α.

Hence,
|f̃(x)− f̃(y)| ≤M |x− y|α, for all x ∈ Y, for all y /∈ Y. (24)

Case 3: if both x, y /∈ Y , suppose y > x. The function g defined by

g(z) = f̃(x) +M(z − x)α
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is a concave function over z ∈ [x,∞). Therefore, the hypograph of g on [x, 1/2] is
a convex set. Denote this convex set by K. Since y /∈ Y , there exist

y1 =


argminu∈Y {|y − u| : x < u < y} if {u : x < u < y, u ∈ Y } 6= ∅,
x if {u : x < u < y, u ∈ Y } = ∅,

and y2 = argminu∈Y {|y − u| : u > y}. Since y2 ∈ Y and y1 ∈ Y or y1 = x, by
(24), we have (y1, f̃(y1)), (y2, f̃(y2)) ∈ K. Since K is convex, (y, f̃(y)), which is the
convex combination of (y1, f̃(y1)) and (y2, f̃(y2)), is also in K. Hence,

f̃(y) ≤ g(y) = f̃(x) +M(y − x)α. (25)

Similarly, the function h defined by

h(z) = f̃(x)−M(z − x)α

is a convex function over z ∈ [x,∞). Therefore, the epigraph of h on [x, 1/2] is a
convex set. With this fact, applying the same argument, it follows that

f̃(y) ≥ h(y) = f̃(x)−M(y − x)α. (26)

By (25) and (26),
|f̃(y)− f̃(x)| ≤M(y − x)α.

Similarly, when y < x,
|f̃(y)− f̃(x)| ≤M(x− y)α.

Hence,
|f̃(x)− f̃(y)| ≤M |x− y|α, for all x, y /∈ Y. (27)

By (21), (24), and (27), the theorem is proved. ut
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