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Abstract

We present an analytically derived cooling schedule for a simulated annealing algorithm applicable
to both continuous and discrete global optimization problems. An adaptive search algorithm is used to
model an idealized version of simulated annealing which is viewed as consisting of a series of Boltzmann
distributed sample points. Our choice of cooling schedule ensures linearity in the expected number of

sample points needed to become arbitrarily close to a global optimum.
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1 Introduction

Simulated annealing is a stochastic method for searching for global optima of discrete and continuous opti-
mization problems [1, 7, 8, 11]. The origination of simulated annealing is from an analogy with the physical
annealing process of finding low energy states of a solid in a heat bath [14]. The algorithm avoids getting
trapped in local optima by allowing moves that may lead to a deterioration in objective function value. The
probability of accepting a worse candidate point is controlled by a time-dependent temperature parameter,
which descends asymptotically to zero in the course of the optimization process. From both practical and
theoretical points of view, the cooling schedule for the temperature plays an important role in simulated
annealing. Various choices for cooling schedule have been proposed and computationally tested in the litera-
ture [3, 6, 9]. Moreover, sufficient conditions for many of these cooling schedules have been established that
guarantee convergence to the global optimum [4, 12, 13, 18]. Most conditions simply require the cooling not
be too rapid but are otherwise not specific in specifying what rates might lead to the fastest convergence
to optimal. Indeed, for globally reaching Markov chain samplers like Hit-and-Run [18, 19], any cooling

schedule converging to zero at any rate guarantees convergence to optimal in the limit. In this paper, we
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propose an analytic cooling schedule which leads to a linear in dimension number of sample points.

2 Adaptive Search for Continuous and Discrete Problems

In this paper we derive an adaptive cooling schedule for simulated annealing applicable to both continuous
and discrete optimization problems. The cooling schedule strategies are developed based on the adaptive
search algorithm introduced by Romeijn and Smith [19]. Adaptive search (AS) is an ideal algorithm that
models simulated annealing by assuming points can be sampled according to a sequence of Boltzmann
distributions. An attractive property of AS is that the expected number of record values generated by
the algorithm increase at most linearly in dimension of the problem for a large class of continuous/discrete
optimization problems [19, 23]. In addition, a natural choice of cooling schedule for AS was derived in [19],
which maintained the linearity result on the expected number of sample points required for AS for solving
a class of convex problems with a quadratic type of objective function. In this paper, we develop a cooling
schedule for AS applied to the more general class of Lipschitz objective functions over both continuous and
discrete domains. In light of the difficulty of generating Boltzmann distributed points with low temperature
values, the cooling schedule attempts to keep the temperature of each AS iteration as high as possible while
maintaining a linear complexity in expected number of sample points.

We consider two global optimization programs, one with a continuous domain and one with a discrete

domain. The continuous problem is

(P1) max f(x)

st. z€8

where S is a convex, compact, and full dimensional subset of R, and the objective function f is a real-valued
continuous function defined over S. Let p denote the diameter of S. Let x* be an optimal solution of (P1)
and f* be the global optimum, f* = max,cs f(x). We assume that f satisfies the Lipschitz condition with
Lipschitz constant K, i.e.,

[f(@) = f)| < K|z —yl, Va,y €S, (1)

where || - || is the Euclidean norm on R™.



The discrete problem is
(P2) max f(Z)
st. el

where S is the collection of integer points contained in an n-dimensional hyperrectangle [a1, by] X [ag, ba] X.. . . X
[@n, br], where a; < b; and a;,b; € Z for i = 1,...,n. Let p denote the largest width of the hyperrectangle,

ie., p = maxj_1. . n(bi — a;). Let & be an optimal solution of (P2) and f* be the global optimum,

fr = max; g f(#). Notice that a condition analogous to the Lipschitz condition is satisfied for (P2),
that is

7@~ F@) < K max (#— ), VEg€S, @)
where K is a positive constant and # = (Z1,-.-,%n), §= (§1,--.,Un). Note that because S is a finite set, a

positive constant K exists, with K < f* — f,, where f, = ming g f(@).

We center our attention on adaptive search, introduced in Romeijn and Smith [19], to solve (P1) and (P2).
In [19], adaptive search models simulated annealing by assuming points can be exactly sampled according
to a sequence of Boltzmann distributions. Adaptive search has an attractive complexity property for solving
continuous/discrete global optimization problems. Romeijn and Smith showed in 1994 that the expected
number of record values required for adaptive search to solve (P1) over the continuous space S grows linearly
in the dimension of the problem [19, Theorem 1]. In 2003, Shen, Zabinsky and Smith [20] (see also [21, 23])
extended the linearity result to a finite domain within an n-dimensional lattice.

Neither Romeijn and Smith [19] nor Shen et al. [20] offer algorithms for computing the cooling schedule
whose existence guarantees the linearity result. In this paper, we derive formulas for an analytic cooling
schedule guaranteed to result in at most a linear number of temperature changes. If a procedure were to
be discovered to sample efficiently from the corresponding Boltzmann distributions, adaptive search would

thereby be efficiently implementable through use of this cooling schedule.

2.1 The Adaptive Search Algorithm

Adaptive search [19] is motivated by the idea of approximating the global optimum by generating points

according to a sequence of Boltzmann distributions parameterized by decreasing temperatures (see e.g.



Pincus [15], Rubinstein [17]). As the temperature parameter decreases to zero, the Boltzmann distribution
concentrates more around the global optimum. To be precise, let my7 be the Boltzmann distribution
corresponding to (P1),

Js ef@/T gy

T () = T T

and let 7 ; . be the Boltzmann distribution corresponding to (P2),

Sics, O
Caes /T

where S; € S, S; C S, and T and T are referred to as the temperature parameters.

The adaptive search algorithm [19] is stated below.

Adaptive Search (AS)

Step 0: Set k = 0. Generate X uniformly over the feasible region. Set Yy = f(Xy) and Ty = 7(Yp), where

7 is a nonnegative real valued nonincreasing function.

Step 1: Generate Z from the Boltzmann distribution with parameter T}, over the feasible region. If f(Z) >

Yk, set Xp+1 = Z. Otherwise, repeat Step 1.

Step 2: Set Yii1 = f(Xk41) and set the temperature parameter Ty 1 = 7(Yiy1). If stopping criteria has

not been met, increment k£ and return to Step 1.

Intermediate points Z generated in step 1 are called trial points or sample points. The sequence (Xg; k > 0)
is a sequence of record points. Defined in this way, the last sampled point generated by step 1 in each
iteration is then a record point (i.e., an improving point). Lastly, the function 7 generating the sequence of
temperature parameters (Tj; k > 0) is called the cooling schedule.

The expected number of record points of adaptive search has been shown to increase linearly in the
dimension of the problem for both continuous (P1) and discrete (P2) problems [19, 23]. However, the number
of sample points needed to obtain a record value needs to be considered to reflect the overall performance of
the algorithm. To maintain linear performance, we would like to manipulate the cooling schedule to maintain

a constant (1 — a) probability of achieving an improving point. This leads to our choice of cooling schedule.



2.2 Characterization of the Adaptive Search Cooling Schedule

The following principle for a cooling schedule characterizes Adaptive Search (AS).

Choose the temperature for the next iteration of adaptive search so that the probability of

generating an improving point under the Boltzmann distribution is at least 1 — «.

Defining the cooling schedule in this way, the expected number of sample points in each iteration will
be 1/(1 — a) where 0 < a < 1, independent of the dimension n of the problem. As a result, not only the
expected number of record points, but also the expected number of sample points of the adaptive search
algorithm will grow linearly in the dimension of the problem. (The task of generating Boltzmann distributed
sample points remains of course a challenging task that we will not address here.)

To construct the cooling schedule, we first define the improving region corresponding to the continuous
problem (P1) as follows

Sixy ={z € S: f(x) > f(Xi)},

where X, is the record point sampled at the k" iteration of AS. And similarly, let X be the record point
on the k'" iteration of AS for solving the discrete problem (P2), and define the corresponding improving
region as

Fxn = (8 €9 f(@) > (X))
For (P1) with 0 < o < 1, we want to derive the temperature T} such that the probability of generating

an improving point according to the Boltzmann distribution satisfies the following cooling schedule condition

Jo. @/ Tedy
F(XE)
(S50 = T R ey 2T (3)

and similarly for (P2), find the temperature T} such that

Zieé- i ef(f)/i“k
~ (O, _ F(Xp) B
wf,Tk( f(Xk)) = s @/ >1—-a. (4)

Note that a temperature close to zero will satisfy the required probability, as in equations (3) and
(4). However, for a practical algorithm, in general the lower the temperature, the higher the difficulty

to achieve the Boltzmann distribution. In order to be tractable computationally, we want to find the



highest temperature possible that satisfies the required probability. We also want the cooling schedule to
be applicable to a broad family of optimization problems since in general little is known about the problem

before us. This leads to our worst case approach discussed in the next section.

3 An Analytical Cooling Schedule

In this section, we develop cooling schedules for (P1) and (P2) that satisty inequalities (3) and (4) respectively,

based on a worst case analysis.

3.1 Worst Case Functions

Given the current record value, the temperature consistent with the principle of an adaptive search cooling
schedule will be calculated based upon the worst case function among those consistent with the Lipschitz

constants K and K respectively.

The worst case functions for the continuous and discrete problems are constructed as follows.

Definition 1 Given the record point Xy generated at the k' iteration of AS for solving (P1), define a

function h(z) over R™ as follows
h(z) = max{f(Xx), (f* — K|lz —2"[|)}
for all x € R™.

Definition 2 Given the record point X, generated at the k' iteration of AS for solving (P2), define a

function h over Z™ as follows
(@) = max {7000, (7~ & x5 27)) |
forallz € Z™.

An illustration of 2 (x) and i(Z) in two dimensions is given in Figure 1.



(1a): Worst case function for continuous problem in two dimensions.

(1b): Worst case function for discrete problem in two dimensions

Figure 1: Worst case functions in two dimensions.

Let Sp(x,) and S’;l( ) denote the improving regions of the h function and h function respectively, i.e.,

Swxy = {zeS:hle) > h(Xe),

Sizyy = {FE€S:h(@) >h(Xp)}

The following theorem states the functions & and h are worse than the original functions f and f, respectively,
in the sense that the probability of sampling an improving point with the worst case function is smaller than

the probability of sampling an improving point with the original function.

Theorem 1 Let X, and Xj, be the record points at the k'™ iteration of AS for solving (P1) and (P2)
respectively. Under the same temperature and feasible region, the probability of sampling a point on the

improving region according to the Boltzmann distribution corresponding to the worst function is less than



that of sampling a point on the improving region according to the Boltzmann distribution with respect to the

original functions f(x) and f(%), i.e.,
s 1. (Spxn)) = 1. (Shixy)), and (5)

T Sizn) 2 Thn (Sh)- (6)

Proof. We only show the proof for the continuous case. The proof for the discrete case is similar. The
proof of the theorem relies on Lemma 4, which appears in Appendix A, and states that, for a,b € R, b > a,
b > 0, if ¢ > 0 then ‘;—ig >

Let = be any point in the region Sj(x,), where Sy(x,) = {z € S : h(x) > h(Xx)}. Then f(x) > h(z),
where h(z) = f* — K||x — z*||. Because the original objective function f(z) is a Lipschitz function with

Lipschitz constant K, we have

[T = @) < K|z = 2],

which is equivalent to

f@) = f* = K|z — 7|

By the definition of i(x) and the Lipschitz condition, for any x € Sp(x,,), one has f(x) > h(x), which implies
that

Shixiy € Spx)-

Next, by applying Lemma 4 and using the facts that Sy(x,) € Sy(x,) and f(z) > h(z) for any x € Sy(x,),
we show that 777, (Sf(Xk)) > T, Ty (Sh(Xk))-
According to the definition of the Boltzmann distribution, we have,

S5y, €'/ T
k

e (Sie) = T T

S5y, &/ P
k

ef(x)/dex_f_ fsf(X )ef(x)/de;I;
k

fS\Sf(Xk)

and applying the fact that Sp(x,) € Sy(x,), we have,
f(@)/ T f(x)/Tk
fSh(xk) ef ™/ M+ fo(Xk)\Sh,(Xk) e/ (/T dy

fS\Sf(Xk) 6f(x)/Tk“ dz + fSh(Xk) ef(x)/dex + fo(Xk)\Sh(Xk) ef(x)/deil’; ’




We apply Lemma 4, (a +¢)/(b+¢) > a/b for b > a > 0 and ¢ > 0, and use

0 = / o @)/ T gy 4 / o (X0)/Ti g
Sh(x) Srx)\Sn(xy,)

b= / oI @)/ T gy 4 / oI @)/ T gy 4 / X0/ T g
S\Sg(x) Sh(x) Srx)\Sn(xy,)

¢ = / @/ Te gy / SO/ Te g
Sxp)\Sn(xy) Sxp) \Sn(xy)

Note that ¢ > 0 because for all z € Sy(x,), f(x) > f(Xy). This yields,
f(@)/ Tk F(X%)/ T
J o © “dz+ fo(Xk)\Suxk) el hdr

fs\sﬂxk) F @)/ T dg + fsh(xk) ef @) /Trdy + fsﬂxk)\ Snxay oF Xi)/ Tr gy

Y

s, 1. (Sr(x1))
s )ef(x)/dem
h(Xp

> .
- x) /T x) /T X))/ Tk
fS\Sf(Xk) ef( )/ kdx + fsh(xk) ef( )/ kdx + fo(Xk)\Sh,(Xk) ef( k)/ kdax

We again apply Lemma 4 by setting

o = / M@/ T g
Sh(Xk)

b = / ef(x)/T’“dﬂc—i—/ eh(x)/T’“dﬂc—i—/ el (Xi)/ T gy
S\Sg(x) Sh(x) Srx)\Sn(xy,)

c = / ef(x)/dex_/ @)/ T g
Sh(x) Sh(xp)

where ¢ > 0 since f(z) > h(z) for all x € Sj(x,,). This yields,

Sy € e

fs\sﬂxk) T @/ T dg + fsh(xk) @)/ Trdy + fsﬂxk)\ Snxay F X/ Tr g

71 (Sp(x)) =

and because for all x € S\ Sy(x,), f(z) < f(Xx), we have,
/. M@/ Tr dg;

Sh(Xk)

>
- Xi)/ T h(z)/ Tk X /T,
Jovsymy, O Tdat [g, MO Tedat [ g el K Ted

/. M@/ Tr dg;

Sh(x},)

ef (Xi) /Ty + fs o eh(@)/Tr
n(Xp

‘/‘S\Sh(Xk)

= 7,1 (Sh(xw))-

Therefore, 71, (Sy(x,)) = Th, 1. (Sh(xy)), i-e., () is a function “worse” than the original function f(x).
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3.2 Calculation of the Adaptive Search Cooling Schedule

Given the k" record values for (P1) and (P2), we next develop a method to calculate Ty and T}, respectively

such that

Trh,Tk (Sh(Xk)) Z 1-— (e and (7)

1 Shxy) 21— (8)

for 0 < a < 1. Note that if inequalities (7) and (8) are satisfied with respect to Tj and Tk, then according

to Theorem 1, the desired results
75,1, (Sr(x,)) > 1 —a and ﬁf’j«k( ~f(Xk)) >1l—-«o

are also satisfied.

For both continuous and discrete cases, the probability of sampling the improving region of the worst
case function not only depends on the current record value but also depends on the location of the global
optimal point. For example, in the continuous case, if z* is an interior point and (f* — f(Xx))/K is less than
the shortest distance from x* to the boundary of the feasible set .S, then the improving region Sp(x,) is a
full n-dimensional ball with center at x*. But if * is located on the boundary of the set S, then no matter
how small the value of (f* — f(Xy))/K, Snx,) is always a part of the n-dimensional ball. In general, the
location of the global point is unknown. The following theory allows a general location of the optimal point,

however a tighter bound is possible if some information on the location of the optimal point is known.

Theorem 2 Consider the program (P1) with the convex feasible region S and the program (P2) with the
feasible region S being the collection of integer points contained in an n-dimensional hyperrectangle. Suppose
X, f(X) and Ty are given for current iteration k for (P1) and Xy, f(Xg) and Ty are given for current

iteration k for (P2). Define the continuous sets By, B,, B; and Bj as follows

By = {zeR":flz—2"| <(f" - f(Xy))/K =0}

B, = {we®:|o—a'| <p}

By = {Fe®: max |m- %] < (P - f(%)/K]+05=0)
B, = {jemn:iiﬁlﬁ%n|ji_j:|§ﬁ+l}'

11



Then
fBg @)/ Tr o eh(@)/ T

- & 2506 Bznzn
Th, T (Sh(xy)) = —f @ Tr g and 7 7 (Sp(z,)) = (BgnZ")
Bp

Zie(Bﬁmzn) eh(@)/ T’

Proof. See Appendix B. W

According to Theorem 2, the probability of sampling the improving region of the worst case function
corresponding for the continuous program (P1) is bounded by the probability of sampling the n-dimensional
ball By with center x* over the larger ball B,. And for the discrete program (P2), the probability of sampling
the improving region of h is bounded by the probability of sampling the discrete points contained in the
n-dimensional hypercube B@ with center £* over the discrete domain contained in the hypercube B,;. The
locations of the optimal points of both continuous and discrete programs do not influence the shapes of By
and B@, which suggests a way of calculating a lower bound on the probability of sampling the improving
region without the knowledge of the optimal point.

‘We next discuss a method to calculate T} and Tk respectively such that

Iz, M@/ T

W > 1-— (e and (9)
Zie(BgnZ") /T

Zg*ce(B,;nZ") €
for 0 < o < 1. Note that if (9) and (10) are satisfied with respect to Ty and T}, then (7) and (8) are also

satisfied by Theorem 2.

We first consider solving for T} for the continuous problem. The following theorem states that solving
for the temperature T}, for the continuous problem to satisfy (9) is equivalent to solving (11) in Theorem 3

for z and using z to determine T}.

Theorem 3 Consider the continuous problem defined by (P1) with optimal objective function value f*. Let

M = (%) (=2 27’7(/)327"/\11%’;) Then solving for z that satisfies

[e%

(n —
il

n—1
n
pu(z)=(n—1)!— Z ) e —Mz"e* >0 (11)
i=0

12



P (@) /Ty g

T @/ Tk am >1-—a.

and setting Ty, = (f* — f(Xk))/z, provides T}, that satisfies the inequality jB"
Bp

Proof.

o, Bz f, T
fB,, eh(@)/Tr dg pr\Be M@/ T dy + [ M@/ T dy

and by definition, h(r) = f* — K|z — x| for all x € By, and h(x) = f(Xy) for all x € B, \ By, thus,
[, eV Klle=aTID/ T gy
fBP\Bg el (X1)/ T d + fBg e —Kllz—a*)/Tx gy
ef /T [ e Kl I/ T g

ef(Xk)/ Tk . 'Un(Bp \ BG) + ef*/ Tk . fBg e—Klla—z*||/Tx gy

By substituting © = x — z* and changing the integration from rectangular coordinates to polar coordinates,

with G = {u € R": ||lu|]| < (f* — f(Xk))/K = 6}, we obtain

fBg eh(x)/Tk" dx ef*/Tk . fG e_K”u“/Tk" du

Jp, €M@/ Tede el /T4, (B \ By) + e/ Te - [, e Kllull/ T dy
(2772 T(n)2)) - el /T . foo e K/ Tk gy

vn (B, \ Bp) - e/ (Xe)/ Tk 4 I?an//s) cef* /T f00 I

@/ Th g
Therefore, the inequality f%e’ﬂw > 1 — a is equivalent to
Bp

n *)Tx 0 n—1,—Kr/T
(277/2/T(n/2)) - el /T . [rn=te=Kr/Tr gr N (12)

Un(Bp \ Bo) el (Xk)/Tk 4 I?Z:://;) el /T . fOo rn—le—Kr/Tk dp —

Carrying out the integration, inequality (12) is,

n—1 1 n
(n =D [ f* = f(Xk) e K 1—a\ va(B,\ Bs) e
-y (FX)—f)/Te _ (2 4 (FX)=)/Te >
(n ) 2. i T e T, o 27r”/2/1“(g)e >0

Substituting z = (f* — f(Xk))/Tk and M = (%) . (1_—a) . 27’7:1(/1327"/\11%)) into the above equation, we

[e%

have

n—1 (Tl N 1)' )
(n—1)!— Z T'z’e_z —Mz"e 7 >0.
i=0 ’

n(=)/Tk g
Therefore solving for T}, in inequality % > 1 — « is equivalent to solving for z in (11) and setting
Bp

T = (f — f(X)/= ™

P (@) /Ty g

Theorem 3 transfers the problem of solving for T} in inequality fB" > 1 — « to the problem
Bp

T @/ Tk do

of solving for z in Eq. 11. Later in this section, we discuss characteristics of pys(z). Next, in Theorem 4,

13



we derive an analogous expression to solve for the temperature T} in the discrete problem. For the discrete
problem, we consider two cases; when there is a single discrete point contained in the region Bé, and when
there are several discrete points contained in the region. In the first case, Ty is calculated directly. In the
latter case, T}, is calculated using py;(Z). The proof of Theorem 4 relies on two lemmas, Lemma 4 and
Lemma 5, which appear in the appendices.

Theorem 4 Consider the discrete problem defined by (P2) with optimal objective function value eI

JO o s _ h(2) /Ty,
I =f(Xk) 7 I =F(Xk) : L LaeBynzm)
7z < 1, then T} < W0z D) solves the inequality

ze(Bsnzm) eh(@)/ Ty, > 1 — . Moreover,
TRaeT ing M R - BsnZ7|—(28)" ., 2 < N .
if TS 2 1, setting M = (%@c)) C(Azey  BNZTCO" iy o — fr— 05K and |By 0 27|

representing the number of discrete points contained in the hypercube 3,3 and & = ﬁ%ﬁl, we have that

solving for Z satisfying

n—1
- =1, 5 o~ 0 s
pM(z):(n—l)'—Z T —Mz%* >0 (13)
i=0
. 5 . o 5 . 5 . . . Zie(B—ﬁZ") (@) /Ty
and setting Ty, = (f* — f(Xk))/Z provides a T}, that satisfies the inequality 0 o >l

#e(Bsnzm) €

Proof. If f*%ﬁl < 1, then there is only one lattice point, £*, contained in the hypercube Bé. Hence

D ze(Bynzm) eh @)/ T B el /T 1w
Sae(Banm €@/ el Tt 1By 0 2n| — 1)l B0/ =0
which is equivalent to
T, < 1_5 - f(Xk) '
In[=22(|B; N 27| = 1)]
e o e ) R/ T
PR ) Tsenam © i
Therefore, if =25 < 1, Th < Rresnzern) OV 5, . oo =1

Now consider the case I =7 Xe) > 1, which implies

Z@e(BgnZn) M@/ T Zie(BgﬂZ") M@/ T

D ie(Banzm) eh@)/ T D ze(Bynzm) eh@)/ T 4 D oze(Bynzm\(Bynz) ef (Xe)/ T

We let m = LMJ, and since (Bé NZ™) ={2 € Z" : max;—1,.. »(|Ti — &]) < m}, this implies that the

S

number of lattice points contained in the set Bj is (2m + 1)". Consequently, we have

Z@e(BgnZn) M@/ T Zie(BgﬂZ") M@/ T

S re(Bnzm @@/ T S e,y €O/ T+ (|B,3 nZn| - (2m+ 1)n) F(X0)/ T

and applying Lemma 4 and Lemma 5 yields

14



fog eI —uB)/Te . op . (2u)"Ldu

Z . Pa—
fO(S el —ul)/Tk . 2n - (2u)~du + (|B,3 nZzr —(2m+ 1)”) ef (X%)/ T

and using the fact that d<m+ 0.5, one has

fog e(f* _UR)/TI» . 2n . (zu)n_ldu
I el =uk)/Tic . 2 - (2u)n=\du + (|B,3 nzn| — (zs)n) el (X0)/ T

Therefore, if f*%@ > 1, T}, can be determined by solving the inequality

Zie(BgﬂZ") P @)/ Ty - f05 e(f* —uK)/Ty n - (2u)n—1du 1w

Yze(Bynzn €T fo‘s elf*—uK)/Te . 9p . (2u)"—Ldu + (|B,3 nzn|— (25)") ef (Xi)/Ti
Following the similar method used for proving Theorem 3 and the fact that

b —uit)/T . T\ Ryt = (=D s Ry
/0 e ke2n - (2u)" Tdu =2 n<?> ~[(n—1)!—e "; f (K(S/Tk>}-e L

it is easy to prove that solving for T}, satisfying the second inequality above is equivalent to solving for % in

the inequality (13) and setting T) = (f* — f(Xx))/Z. ®

Theorem 3 and Theorem 4 provide a way to solve for T} and Tk for the continuous problem and the

discrete problem, respectively. Both theorems are related to the function

n

pm(z) = (n =1 =

%

|
-
—

n—1)!

T e — Mz e F
7!

Il
o

with M = M for the continuous problem and M = M for the discrete problem. Next we discuss the

characteristics of the pa(z) function.
Lemma 1 Consider the function pp(z) = (n — 1)1 — Z?:_Ol wzie"‘ — Mz"e* with z € R". Then

(1) if nM <1, pm(z) >0 for all z> 0;

(2) if nM > 1, the equation pp(z) = 0 has an unique solution z* such that z* > "’X‘A_l, and for all

z > z* one has ppm(z) >0

Proof.  The lemma is proved by analyzing the shape of the function pq(z) corresponding to the param-

eters n and M. The detailed proof is given in Appendix D. H

15



p(2)

e ... _

(2a): the graph of the function p(z) for nM < 1.

p(2)

(n - ‘1)1 uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

am—1

surerensd E

(2b): the graph of the function p(z) for nM > 1

Figure 2: Two cases of the graph of the function p(z).

According to Lemma 1, finding z such that pa((z) > 0 can be separated into two cases based on the
parameters n and M. These two cases are illustrated in figure 2. If nM < 1, any positive value of z
satisfies paq(z) > 0; if nM > 1, any z > z* will satisfy pa(2) > 0, where z* solves equation pa(z) = 0.
Lemma 1 guarantees the uniqueness and existence of z*, which implies that z* can be calculated numerically
by any simple line search algorithm, e.g. bisection. An important issue for those line search algorithms
are the choice of initial points, i.e. the upper and lower bounds of z*. Lemma 1 provides a lower bound,

% < z*. Next, in Lemmas 2 and 3, we present upper bounds on z* corresponding to the continuous and
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discrete problems respectively.

Lemma 2 Consider the continuous problem (P1) and the function

e F — Mz"e ?

pum(z)=(n—1)—

(14)

where 0 < ¢ < 1, L = In (% . %), 0 < a < 1, Be is an n-dimensional ball with radius

é=ce(f" — f(Xk))/K and B, is an n-dimensional ball with radius p as defined in Theorem 2.

Proof. See Appendix E. N

Now we turn to an upper bound on Z* for the discrete problem.

Lemma 3 Consider the discrete problem (P2) and the function

n—1
pi(Z)=(n—1) - Z (n — 1)!2ie_z — Mz"e®

where Z and M are defined as in Theorem 4. If % > 1 and nM > 1, letting 2* be the solution to

py(2) =0, we have that

(15)

BNz —(268)"

ro_ l1—a
where 0 <& <1, L =1In (T @)

), 0<a<l, 6 and f* are defined as in Theorem 4, 3,3 is

defined as in Theorem 2, and |Bﬁ N Z™| denotes the number of integer points contained in Bﬁ.

Proof. See Appendix E. N

3.3 Cooling Schedule Strategy

We are now ready to summarize the cooling schedule strategy for the adaptive search algorithm. This

cooling schedule strategy ensures that the probability of sampling an improving point is not less than 1 — a.
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Consequently the expected number of record points and sample points is linear in the dimension of the
problem. This linearity result assumes that points are sampled according to a Boltzmann distribution. Since
generating points according to a Boltzmann distribution is in general more difficult when the temperature

is small, we endeavor to keep T}, as high as possible in our cooling schedule strategy.

Cooling Schedule Strategy for (P1):
e Keep T = oo until nM > 1, where M is defined in Theorem 3.
e When nM > 1, either

i) use a numerical method to calculate z* by solving pps(z) = 0 as in Theorem 3 Eq. (11) and set
Ty = (f* — f(Xk))/z", or
1) use the upper bound on z* in Lemma 2 Eq. (14) to calculate T} = %ﬁn, where L is

defined in Lemma 2.
Cooling Schedule Strategy for (P2):

e Keep T}, = oo until nM > 1, where M is defined in Theorem 4.

o When nd > 1and f* — f(X0)/K <1, set Ty = L GR—0s.

e When nM > 1 and f* — f(X3)/K > 1, either

i) use a numerical method to calculate Z* by solving py;(Z) = 0 as in Theorem 4 Eq. (13) and set

Ty = (f* — f(Xx))/z*, where f* = f* —0.5K as defined in Theorem 4, or
i) use the upper bound on 7* in Lemma 3 Eq. (15) to calculate Tj, = Lﬁﬁf}j&ll’ where L is

defined in Lemma 3.

To implement the cooling schedule strategies, we need to know several pieces of information: dimension
n, the current record value f(X) or f(Xy), the Lipschitz constant K for (P1) or K for (P2), the optimal
value f*, and the n-dimensional volume of the feasible set. For a specific problem, we certainly know the

dimension. At the k" iteration, we also know the record value. The constant K or K is assumed to be
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known, but an estimate that is an upper bound may also be used [16]. In general, the maximum function
value f* is unknown. However any lower bound to f* that exceeds f(X})) may be used at the sacrifice of a
cooler temperature than needed. In the following computational study, we estimate f* using order statistics
as in [18]. Similarly, any upper bound on the volume of the feasible region may be used while maintaining

the linearity properties of the resulting cooling schedule.

4 Numerical Results

We have performed a computational study comparing an adaptive cooling schedule with several other cooling
schedules on continuous and discrete test problems from the literature. The other cooling schedules include:
a cooling schedule proposed by Bohachevsky et al. [5], an exponential cooling schedule [11], and a logarithmic
cooling schedule [10]. Several parameters and implementations are considered and are summarized below.

Adaptive Cooling Schedule (summarized in Section 3.3)

£+ known, a = 0.01,0.05,0.9, T, = £ =£C%)

f estimate, a = 0.01,0.05, 0.9, Tj, = {=1X)
Fixed Beta Cooling Schedule [5]

f* known, 8 =0.01,1,100, T, = 8(f* — f(Xk))
f estimate, 8 = 0.01,1,100, T} = B(f — f(Xk))
Exponential Cooling Schedule [11] T}, = Tpv*
Ty = 0.01,1,100 and ~ = 0.01, 0.99
Logarithmic Cooling Schedule [10] T}, = mg;—oﬂ)

Tp = 0.01,1,100

The adaptive cooling schedule developed in this paper uses the information of f*. In the computational

study, we tested two cases, one is to give a known global optimum, and the other is to estimate and update
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f during the process of running the algorithm. The estimate f for f* is based on order statistics and was

used in [18],

F_ J(Xg) — f(Xg—1)
f=FfXp)+ U—q "/—1"

(16)

where f(X}) and f(Xy,—1) are the first and second best points found so far, n is the dimension of the test
problem and we chose ¢ = 0.1.

The adaptive cooling schedule is summarized in Section 3.3, where z is calculated every time an improving
point is found. The problem specific parameters (including an upper bound on the Lipschitz constant) used
in this calculation are summarized with the test problems given in Appendix F. The other parameter specific
to this cooling schedule is o, where 1 — « is the desired probability of sampling an improving point. Three
values of «, 0.01, 0.05 and 0.9, were used in the computational study to represent a spread of values.

The cooling schedule suggested by Bohachevsky et al. [5] has a form Ty = B(f* — f(Xx)) where the
parameter value of 3 is chosen at the one set and held constant throughout the algorithm. The temperature
is updated every time an improving point is found. This fixed beta cooling schedule was also run when the
global optimum f* is known and when it is estimated with f as in Eq. (16). Typically the parameter value 3
is determined by trial and error, and we used three values of 3, 0.01, 1 and 100, where the smallest value was
determined by trial and error to provide good performance. The two other values were chosen to represent
a spread.

The exponential cooling schedule [11] of the form T} = Tyy* was used and the temperature was updated
every iteration (in contrast to the previous cooling schedules that updated temperature when an improving
point was found). Values of Ty, 0.01, 1 and 100, and ~, 0.01, 0.99, were chosen by trial and error, and to
represent a spread of values.

The logarithmic cooling schedule [10] of the form T}, = zn(?;—grl) was also implemented where temperature
was updated every iteration, and three values of Ty, 0.01, 1 and 100, were used.

The candidate point generator used in the simulated annealing algorithm is from the family of Hit-and-
Run methods with continuous and discrete versions [22, 21]. Four test problems, described in Appendix F,
were used, two in a continuous form and two in a discrete form. The sinusoidal function was introduced

in [24], used in [2], and was motivated by an engineering design problem of composite laminate structures.
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For each cooling schedule, 100 runs with random starting points were performed on each test problem.
The computational results are shown in the following tables and graphs. Tables 1 to 4 show the performance
of the 21 different cooling schedules with parameters for solving test problems 1 to 4, where in each cell
the upper integer indicates the number of successful runs out of 100 that achieved a value no worse than
the associated y value, and the lower number indicates the average number of function evaluations of the
successful runs to achieve the y value. The bold line indicates the parameter value with the best performance.
The four graphs show the performance of each cooling schedule with its best parameter value for solving
each test problem.

The numerical results indicate that in most of the cases, the adaptive cooling schedule with its best choice
of parameter was first or second best compared to the others, and its performance is not very sensitive to
the choice of . The performance of the fixed beta cooling schedule and the logarithmic cooling schedule
highly depends on the choice of parameter (among three parameter values, only one of them performs well
and the other two have among the four worst performance). And in most of the cases the performance of
the fixed beta cooling schedule and the logarithmic cooling schedule with their best choice of parameters
(among the three tested values) is worse than that of our adaptive cooling schedule with the best choice of
a. The performance of the exponential cooling schedule is very close to the performance of the adaptive
cooling schedule. In most of the cases, the performance of adaptive cooling schedule with known f* is better
than the performance using f estimated by Eq. (16). For fixed beta cooling schedule, the performance with
known f* for solving two test problems out of four is better than the performance using f. A big advantage
of our robust adaptive cooling schedule is eliminating the need for trial and error to determine parameter

values.

21



y 2.0 2.2 2.4 2.6 2.8 3.0 3.2
Adap (given ) 100 100 100 100 100 98 65
0=0.01 775 842 | 938 | 1035 | 1219 | 1869 | 236.0
Adap (given *) 100 100 100 100 100 98 65
0=0.05 755 822 | 920 | 1013 | 1194 | 1848 | 232.8
Adap (given f*) 100 100 100 100 100 9 65
0=0.9 747 820 | 917 | 1005 | 1186 | 1721 | 2303
Adap (estimate 1*) 99 99 99 99 99 95 67
0=0.01 772 866 | 955 | 1045 | 1239 | 164.8 | 238.1
Adap (estimate f*) 99 99 99 99 99 95 67
0=0.05 773 865 | 959 | 104.8 | 1250 | 1646 | 240.9
Adap (estimate f*) 99 99 99 99 99 95 68
0=0.9 69.5 787 | 909 | 1009 | 1219 | 1706 | 240.8
Fixed Beta (givenf*) | 100 100 100 100 100 98 60
$=0.01 69.0 758 | 85.1 97.8 | 1159 | 199.0 | 259.7
Fixed Beta (givenf*) | 100 100 98 9 95 85 31
=1 1794 | 2419 | 329.0 | 399.0 | 4887 | 6352 | 884.2
Fixed Beta (given f*) 99 95 89 71 38 14 0
B=100 285.0 | 3886 | 508.3 | 5905 | 667.2 | 593.8 -
Fixed Beta (estimate f*)| 99 99 99 99 99 96 66
B=0.01 82.0 91.2 | 100.3 | 109.2 | 130.3 | 189.3 | 253.3
Fixed Beta (estimate f*) | 100 100 100 98 96 86 27
=1 1182 | 1493 | 1885 | 2726 | 3753 | 5201 | 536.4
Fixed Beta (estimate f*)| 100 96 92 72 40 16 0
B=100 287.2 | 3714 | 4795 | 5733 | 6479 | 754.2 -
Exp (7 =0.99) 100 100 100 100 100 96 62
T0=0.01 68.2 750 | 838 | 968 | 1135 | 189.0 | 2292
Exp (Y =0.99) 100 100 100 100 100 96 59
T0=1 1017 | 1134 | 1308 | 1452 | 176.7 | 254.0 | 406.0
Exp (Y =0.99) 100 100 100 100 100 9 68
T0=100 2435 | 324.0 | 3786 | 468.0 | 5564 | 675.2 | 813.6
Exp (Y =0.01) 100 100 100 100 100 95 61
T0=0.01 86.3 934 | 1019 | 1135 | 1344 | 2079 | 2748
Exp (Y =0.01) 100 100 100 100 100 95 62
TO=1 88.6 95.7 | 1038 | 1156 | 1350 | 2042 | 269.3
Exp (Y =0.01) 100 100 100 100 100 96 63
T0=100 85.4 932 | 101.8 | 1133 | 1308 | 1953 | 249.0
Log 100 100 100 100 100 98 60
T0=0.01 794 | 86.64 | 9531 | 107.94 | 129.46 | 215.85 | 251.03
Log 100 100 100 100 100 100 60
TO=1 72.1 828 | 900 | 990 | 1288 | 2128 | 597.0
Log 99 9 95 73 45 8 0
T0=100 272.8 | 360.7 | 5015 | 603.0 | 7356 | 976.9 -

Table 1: Number of successful runs out of 100 and average number of function evaluations for successful

runs for the continuous 6-dimensional Hartmann test problem.
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y 0.02 | 0.04|0.06| 0.08 | 0.10 | 0.12 | 0.14 | 0.16

Adap (given f*) 100 | 100 | 100 | 100 100 | 100 100 100
0=0.01 563.2 | 613.1 | 613.1 | 1080.7 | 1080.7 | 1080.7 | 1081.0 | 1081.0

Adap (given ) 100 | 100 | 100 | 100 100 | 100 100 100
0=0.05 579.9 | 6459 | 645.9 | 1095.1 | 1095.1 | 1095.1 | 1095.5 | 1095.5
Adap (given ) 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
0=0.9 576.7 | 634.3 | 634.3 | 977.2 | 977.2 | 977.2 | 9775 | 9775

Adap (estimate *) 100 | 100 | 100 | 100 100 | 100 100 100
©=0.01 4227 |11861.9(1861.9| 2194.7 | 2194.7 | 2196.1 | 2196.4 | 2196.4
Adap (estimate *) 100 | 100 | 100 | 100 100 | 100 100 100
#=0.05 430.6 [1995.1{1995.1| 2347.9 | 2347.9 | 2349.3 | 2349.6 | 2349.6
Adap (estimate *) 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
0=0.9 427.6 |1505.6|1505.6| 1824.9 | 1824.9 | 1826.6 | 1827.5 | 1827.5
Fixed Beta (givenf) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
8=0.01 557.3 | 953.7 | 953.7 | 1340.9 | 1340.9 | 1341.3 | 1341.4 | 1341.4
Fixed Beta (givenf?) | 100 | 100 | 100 | 90 90 90 90 90
B=1 511.7 | 553.9 | 553.9 | 8710.4 | 8710.4 | 8710.4 | 8890.9 | 8890.9

Fixed Beta (givenf) | 100 | 100 | 100 | 88 88 88 86 86
B=100 532.0 | 586.2 | 586.2 [10131.4/10131.4|10131.4|10512.9(10512.9

Fixed Beta (estimate *) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
#=0.01 479.1 |2229.3|2229.3| 2532.8 | 2532.8 | 2533.5 | 2533.9 | 2533.9
Fixed Beta (estimate *) | 100 | 100 | 100 | 97 97 97 97 97
=1 584.0 | 623.4 | 623.4 | 7571.8 | 7571.8 | 7571.8 | 7909.4 | 7909.4

Fixed Beta (estimate f*) | 100 | 100 | 100 91 91 91 89 89
B=100 517.5 | 574.0 | 574.0 [10284.4|10284.4|10395.3|10745.5[10745.5

Exp (Y =0.99) 100 | 100 | 100 | 100 100 100 100 100
T0=0.01 405.3 [1214.7|1214.7| 1468.2 | 1468.2 | 1469.1 | 1469.1 | 1469.1
Exp (Y =0.99) 100 | 100 | 100 | 100 100 100 100 100
T0=1 4226 |792.3|792.3 | 1675.1 | 1675.1 | 1676.2 | 16765 | 1676.5
Exp (Y =0.99) 100 | 100 | 100 | 100 100 100 100 100
T0=100 507.2 | 633.0 | 633.0 | 1975.3 | 1975.3 | 1975.6 | 1976.1 | 1976.1

Exp (Y =0.01) 100 | 100 | 100 | 100 100 | 100 100 100
T0=0.01 409.9 [1708.7|1708.7| 1862.2 | 1862.2 | 1863.9 | 1864.6 | 1864.6

Exp (7Y =0.01) 100 | 100 | 100 | 100 100 | 100 100 100
T0=1 397.2 [1754.0{1754.0| 1932.7 | 1932.7 | 1935.8 | 1935.9 | 1935.9

Exp (Y =0.01) 100 | 100 | 100 | 100 100 100 100 100
T0=100 376.0 |1633.7|1633.7| 1767.3 | 1767.3 | 1769.5 | 1770.0 | 1770.0

Log 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
T0=0.01 474.46|828.04(828.04| 1172 | 1172 | 1172 | 1172 | 1172

Log 100 | 100 | 100 | 97 97 97 95 95

T0=1 526.5 | 570.4 | 570.4 | 8879.5 | 8879.5 | 8963.0 | 9276.8 | 9276.8

Log 100 | 100 | 100 | 87 87 87 85 85
T0=100 532.0 | 586.2 | 586.2 |10357.6|10357.6|10357.6|10723.4|10723.4

Table 2: Number of successful runs out of 100 and average number of function evaluations for successful

runs for the discrete 6-dimensional Hartmann test problem.
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y 1.0 | 1.5 | 20 | 25 | 3.0 |3.465

Adap (given ) 98 98 98 98 91 91
0=0.01 921.7 | 953.6 | 1027.3 | 1249.1 | 1733.0 | 3921.8

Adap (given *) 100 100 100 100 92 92
0=0.05 1206.3 | 1237.9 | 1312.7 | 1532.4 | 1874.9 | 4100.5

Adap (given 1) 99 99 99 99 93 93
0=0.9 1089.9 | 1123.6 | 1208.0 | 1614.6 | 2245.2 | 4438.5

Adap (estimate 1*) 100 91 91 o1 87 87
0=0.01 7751 | 1228.5 | 1297.2 | 1496.1 | 1569.7 | 3858.6

Adap (estimate f*) 100 91 91 91 87 87
0=0.05 775.2 | 1228.9 | 1297.3 | 1498.6 | 1575.2 | 3858.3

Adap (estimate f*) 100 91 91 91 87 87
0=0.9 775.4 | 1229.1 | 1297.4 | 1496.6 | 1576.3 | 3810.4

Fixed Beta (given f*) | 100 100 100 100 96 95
$=0.01 1281.8 | 1315.0 | 1413.5 | 1865.1 | 2171.1 | 3875.1

Fixed Beta (given f*) 100 71 2 0 0 0

B=1 2951.3 [18540.4|18918.0 - - -

Fixed Beta (given ) | 100 61 3 0 0 0

B3=100 3345.3 |20012.7|14022.3 - - -

Fixed Beta (estimate )| 100 91 91 91 86 86
B=0.01 695.7 | 893.4 | 960.5 | 1166.2 | 1396.6 | 3691.6

Fixed Beta (estimate )| 100 99 82 43 14 1
B=1 1016.0 | 2314.1 |10498.8|15589.3|16582.1|10178.0

Fixed Beta (estimate )| 100 69 2 0 0 0

B3=100 3339.4 |19613.0/14795.0 - - -

Exp (Y =0.99) 100 89 89 89 83 83
T0=0.01 1061.4 | 1847.1 | 1911.0 | 2130.4 | 2664.6 | 4866.9

Exp (Y =0.99) 100 97 97 97 93 93
TO=1 4401 | 670.8 | 754.1 | 985.2 | 1231.5 | 3260.9

Exp (Y =0.99) 100 99 99 99 96 96
T0=100 864.6 | 995.8 | 1078.3 | 1298.9 | 1549.8 | 3544.3

Exp (Y =0.01) 100 87 87 87 82 82
T0=0.01 828.6 | 1078.8 | 1139.9 | 1339.8 | 1676.5 | 3968.4

Exp (Y =0.01) 100 88 88 88 83 83
TO=1 932.7 | 1334.1 | 1400.8 | 1610.4 | 1750.9 | 4021.9

Exp (Y =0.01) 100 90 90 90 84 84
T0=100 1504.8 | 2975.2 | 3039.1 | 3231.2 | 3488.3 | 5671.4

Log 95 89 89 89 85 85
T0=0.01 934.65 | 2126.3 | 2190 | 2392.8 | 2907.4 | 5157.8

Log 100 100 100 100 100 0

TO=1 380.8 | 579.0 | 958.7 | 4593.9 [11367.0 -

Log 100 64 2 0 0 0

T0=100 3148.0 |19023.1/23262.0 - - -

Table 3: Number of successful runs out of 100 and average number of function evaluations for successful

runs for the continuous 10-dimensional sinusoidal test problem.
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Yy 10 | 1.5 | 20 | 25 | 3.0 | 3.5
Adap (given *) 100 100 100 100 100 99
0=0.01 115.7 | 183.6 | 318.7 | 774.4 | 2742.3 [19620.0
Adap (given *) 100 100 100 100 100 100
0=0.05 113.3 | 173.3 | 319.2 | 748.8 | 2143.8 |19224.9
Adap (given *) 100 100 100 100 100 100
0=0.9 116.5 | 179.4 | 330.7 | 758.8 | 1874.6 |19168.4
Adap (estimate *) 100 100 100 100 100 98
0=0.01 126.6 | 211.1 | 441.6 | 942.5 | 3570.8 |20583.9
Adap (estimate f*) 100 100 100 100 100 98
0=0.05 126.6 | 211.1 | 441.6 | 942.5 | 3568.7 |20506.9
Adap (estimate f*) 100 100 100 100 100 98
0=0.9 127.2 | 210.8 | 4401 | 931.4 | 3651.2 |20614.6
Fixed Beta (given f) | 100 100 100 100 100 97
3=0.01 97.0 | 157.3 | 324.3 | 769.8 | 3653.7 |18951.3
Fixed Beta (givenf*) | 100 95 2 0 0 0
B=1 2373.1|17530.7| 9485.0 - - -
Fixed Beta (given f*) 100 71 2 0 0 0
B=100 2315.3|17855.8|38299.5| - - -
Fixed Beta (estimate f*) | 100 100 100 100 100 99
B=0.01 126.7 | 220.3 | 529.9 | 1058.2 | 4495.2 |21273.5
Fixed Beta (estimate *) | 100 100 91 51 17 0
B=1 409.9 | 2337.5 | 9870.0 [15599.2|23929.1 -
Fixed Beta (estimate *)| 100 82 3 0 0 0
B=100 2591.9 /16956.9|14490.0| - - -
Exp (Y =0.99) 100 100 100 100 100 100
T0=0.01 89.4 | 141.1 | 252.9 | 649.3 | 1873.8 |18070.1
Exp (Y =0.99) 100 100 100 100 100 99
TO=1 282.6 | 362.1 | 503.9 | 1018.6 | 2684.4 [18907.2
Exp (Y =0.99) 100 100 100 100 99 99
T0=100 623.0 | 777.5 | 923.6 | 1300.0 | 2755.5 |19854.8
Exp (7Y =0.01) 100 100 100 100 100 100
T0=0.01 94.5 | 155.0 | 342.4 | 944.5 | 3842.8 |18963.1
Exp (7Y =0.01) 100 100 100 100 99 99
TO=1 929 | 162.6 | 493.0 | 925.7 | 2017.6 |16976.1
Exp (Y =0.01) 100 100 100 100 98 96
T0=100 97.4 | 193.0 | 411.9 | 1024.4 | 4122.0 [18207.5
Log 100 100 100 100 100 99
T0=0.01 104.05 | 171.37 | 361.37 | 954.48 | 3285.4 | 20734
Log 100 100 100 100 100 0
TO=1 350.0 | 512.9 | 893.9 | 5455.3 [14410.8| -
Log 100 86 3 0 0 0
T0=100 2764.1|18294.6|37474.7| - - -

Table 4: Number of successful runs out of 100 and average number of function evaluations for successful

runs for the discrete 10-dimensional sinusoidal test problem.
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5 Summary and Conclusion

Simulated annealing is a class of sequential probabilistic search techniques for solving global optimization
problems. The performance of simulated annealing is highly dependent on the choice of cooling schedule
employed. In this paper, we consider an algorithm called adaptive search (AS) which is designed to model an
idealized version of simulated annealing by assuming points can be sampled exactly according to a sequence
of Boltzmann distributions. The paper focuses on analytically deriving cooling schedule strategies for AS
applied to a general class of optimization problems over continuous and discrete domains. By choosing the
temperature to guarantee an improvement with probability no less than 1 —a, the cooling schedule maintains
the linear in complexity property for the expected number of sample points required by AS to solve this
class of global optimization problems. Some numerical results demonstrate an effective implementation of

the theoretical adaptive cooling schedule.

Appendix A
The following lemma is important for proving the results of Theorems 1, 4 and Lemma 3.

Lemma 4 For all a,b € R such that b > a and b > 0, if c > 0, then

a-+c
+c

>

>
Sal S
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Appendix B

Proof of Theorem 2

Proof. We first prove the result for continuous case, i.e.,

[, €M@/ T dg
P
Th, T, (Sh(Xk)) > pr eh(@)/Tx dy”

Recall that

Sy €T de

Th, T, (Sh(Xk)) = fS eM@)/ Tk g

Therefore proving Theorem 2 is equivalent to proving

fSh(Xk) eh(ﬂv)/Tk dx fS eh(ﬂﬁ)/Tk dr
Ty Tz 2,y T G

First we will prove that

Un (Bp \ Bo) > Un (Bo)
un (S\ Shix)) — vn (Snx)

(18)

where v, (-) is the n-dimensional volume of a set. The inequality (18) will be used to prove (17). According

to the argument given in [25, Page 335], we have,

vn (Sn(xi)) - n (Bo)
v (S) T un(By)’

which is equivalent to
Un, (S)

— ]_’
Un (Bo) T Up (Sh(Xk))

and considering the fact that By C B, and Si(x,) C S, we have

vn (B, \ Bo) _ vn (S\ Shix)
Un (BO) B Un (Sh(Xk)) ’

hence,

Un (Bp \ Bo) > Un (Bo)
Un (S\ Shix)) — vn (Shexi)

(19)

Now consider the left-hand side of (17). We have,

hl@)/ T h(z)/ Tk h(z)/Tk
fsh(xk)e (@)/Te g B (fSh(Xk)e (z)/ kdm) (fSh(Xk)e (x)/ kdx+fs\s

R/ Y, Y,
[, /T du (S, /T da) (fg, M@/ dot foq

o (Xi)/ T dm)

n(Xy)

e (X0)/Th dac)

XE)
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fSh(xk) MO/ dyy + fS\Sh(Xk) el X/ iy

Ty @ OVTK da

fBg eh(x)/Tk“ dx + fs eh(@)/ Ty dz Un (S \ Sh(Xk)) ef(Xk)/Tk

According to the fact that Sp(x,) € B and applying Lemma 4.1 given in [23] with Ty < Tw, we have

f " @) /Ty go v
S};Xke)uw)/m — > v(s(’g;’j)) Therefore,
o
x 3 h(x) /T X)) /T
fSh(Xk) eh( n d > fsh(xk) € /T dz + fS\Sh(Xk) ef( F dv
Jo, € Tede Ty, €T do s, (S Sy) 0D/

vy, (B, \Bo) > v, (Bo) .. .
and because of the fact that R Y inequality (19), we have

. eh(@)/ T o Jsnxss MO/ T dy + [o Sy e (XK)/Tr g

>
h(x)/Tr - T . v, (B, \B . .
Ty, @/T dz Jip T dar 4 TP (5 8, x,) f ¥/ T

h(z) /T J(Xk)/Tr
fSh(Xk) € @/ d$+ ‘/‘S\Sh(xk) € X/ " dw
T, /T i+ v, (B, \ By) el X0)/T

h(z) /T J(Xk)/Tr
fSh(Xk) € )/ d113+ ‘/‘S\Sh(xk) € / tdw
fBg @)/ T dzg + pr\Be el (/T da

Jg €@/ T dg

Hence
< fsh(xk) @)/ T dg y I, P @) /T o
1 (Sh0) = T @ gy 2 T, /T dz’

Next, we prove the result for discrete case, i.e.,

~ ZQEG(B-OZ") /T
7 (Shx) = . e (20)
* ( k) ZiG(BﬁﬂZ") eh‘( )/Tk
To prove the result, we first prove that
Shcsl 130 27| 1)

S| T B;nzn|

And then given the inequality (21), inequality (20) can be proved following the same procedure used for the
continuous case.

Let B be a continuous set composed of the union of hypercubes surrounding all integer points in 5’,

and let Bfl( %, be the continuous set composed of the union of hypercubes surrounding all integer points in
S';Z(Xk), ie.,

B = {zc®R": Round(z) € S}
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BE(Xk) = {z eR": Round(x) € S’B(Xk)}-

Since we assume that S is a discrete region over a hyperrectangle, according to the definition of &, the

improving set S’;l( ) is also a discrete hyperrectangular region. Therefore,

Now consider the four continuous sets, B , BB( ) B@ and 3,3. We know that B is a convex set, BB( X € B,
Bj and B; are hyperrectangles with center #*, and B}E( 0 Bj, B C B; and B; C Bj;. According to the
argument given in [25, Page 335], we have,

’Un(B;}(f(,c)) S Un (

vn(B)

and
va(Bg) _ |BgN 2|

un(B;)  |B;n 2z

because By and Bj are defined such that the volume of each set equals the number of discrete points contained
in the set. Therefore,

Sheeol o 183027

S~ Binzr|

We have now proved equation (21). Following the same procedure used for the continuous case we could

further prove the desired result for the discrete case in Theorem 2. W

Appendix C

This appendix contains a lemma used in the proof of Theorem 4. Based on the definition of h(x), the

following lemma holds.

Lemma 5 Given the current record value Xy, one has,

f (L)) g, S ST o T
ze(B;nzm)
otherwise, Z @/ T > /e(f —uR)/Tegp, . (2u)"du,
Fe(Bynzm) 0
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where f* = f* —0.5K and 6 = f*%@

Proof. As defined in Theorem 2, the set (Bé N Z™) is an n-dimensional hypercube with center at Z* and

the length of each side is 2(f* — f(Xy))/K, i.e.,

Bé NZ"={ze€Z": max (|T, —T;]) < (f* - JE(Xk))/R}’ (22)

i=1,...,n
and because * must also be integer,

Bynzr={zeZz": max (|&;—a}]) < Lf* — f(Xp)/K]}.

i=1,...,n

Obviously, if | f* — f(Xx))/K| < 1, there is only one integer point in Bj. Hence one has

zeB;NZ"
For | f* — f(Xy))/K| >1,let m = | f* — f(Xx))/K], and for a given j € {1,...,m}, define S;, a subset of
Bé N Z™, as follows

S;={ze€Z": max (| —Z]|)=j},

i=1,...,n
i.e., S; is a collection of lattice points contained on the surface of the box [Z} —j, &} +j] x - - - x [Z} — 7, T +j].
According to the definition of h, one has h(Z) = f* — jK for all Z € S;j. Therefore
S FOI = T 3 (el R, (23)
zeB;NZ" j=1
where |.S;| represents the number of lattice points contained in the set S;.

To calculate |S;|, we first define the rounding region of lattice point. Let the box Bz = [#1 — 0.5,%1 +
0.5] X - -+ X [#, — 0.5, &, + 0.5] denote the rounding region of the lattice point Z, i.e., Bz is an n-dimensional
hypercube of unit length with & being the center of the hypercube. Since v, (Bz) = 1, one has

1551 = > vn(Bz) = va(Uses, Bs),
TES;
Uses, Bz = (& € R" 1 j =05 < max (17, —]) < j+0.5},
Now considering two boxes By, = [&f — j + 0.5, &+ 7 — 0.5] x --- x [&X — 7 + 0.5,%% + j — 0.5] and

By =[%;—7—05,314+j+0.5] x...x [ZF —7—05,Z% + j+ 0.5], one has

vn(Uzes; Bz) = vn(Bu \ Br) = vn(Bu) —vn(Br) = (25 + 1)" — (25 — 1)",
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where the second equality follows from the fact By, C By . Hence
1Sil=@2j+1)" =25 -1)" (24)

Thus, by applying equation (24) to equation (23), we get that

3 P@/ T — o /Ti Z (25 +1)" — (25 — 1)) " =3B/ T
zeB;NZ" Jj=1

Considering that

jtos o 4jt0s5
/ T =BT op . (2u)"tdu = U _jK)/Tk/ d(2u)"
j—0.5 j—0.5

(25 +1)" = (25 — 1)) " =3B/ T

and because | f* — f(X3))/K]| > 1, one has

Y AOM T /Tk+z( / (f*—jf()/i“k.Qn.(gu)”—ldu>’

zeBzNZ»

and because f* — jK > f* — (u+ 0.5)K = f* —uK for all u € [j — 0.5, j 4 0.5] and where f* = f* — 0.5K,

one has

Y

9]
K
~
;;ﬂz

_|_

m J+05
Z (/ e —uk)/ T oy . (2u)"_1du>
— \Jj-05

05 _ m+0.5 -
= / el /T o (2u)™ 1du+/ e =ul/ T op . (2u)" L du
0 0.5

and apply the fact that f* > f* — (u+ 0.5)K = f* —uK for all u € [0,0.5], one has

0.5 o L m~+0.5 . .
> / " —ul)/ T 9p . (2u)"_1du+/ " —ul) /T on . (2u)"du
0 0.5

m+40.5 o L
= / e =ul/ T op . (2u)" L du
0

and since m + 0.5 = [ T={ | 4 g5 > =& 1 4 0.5, one has
P g5
" =ul/ T o . (2u)"du

Y

and setting 5= f*_{:((j(") = f*_f:((j(") — 0.5, yields the result,

s
> / eV e/ T Lo . (2u)" Ydu.
0
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Appendix D

Proof of Lemma 1

Proof. = We prove the lemma by analyzing the shape of the function pa(2). According to the definition,
z is a one-dimensional positive variable. It is easy to prove that lim,_opar(z) = 0. Next let us look at the

limit of paq(z) as z goes to infinity,

n—1

lim prp(z) = (n—1)!= lim Y

zZ—00 -
1=0

Because fracz'e* — 0 as z — oo, for all i, we can see that

lim pam(z) = (n — 1)L

Z—00
Now consider the derivative of p(z),

Pu(z) = dg(zz) =(1—nM)z""te " + Mz

If nM <1, for z positive, one has p’y((z) > 0. In this case, we have,

(1) limpa() =0
(2) lim pp(2) = (n—1)!

zZ—00

() pu(z)>0

which implies that the function paq(z) is monotonically increasing and concave as depicted in figure (1a).
Therefore the value of p(2) is positive for z > 0.

On the other hand, if nM > 1, i.e., nM — 1 > 0, we have,

< 0 if 0<z<(MM—-1)/M
Pu) = 0 if 2= (@mM—1)/M
> 0 if z>(mM-—-1)/M.
According to the property of p/y,(z) for the case nM > 1, and the fact that lim, .opm(z) = 0 and
lim, oo pm(2) = (n—1)! > 0, one can draw the function shape of pr(2), as shown in Figure (1b). Therefore,

for nM > 1, the equation paq(z) = 0 with z > 0 has a unique solution z*.
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The lower bound of 2*, i.e. z* > "’X‘A_l, is immediate from the fact that lim, o pap(2) = 0, lim, 0o pa(2) =

(n —1)! > 0 and the property of p\,(2) =0 at z= (nM —1)/M. R

Appendix E

Proof of Lemma 2

P/ Th g

Proof. According to Theorem 3, solving for T* in fﬁgeh(’”i)/ncdx
,

= 1 — « is equivalent to solving for z*
in pp(2*) = 0 and setting T* = (f* — f(Xx))/z*. Therefore, to prove that L/(1 — €) is an upper bound on
z*, we prove an associated lower bound on 7.
To establish the lower bound on T, for 0 < ¢ < 1, we define a function g : B, — 3 by
ff—e(f*— f(Xy)) ifze B,

f(Xk) ifx e BP\Bé,

g(x) =

where B: = {x € B, : ||[v —2*|| < é = e(f* — f(Xk))/K}. Then h(x) > g(x) on By, but h(x) = g(x) on
B, \ By. Also B: C By. Following the same arguments in the proof of Theorem 1, one can show that

fBg eh(x)/Tk" dx o fBg eg(x)/Tk" dx
pr @)/ Tk dyp — pr e9(@)/Tr da”

5 e9(@) /T g
Now consider m, we have
p

9@/ Tk o (" =e(f" = F(Xi)))/ Tk g

fBg _ fBg

pr e9@)/Tr dg fBP\Bg el (Xu)/Tedy 4 fBé e(f*—e(f*=f(Xi))/Tr dyg
'Un(Bé) . e(.f* _E(f*_f(Xk")))/Tk

(vn(By) — vn(Bz)) - e/ X0/ Tr 4 0, (Be) - e(f*=e(F* = (X))/ T

After algebraic manipulations, it can be seen that if we let

(=) — f(XR))
T! = - k

where

B 1—a v,(B,) —v.(B:)
L—lﬂ< « . 'Zn(Bé) >

then T" satisfies

fBg eh(x)/Tl dx fBg eg(x)/Tl dx

o, PO =y s
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P (@) /Ty g

Since T* is the solution to I,

T, @/ Thdg — 1 — a, and we have
o

g T s [, MO o
fB,, eh@)/T! dgz — fB,, eh@)/T* dg’

we know
T <T*
(also see [19, Proposition 3.9 ]). Thus 7' is a lower bound on T*, and equivalently, 1= is an upper bound

onz*. M

Proof of Lemma 3

Proof. According to Theorem 4, solving for 2* in p;;(Z) = 0 is equivalent to solving for T* in the
equation

fOS e(f* _uf()/Tk . 2n . (zu)n_ldu B
Jo el =wR T2 (2u)r=tdu+ (1B 01 27| — (20)) (KT

—aQ, (25)

and setting 7* = (f* — f(Xz))/T*, where § = % Therefore, to prove that L/(1 — ¢) is an upper
bound on Z*, we can equivalently prove an associated lower bound on T*.

To establish the lower bound on T, we first define a function h(z) and sets S and G so we can write
Eq. (25) as

Ja eh(@)/ Tk gg fog e —uE)/ T . 9p . (2u)"Ldu .
———— e Se— ~ — ——=1—«
J €M@/ Tk dg: foé e(f*—uE)/Ti . 9y . (2u)"—1du + (|Bﬁ N Zzn| — (25)n> ef (Xi)/ T

where § = {z € R : Round(z) € (B;NZ™)}, G = {x € S :maxi—y__,(jz; — F]) < (f* — f(X3))/K} and

f*— Kmaxi—y_n(lz; —22]) ifze@

h(z) = ’ .
F(Xk) ifzeS\G

For 0 < & < 1, we now define a set G¢ and a function §(x) as

Qe
™
Il

{res: Jwax (jo; —Fj|) < &= e(f* = f(Xp)/K}

fr—e(f = f(Xp) ifzeGe

F(X%) ifzeS\G:
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so that
_ h(2)/Th . 9@)/Tk g
fGeA j»d:l? S fGée ) :IJ'
ff} eh@)/Te gy — ff} ed(@)/ Tk dg
This is true because Gz C G and h(z) > §(x) for z € G, and h(z) = j(z) for z € S\ G. Now we have
Iz, e3(@)/ T g _ Ja. e =" =F(Xi)))/ T g
Jo e3@/Te dz Jova. SO Tuda + [ el ==l =F XN/ Tdz
v (Ge) - " —e(F = F(Xi)) /T
(U (S) — v (Ge)) - ef E/Th 4, (Ge) - e(Fr—e(Fr=F X))/ T’

where v, (G2) = (26 - 6)" and v,(8) = |Bs N Z"| = |S|. After algebraic manipulations, it can be seen that if

we let

where

then T' satisfies

Je h(@)/T g . S, eI@)/T" o

i _— —1-a
[ @I g = [ /T g “

@/ T g

Since T* is the solution to W =1 — a, and we have

7 T 7l 7 . sk
Ja eil( )/i dx . Ja eil( )/? dﬂc’
Ja M@/ T dx — [o eh@/T dg

we know

T <T*
(also see [19, Proposition 3.9 ]). Thus T is a lower bound on T*, and equivalently, % is an upper bound

onz*. N

Appendix F

Test Problem 1: 6-dimensional Hartmann problem over a continuous domain [19]
4
= Z C; €Xp Z az] pz] s
i=1
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s.t 0<z;<yj, forj=1,...,6,
where ¢c; =1,c0 =12, ¢c3=3, ¢4 = 3.2,
ail = 10 alp = 3 a13 = 17 a4 = 3.5 a15 — 1.7 a1 = 8
a21 = 0.05 a22 — 10 a23 = 17 a24 — 0.1 a25 — 8 a1 — 14
a3z — 3 azo = 3.5 a3z = 1.7 a34 = 10 az; = 17 aze — 8

aql = 17 aqo = 8 43 = 0.05 aqq4 = 10 Q45 — 0.1 Q46 — 14

P11 =0.1312 p1o=0.1696 pi3=0.5569 pi4 =0.0124 p15=0.8283 pig= 0.5886
Po1 = 0.2329 pos = 0.4135 pog = 0.8307 pos = 0.3736 pos = 0.1004 p1g = 0.9991
P31 = 0.2348  pso = 0.1451 pa3 = 0.3522 paq = 0.2883 pss = 0.3047 pag = 0.6650

par = 0.4047 puo = 0.8828 pas = 0.8732 pas = 0.5743 pys = 0.1091 pag = 0.0381

The global optimum f* = 3.32 was determined numerically, and an estimated upper bound of the Lipschitz
constant is K < 1320.52. The stopping rule is: either reach maximal number of function evaluations (1,500)
or find a function value f such that (f* — f)/f* <= 0.01.

Test Problem 2: 6-dimensional Hartmann problem over a discrete domain (modified directly

from the continuous problem)
4 6 1
fla)=> ciexp | =D ai(==a; —pij)* | ,
‘ . 10y
i=1 7j=1
s.t 0<z; <104, forj=1,...,6,

where ¢;, a;; and p;; are the same as in the continuous problem. The global optimum f* = 0.166 was
determined numerically, and an estimated upper bound of the Lipschitz constant is K < 1320.52. The
stopping rule is: either reach the maximal number of function evaluations (30,000) or find f*.

Test Problems 3 and 4: 10-dimensional Sinusoidal function over continuous and discrete do-

mains [24]
10 10
Minimize — f(z) = —2.5 [ [ sin(x;) — [ ] sin(5(x:))
=1 =1

s.t (over a continuous domain) 0<uz; <180, fori=1,...,10,

or s.t (over a discrete domain) 0 < z; <180, and z; integer valued, for i =1, ..., 10.
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The global optimum is f* = 3.5 for both the continuous and discrete problems, an estimated upper bound

of the Lipschitz constant for the continuous problem is K < 23.72, and an estimated upper bound of the

Lipschitz constant for the discrete problem is K < 7. The stopping rule for the continuous problem is:

either reach the maximal number of function evaluations (50,000) or find a function value f such that

("

— f)/f* < 0.01. The stopping rule for the discrete problem is: either reach the maximal number of

function evaluations (50,000) or find f*.
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