
Available online at www.sciencedirect.com

RNA dynamics: it is about time
Hashim M Al-Hashimi1 and Nils G Walter2
Many recently discovered RNA functions rely on highly

complex multistep conformational transitions that occur in

response to an array of cellular signals. These dynamics

accompany and guide, for example, RNA cotranscriptional

folding, ligand sensing and signaling, site-specific catalysis in

ribozymes, and the hierarchically ordered assembly of

ribonucleoproteins. RNA dynamics are encoded by both the

inherent properties of RNA structure, spanning many motional

modes with a large range of amplitudes and timescales, and

external trigger factors, ranging from proteins, nucleic acids,

metal ions, metabolites, and vitamins to temperature and even

directional RNA biosynthesis itself. Here, we review recent

advances in our understanding of RNA dynamics as highlighted

by biophysical tools.
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Introduction
The ongoing discovery of a vast universe of noncoding

RNAs that perform widespread roles in living organisms

raises the fundamental question: How does a biopolymer

composed of only four chemically similar building blocks

realize such functional diversity? An emerging theme is

that much of RNA’s functional complexity is rooted not

only in the details of its intricate 3D structure but also

equally in its ability to adaptively acquire very distinct

conformations on its own or in response to specific cellular

signals including the recognition of proteins, nucleic

acids, metal ions, metabolites, vitamins, changes in

temperature, and even RNA biosynthesis itself. These

conformational transitions are spatially and temporally

tuned to achieve a variety of functions (Figure 1). For

example, they can guide folding pathways during RNA
www.sciencedirect.com
cotranscriptional folding (Figure 1a); enable sensing and

signaling events that regulate gene expression in response

to changes in environmental conditions (Figure 1b); allow

ribozymes to dynamically meet the diverse structural

requirements associated with their multistep catalytic

cycles (Figure 1c); and enable complex ribonucleopro-

teins to assemble in a hierarchical and sequentially

ordered manner (Figure 1d).

RNA conformational transitions occur through complex,

often multilayer RNA dynamics that comprise a combi-

nation of thermally activated internal motions and re-

arrangements induced by external cofactors. Motions in

RNA range from rearrangements in secondary structure

and large-scale collective bending and twisting of helical

domains to more localized changes in base-pairing and

staking, sugar repuckering, and fluctuations along the

phosphodiester backbone, all of which occur over a range

of timescales (Figure 2). Over the past few years, comp-

lementary biophysical tools have provided distinct cross-

sectional views of RNA’s dazzling dynamical complexity

(Figure 2), leading to new insights that are reviewed here

with an emphasis on those derived from fluorescence and

NMR spectroscopy.

Self-induced transitions during
cotranscriptional folding
The RNA structural free energy landscape is highly

rugged so that different folding pathways can lead to

structurally distinct kinetically trapped intermediates. To

facilitate folding on such a landscape, many RNAs have

evolved to code for self-induced transitions involving

short-lived non-native structural motifs that dynamically

form during cotranscriptional folding (Figure 1a) [1].

Kinetic control over folding pathways becomes possible

in the cell because the rate of transcription (as fast as

�10�3 s/nt) is relatively slow compared to folding of RNA

secondary structural elements (as fast as �10�6 s)

(Figure 1). During 50-to-30 transcription both native and

non-native secondary structure elements form efficiently,

beginning from the 50-end, and survive long enough to

guide downstream folding along specific pathways

(Figure 1a). Conversely, upstream structural elements

are often still dynamic (short-lived) enough that compet-

ing downstream motifs or outside cofactors can efficiently

refold the RNA into an alternate (native) structure

(Figure 1a).

Studies are increasingly providing insights into the under-

lying code requirements and mechanisms for regulating

cotranscriptional RNA-folding via self-induced tran-

sitions. Xayaphoummine et al. [2] recently showed how
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Figure 1

Role of RNA conformational transitions in (a) cotranscriptional folding, (b) sensing and signaling transactions by riboswitches, (c) catalysis (star,

reaction chemistry; orange double arrow, global motions; green double arrow, local motions), and (d) hierarchical ribonucleoprotein assembly.
self-induced transitions involving non-native helices can

be encoded in an RNA sequence based on the sequential

order with which native helices of varying stability are

transcribed. The authors demonstrated that a bistable

RNA folds into either of two distinct conformations by

simply reversing the order with which the sequence is

transcribed.

Strategically positioned transcription pause sites can aid

the formation of fold-directing non-native structural

elements by minimizing competition from alternative

folds involving downstream regions [3]. This strategy is

used to avoid kinetic traps when constructing structural

elements from residues that are far apart in sequence. Pan

and colleagues [4�] recently showed how the positioning

of pause sites in between the strands of long helices in

three distinct noncoding RNAs allows upstream portions
Current Opinion in Structural Biology 2008, 18:321–329
of the helices to be sequestered into non-native structures

that can subsequently transition into long native helices

once downstream trigger strands are transcribed.

These studies underscore the importance of considering

RNA-folding dynamics in the cellular context of direc-

tional cotranscriptional folding.

Riboswitches
Riboswitches [5–7] beautifully illustrate how complex

RNA dynamics can be used to achieve highly tunable

and adaptable biological regulation (Figure 1b). Ribos-

witches are cis-acting mRNA elements that allow cells to

adaptively change gene expression in response to their

changing environment. Riboswitches are capable of sen-

sing and quantifying diverse physiological parameters

such as the concentration of metabolites, vitamins,
www.sciencedirect.com
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Figure 2

Time-chart of dynamic processes in RNA and corresponding biophysical techniques that can be applied toward their characterization.
Mg2+, and temperature and respond by transducing

output signals once predefined thresholds are reached.

The output signals serve to turn off and, more rarely, turn

on gene expression, or modulate splicing in higher eukar-

yotes.

The sensing and signaling operations of riboswitches are

made possible by highly orchestrated conformational

transitions involving two RNA domains (Figure 1b). In

a prototypical metabolite sensing riboswitch, a highly

conserved aptamer domain binds to its metabolite target

with exquisite selectivity and affinity (Figure 1b). In

doing so, it undergoes a conformational change that is

transduced into a change in the secondary structure of a

downstream decision-making expression platform. In

turn, the platform modulates expression of metabolic
www.sciencedirect.com
pathway genes by forming a transcription (anti)terminat-

ing helix (Figure 1b), sequestering the Shine-Dalgarno

sequence and inhibiting translation, or activating catalytic

self-cleavage and mRNA degradation [5,6].

Probing conformational changes in aptamer domains

Just like the X-ray structure of the first protein myoglobin

begged the question of how CO2 reaches its active site, X-

ray structures of several aptamer domains in complex with

their metabolites [8] show no obvious path for ligands to

reach their snug-binding pockets buried deep within the

elaborate and intricate aptamer architecture. The idea

that ligand binding must be accompanied by a large

conformational change was supported early on by in-line

probing data [9] showing that aptamer domains are sig-

nificantly less structured in the unbound state. Recent
Current Opinion in Structural Biology 2008, 18:321–329
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Figure 3
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NMR studies have yielded detailed insights into the

structure of the more disordered ligand free state of

purine-sensing aptamer domains [10–12]. These studies

show that while the long-range loop–loop interactions

that stabilize global structure are transiently preformed

and reinforced by Mg2+ binding, the ligand-binding

pocket is largely disordered in the absence of ligands.

Several groups have directed their attention toward unra-

veling the detailed mechanism by which aptamer

domains capture ligands (Figure 3). The results have

so far revealed complex multistep mechanisms that vary

even across related riboswitches. Many of the mechan-

isms have been proposed based on real-time kinetics

measurements employing fluorescent nucleobase ligands.

Studies on a C74U variant of the guanine-sensing aptamer

domain from B. subtilis xpt-pbuX indicate that the

unbound RNA has a well-defined global structure but

that local gating motions at the binding pocket allow

backside ligand entry that in turn induces a lid-closing

motion [13] (Figure 3a). By contrast, studies on the Vibrio
vulnificus adenosine deaminase (add) riboswitch suggest

that the ligand shifts a pre-existing equilibrium between

free and ligand-bound conformations, leading to regula-

tion at the translational level [14] (Figure 3b). For the

structurally distinct aptamer domain of the Escherichia coli
thiamine pyrophosphate (TPP) riboswitch, the RNA was

singly labeled with 2-aminopurine nucleobases at various

strategically chosen positions [15]. Distinct kinetic rates

were observed and interpreted in terms of a two-step

mechanism in which one of the helices in a three-way

junction is stabilized after two helices grip the ligand in

the binding pocket (Figure 3c).

New NMR methods that combine ultrafast experiments

with laser-triggered release of ligands from photo-caged

derivatives allowed the hypoxanthine-induced folding

trajectory of the guanine-sensing riboswitch aptamer

domain of the B. subtilis xpt-pbuX to be monitored with

site-specific resolution [16��]. A three-step mechanism

was proposed in which ligands initially nonspecifically

associate with pre-existing elements in the binding

pocket, causing local conformational adaptation followed

by long-range induced-fit stabilization of the loop–loop

interactions between two helices (Figure 3d).

Aptamer domains do not necessarily undergo structural

transitions between two well-defined conformations. For

example, NMR studies show that an RNA thermosensor

regulates expression of heat/cold shock genes by pro-

gressively undergoing conformational changes against a

temperature gradient [17�] (Figure 3e). By contrast, the
(Figure 3 legend continued) Proposed multistep mechanisms for the ligand-

Shown are mechanisms based on fluorescence studies for (a) the C74U varian

adenosine deaminase riboswitch, and (c) the Escherichia coli thiamine pyroph

pbuX guanine riboswitch [16��], and (e) the stem–loop IV thermosensor eleme

www.sciencedirect.com
aptamer domain of the glmS catalytic riboswitch binds its

target glucosamine-6-phosphate (GlcN6P) without

undergoing a significant conformational change [18].

Here, GlcN6P acts as a coenzyme in the cleavage reac-

tion, and its binding contributes the missing chemical

participants for self-cleavage as the signal that leads to

mRNA degradation. Although most studies suggest that

the ligand-bound aptamer conformations of riboswitches

are globally well defined, recent kinetic fluorescence

studies [19�,20�] challenge this notion and suggest that

adenine binding activates global helical motions in the

adenine riboswitch. A detailed characterization of the

dynamical properties of free and bound aptamer domains

over a range of timescales will be important for under-

standing the molecular basis by which they sense and

transduce signals.

Transducing conformational changes to the expression

platform

Relatively little is known about how changes in the

aptamer domain are transduced into conformational

changes in the decision-making expression platform

and this will probably be the focus of many future studies.

Particularly for transcription-terminating riboswitches,

the signal has to be transduced efficiently during cotran-

scriptional folding before the decision-making expression

platform is transcribed. The large conformational changes

associated with aptamer binding unfavorably reduce the

rate of complex formation to 104 to 105 M�1 s�1, and

thermodynamic equilibration between free and ligand-

bound forms may not be complete before the decision-

making expression platform is transcribed [21]. Ribos-

witches can overcome this potential problem by incorpor-

ating transcription pause sites with durations ranging from

10 to 60 s between the aptamer domain and expression

platform [21].

Notably, prefolded full-length riboswitches commonly do

not transduce the change in aptamer conformation effi-

ciently into a change in the expression platform. This may

not be surprising given that interconversion between the

two secondary structure forms often involves high

thermodynamic barriers associated with melting several

base-pairs. It is therefore highly probable that the process

of cotranscriptional folding, which is used to kinetically

tune the threshold concentration of metabolite that acti-

vates riboswitches [21], also plays an important role in the

structural transitions underlying signal transduction. This

highlights how RNA-based regulation in addition to

folding has to be considered within the biological frame-

work of cotranscriptional folding.
induced conformational transition in the aptamer domains of riboswitches.

t of the B. subtilis xpt-pbuX guanine riboswitch [13], (b) the Vibrio vulnificus

osphate riboswitch [15], as well as NMR studies for (d) the B. subtilis xpt-

nt from the repressor of heat-shock gene expression (ROSE).
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RNA catalysis
Enzymatic action by RNAs, called ribozymes, is an

inherently dynamic process (Figure 1c). Just like protein

enzymes, ribozymes probably exploit the dynamics of

functional groups and domains to guide the catalytic

process along a specific reaction coordinate. Given the

local nature of the chemistry involved in most enzymatic

reactions, the dynamics contributing directly to catalysis

mostly entail vibrations, torsional librations, sugar repuck-

ering, and longitudinal and lateral motions of bases, all of

which take place at the tens of fs to low ns timescale

(Figure 1c). However, global structural changes at the ns

to min timescale are often required to properly position

reaction participants in the catalytic core and may be

coupled to the local dynamics (Figure 1c). Biophysical

tools have recently begun to shed light on the dynamic

processes involved in RNA catalysis (Figure 2).

A combination of single molecule FRET and fluor-

escence correlation spectroscopy was recently able to

clock the transition time of the P4–P6 domain of the

large Tetrahymena group I self-splicing intron from an

extended to a compact-docked structure at �240 ms

[22�]. This global folding transition time is much faster

than the inherently long residence times of RNA in

defined structural states before a transition so that the

latter dominates the folding kinetics. This finding high-

lights the enhanced stability of intermediate structural

states of RNA compared to protein and allows for the use

of steady-state residence times for measuring RNA-fold-

ing kinetics. A recent single molecule FRET study, for

example, performed a set of sequential buffer exchanges

that identified each intermediate on the reaction pathway

of the hairpin ribozyme through a distinct time sequence

of FRET signals [23��]. This kinetic ‘fingerprint’

approach led to a full kinetic characterization of the

reaction pathway of the catalytically competent

enzyme–substrate complex. Clearly, slow global confor-

mational dynamics significantly impact the overall cata-

lytic rate constant [23��,24,25]. Single molecule FRET

also allowed for the dissection of the metal-ion-depend-

ent multistep folding pathways of an in vitro selected

Diels–Alderase ribozyme [26] and a DNAzyme [27].

Sometimes FRET can demonstrate the lack of significant

conformational dynamics of a ribozyme, for example, of

the glmS ribozyme upon cofactor binding [18]. Often a

specific tertiary interaction of a larger ribozyme can be

studied in isolation, which led, for example, to the FRET-

based characterization of docking and undocking of the

GAAA tetraloop and receptor as induced by metal ions

and increased hydrostatic pressure, respectively [28,29].

A large ribozyme that has been extensively studied by

single molecule probing is the ribosome. Labeling the A-

site and P-site tRNAs with a FRET fluorophore pair

revealed the complexity of large-scale conformational

dynamics along the ribosomal translation cycle. The
Current Opinion in Structural Biology 2008, 18:321–329
use of inhibitors such as antibiotics known to impair

specific steps in this cycle together with the postsynchro-

nization of many individual single molecule FRET time

traces facilitated the mechanistic dissection of initial

selection, proofreading, and translocation events

[25,30��,31�]. Such dissection demonstrated, for example,

that the ribosome uses rare large-scale thermal fluctu-

ations to amplify slight positional differences into a 100-

fold kinetic discrimination that favors a cognate over a

noncognate tRNA during initial selection [30��].

Biophysical tools to dissect the detailed catalytic core

dynamics of ribozymes are still sparse. Molecular

dynamics (MD) simulations in combination with fluor-

escence studies have highlighted the role of cross-linking

structural water molecules in the catalytic core dynamics

of the hairpin ribozyme [32�] and have described confor-

mational dynamics in the hepatitis delta virus (HDV)

ribozyme core, suggesting plausible reaction trajectories

for catalysis [33,34] that now can be tested by emerging

quantum mechanical tools [35,36]. Only recently have

advanced NMR techniques been employed to elucidate

the conformational dynamics of a core element of a

ribozyme, specifically the catalytic domain 5 of a group

II intron [37]. How exactly such local dynamics correlate

and couple with global ribozyme dynamics to influence

catalysis awaits further experimental scrutiny [24,38].

Computational tools such as correlation analyses of MD

simulations promise to guide the experimentalist in

search of such coupling modes [32�,36].

RNP assembly
Within the cell, most RNAs are part of RNA–protein

(RNP) complexes wherein the protein component(s)

assists RNA function and protects it from falling prey

to chemical or enzymatic degradation. Intracellular bind-

ing of proteins begins concomitantly with RNA transcrip-

tion and is often ordered and energetically driven by ATP

(or GTP) consumption. In principle, RNA-binding

proteins behave like the metabolites that trigger ribos-

witches, but their multivalency yields additional binding

free energy and thus can lead to more profound refolding

of an RNA. The intricate interplay of protein binding and

induced changes in RNA-folding pathways and RNA

dynamics are still ill-understood, but some key obser-

vations, derived with the help of biophysical tools, are

highlighted here (Figure 1d).

A recent single molecule FRET study directly observed

the assembly of Tetrahymena telomerase from its RNA and

two protein components in vitro as a hierarchical pathway

[39]. Binding of the first protein, p65, induces a confor-

mational change (or, rather, favors a particular structure

capture) that facilitates binding of telomerase reverse

transcriptase. Similarly, hierarchical protein binding has

long been known from ribosomal subunit assembly and

recently been fleshed out by pulse-chase experiments
www.sciencedirect.com
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Figure 4

Spatially structured interhelical motional trajectory in free HIV-1 TAR RNA visualized using NMR techniques [47��].
monitored by quantitative mass spectrometry [40].

Although such in vitro studies recapitulate the essence

of ordered RNP assembly, it is important to realize that

intracellular RNP assembly is a much more controlled

process that leads to superior yields of functional particles

through compartmentalization and the targeted utilization

of ATP hydrolysis. This notion is underscored by the fact

that the in vitro assembly of the signal recognition particle

(SRP) from its one RNA and two protein components is

readily derailed by an incorrect temporal order of assembly

[41]. Both correct and incorrect assembly may be facilitated

by the fact that at least some RNA-binding proteins are

promiscuous in that they bind their RNA partner in both

specific and nonspecific modes [42]. Favorable electro-

static interactions have in some cases been shown to

underlie a nonspecific binding that increases the local

protein concentration on the RNA surface and accelerates

site-specific binding in form of a two-dimensional, rather

than three-dimensional search [43�].

The multivalent binding of a protein often induces a

complex series of conformational rearrangements in the

RNA partner that can both rigidify and increase the

flexibility of different segments of the RNA [44,45]. Such

changes in RNA dynamics, as well as the associated

changes in base accessibility, may help accelerate the

strand exchange and annealing of complementary RNAs

as induced by protein-based chaperones [46].

Intrinsic dynamics of RNA structures
Advances in biophysical techniques are allowing the

resolution and visualization of intrinsic RNA motions
www.sciencedirect.com
that may potentiate specific functional transitions. For

example a new NMR method allowed visualization of

spatially structured motions between two helices in a

bulge containing HIV-1 TAR that allow the ligand-free

RNA to efficiently sample seven of its distinct ligand-

bound conformations (Figure 4) [47��]. Similarly,

dynamics leading to the melting of Watson–Crick base-

pairs near the internal loop of HIV-1 SL1 have been

observed to recapitulate a secondary structural transition

that occurs during viral maturational and is catalyzed by

the NC protein [48]. Emerging 2H solid-state NMR

techniques are uncovering fluctuations occurring over

ns to ms, a timescale that so far has proven difficult to

access experimentally in RNA [49�] (Figure 2). Likewise,

ultrafast fluorescence techniques reveal RNA base-stack-

ing motions over similar timescales in GNRA tetraloops

that are known to undergo induced-fit interactions [50].

Together, these studies suggest that RNA sequences

have evolved to code for structures with specific dyna-

mical properties that can activate functional transitions.

Outlook and challenges ahead
The biological functions of RNA depend on a dazzling

assortment of dynamic structural changes (Figures 1 and

3) that occur at a range of timescales (Figure 2). Bio-

physical tools such as NMR and fluorescence spec-

troscopy, aided by computational approaches such as

MD simulations, have just begun to shed light on the

intricacies of RNA dynamics (Figure 2). Solving future

challenges, including the visualization of RNA dynamical

processes at atomic resolution under native conditions,

will rely not only on expanding the capabilities of indi-
Current Opinion in Structural Biology 2008, 18:321–329



328 Nucleic acids
vidual biophysical tools but also on integrating them with

one another to obtain a comprehensive picture of

dynamics from fs to s and longer.

Two specific challenges on the road ahead are worth

noting. One challenge arises from the often non-ergodic

behavior of RNA; long observation of a single RNA

molecule often does not reproduce a snapshot from an

ensemble of the same molecules. Non-ergodicity under-

scores the deeply fluted nature of the RNA structural free

energy landscape that can trap a molecule in multiple,

non(or slowly) exchanging folds [24,25,29]. This feature is

best delineated using single molecule techniques and

complicates interpretation of ensemble biophysical tools,

necessitating a careful integration of the two approaches.

A second challenge derives from the strong influence that

the solvent and metal ions have on RNA dynamics.

Although evidence is emerging that structural water

molecules can mediate coupled molecular motions

throughout a folded RNA core [32�] and that bound metal

ions heavily modulate the electrostatic surface potential

of RNA [33] and its conformational dynamics [48], the

extent to which solvent dynamics couples with RNA

dynamics at all timescales is still ill-understood. These

open questions promise to yield many more surprising

discoveries on RNA dynamics over years to come.
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