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Different pricing strategies are used to set the toll. The pricing 
strategy is highly dependent on the objective of the toll lane admin-
istrators; that is, if the toll lane is owned by a private company, the 
administrator might want to maximize the revenue from the toll 
lane, or if the toll lane is built by the government, the objective 
might be to minimize the total travel time or to maximize the total 
throughput. In recent years, research on congestion pricing strategy 
has received more attention from both academic professionals and 
practitioners.

The toll pricing scheme can be classified according to the toll col-
lection base and rate patterns. Toll collections come in three types: 
pass based, use based, and distance based. Rate patterns also have 
three types: flat rate, time-of-day rate, and dynamic rate. The pass-
based toll collection scheme issues a toll lane pass to the drivers, 
and vehicles with a pass can enter the toll lane at any time. It can be 
either a flat rate or a dynamic rate. With the flat rate, the price of the 
pass is constant over time, whereas with the dynamic rate, the price 
of the pass is adjusted month by month. This is the simplest toll 
collection scheme. However, it is not a good traffic control strategy 
because once the pass is issued, entry to the toll lane is not restricted 
for vehicles with a pass, even when the toll lane is almost congested. 
Therefore, pass-based toll collection is not adaptive and thus not 
suitable for real-time traffic control.

The other two toll collection schemes, the use-based and distance- 
based schemes, are more adaptive than the pass-based toll collec-
tion scheme. The use-based scheme charges the same price, even 
though drivers may travel different distances on the toll lane. The 
distance-based toll scheme charges the drivers a toll on the basis 
of the distance that they travel, which is more reasonable than the 
use-based scheme. However, it is also more complicated than the 
use-based scheme, and determination of the appropriate pricing 
strategy is difficult. Both use-based and distance-based toll collec-
tion schemes can be applied through flat rate, time-of-day rate, and 
dynamic rate patterns. Table 1, reproduced from the paper of Chung 
and Recker (3), summarizes the existing high-occupancy toll facilities 
in the United States and their pricing strategies.

Yang and colleagues investigated pricing schemes for road net-
works from the perspective of congestion control (4). They proposed 
an iterative algorithm that can adjust the toll price on the basis of 
observation of the link flows over the network without knowledge of 
the travel time and demand functions or the users’ value of time. Lou 
et al. also proposed a self-learning approach to determination of a pric-
ing strategy for a single toll station on toll lanes and applied a simula-
tion to the underlying traffic flow model to determine the prices that 
optimized an objective (5). Zhang et al. proposed a feedback-based 
algorithm to adjust toll lane prices dynamically to realize the opti-
mal traffic allocation for overall infrastructure efficiency and used a 
simulation methodology (6).
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Congestion in highway networks inflicts economic and emotional stress 
on drivers and a considerable cost to society. To mitigate some of these 
effects, managed toll lanes are being designed and built in the United 
States. These managed toll lanes guarantee to drivers that they will 
be able to travel at free-flow speed during peak hours when the gen-
eral lanes are congested. The strategy used to price tolls on managed 
toll lanes has become an important issue; however, few studies have 
focused on dynamic optimal pricing strategies. This paper formulates 
the pricing problem on the basis of a stochastic macroscopic traffic flow 
model and investigates the methodology used to find a pricing strategy 
to maximize the total expected revenue. A simulation-based numeri-
cal algorithm that obtains the optimal prices efficiently in real time is 
proposed. The methodology is also applicable and readily adjusted for 
other objective purposes of administrators, such as maximization of 
total throughput. The general pricing model developed in this paper 
is not limited to one specific underlying traffic flow model and is read-
ily adapted to other macroscopic traffic models, such as the classical 
Lighthill–Whitham–Richards model.

Just as normal blood circulation necessitates a healthy body, smooth 
traffic flow is necessary for healthy business and community devel-
opment in a city and a region. Traffic congestion haunts cities and 
communities from various perspectives: it inflicts uncertainties, 
drains resources, reduces productivity, stresses commuters, and 
harms the environment. A study by FHWA estimated that 32% of 
daily travel in major U.S. urban areas occurred under congested 
traffic conditions (1). In 2009, Schrank and Lomax also showed that 
congestion caused urban Americans to travel an extra 4.2 billion 
hours and to purchase an additional 2.8 billion gallons of fuel; thus, 
incurring a congestion cost of $87.2 billion, an amount more than 
50% greater than the costs incurred a decade earlier (2).

Because of the serious impacts of traffic congestion and the con-
tinuous deterioration of traffic conditions in urban areas, invest-
ments are being made in managed toll lanes in the United States. 
These provide an alternative way for drivers to avoid congestion. 
The drivers pay a certain amount of money to enter these toll lanes, 
and the managed toll lanes guarantee that the drivers will be able to 
travel at free-flow speed. It not only saves time for the drivers who 
pay but also decreases the load on congested roads and helps clear 
the congestion more effectively.
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To derive the optimal pricing strategy, an underlying traffic flow 
model is desired. The research described above investigates some 
problems with dynamic pricing for toll lanes. All the underlying 
traffic flow models for the pricing schemes are simulation models, 
but simulation models are more difficult to calibrate and less adap-
tive than mathematical models. In this paper, a mathematical model 
for the dynamic pricing problem based on a sophisticated stochastic 
traffic flow model is formulated. This model has been validated by 
Chu et al. (7). The mathematical model can be easily calibrated, 
and filtering algorithms could also be applied to update the model 
parameters in real time. The toll pricing problem is formulated as a 
stochastic optimization problem on the basis of this model. Stochas-
tic optimization algorithms are applied to obtain the optimal pricing 
strategy. An important advantage of this pricing scheme is that it 
is applicable to toll lanes with any number of toll stations, and the 
scheme can easily be modified to consider many other objectives.

The objective of this paper is to present the formulation and 
solution of the dynamic toll pricing problem under the traffic flow 
dynamics determined by a mathematical model. The next section 
describes the model formulation, and then the approach used to 
solve the problem is provided. A numerical example is presented 
and is followed by conclusions.

Distance-Based Dynamic Pricing Model

Distance-based dynamic pricing is a reasonable and efficient pricing 
strategy. It is also the most complicated. Although some researchers 
and practitioners have investigated this pricing strategy in recent 
years, a unified model for this problem still does not exist. This 
section introduces a general model for determination of the optimal 
distance-based tolls.

Infrastructure

In the present model, two different kinds of lanes run parallel. One 
is a general lane that drivers can enter for free. The other is a man-
aged toll lane that drivers must pay a toll to enter. During peak 
hours, the general lane is normally congested and the toll lane is 
maintained at free-flow speed by adjustment of the toll prices. This 
is useful for drivers who can pay a toll to avoid congestion as well 
as in emergency situations.

Figure 1 illustrates the structure of the managed toll lane and the 
general lane in this model. Suppose that the managed toll lane starts 
at Milepost 0 and ends at Milepost L. N toll entrances are located at 

TABLE 1    Overview of High-Occupancy Toll Facilities in the United States

Location HOT Configuration Toll Policy Toll Pattern and Range

I-15, Salt Lake City, Utah 45.6 mi, 2 lanes. Midway  
accessible. 8 general lanes.

HOV2+:free.
SOV: tolled

Monthly pass: $50 per month

US-290, Houston, Tex. 14 mi, reversible, 1 lane.  
Midway inaccessible.  
8 general lanes.

Peak (HOT lane)
HOV3+: free
HOV2: tolled
SOV: prohibited

Off peak (HOV2+ lane) 
HOV2+: free
SOV: prohibited

Flat rate: $2 per use

SR-91, Orange County, Calif. 10 mi, 4 lanes. Midway  
inaccessible. 8 general lanes.

Peak
HOV3+: 50% toll off
HOV2, SOV: fully tolled

Off peak
HOV3+: free
HOV2, SOV: fully tolled

Time-of-day tolls: $1.25–9.55 
per use

I-25, Denver, Colo. 6.6 mi, reversible, 2 lanes. 
Midway inaccessible.  
8 general lanes.

HOV2+: free
SOV: tolled

Time-of-day tolls: $0.50–3.50 
per use

I-10W, Houston, Tex. 12 mi, 4 lanes. Midway  
accessible. 10 general lanes.

Bus: free
HOV2+: peak free; off 

peak tolled
SOV: tolled

Time-of-day tolls by distance: 
$0.30–1.60 per toll section

I-15S, San Diego, Calif. 8 mi, reversible, 2 lanes. 
Midway inaccessible.  
10 general lanes.

HOV2+: free
SOV: tolled

Dynamic tolls: $0.50– 
8.00 per use

I-95, Miami, Fla. 7.75 mi, 4 lanes. Midway 
inaccessible. 8 general lanes.

HOV3+: free
HOV2, SOV: tolled

Dynamic tolls: $0.25–7.25 
per use

SR-167, Seattle, Wash. 9 mi, 2 lanes. Midway  
accessible. 4 general lanes.

HOV2+: free
SOV: tolled

Dynamic tolls: $0.50– 
9.00 per use

I-15N, San Diego, Calif. 12 mi, reversible, 4 lanes. 
Midway accessible.  
8 general lanes.

HOV2+: free
SOV: tolled

Dynamic tolls by distance: 
$0.50–8.00

I-394, Minneapolis, Minn. 7 mi, 2 lanes, and 3.3 mi, 
reversible, 2 lanes. 2 tolling 
sections. Midway accessible. 
4 general lanes.

HOV2+: free
SOV: tolled

Dynamic tolls by distance: 
$0.25–8.00

Note: HOT = high-occupancy toll; HOV = high-occupancy vehicle; SOV = single-occupancy vehicle.
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l1, l2, . . . , ln. The first toll entrance is usually located at the start of 
the managed toll lane; therefore, l1 is equal to 0. M toll exits are also 
located at Mileposts l̃1, l̃2, . . . , l̃m. The last toll exit is usually located 
at the end of the toll lane; therefore, l̃m is equal to L. Vehicles can 
enter the toll lane only through those N toll entrances and leave the 
toll lane only through M toll exits.

For the distance-based pricing strategy, vehicles are charged 
according to the distance they travel on the toll lane. Because the 
distance information is available only when the vehicles leave the toll 
lane, toll should be collected at the toll exits. To record the travel 
information for vehicles on the toll lane, all vehicles must be equipped 
with an electronic device that can communicate with sensors installed 
at toll entrances and exits. The driver of a vehicle approaching a toll 
entrance can see the pricing information and the corresponding esti-
mated travel times on both lanes to every subsequent toll exit. On 
the basis of that information, the driver can then decide whether to 
switch to the toll lane by evaluating the trade-off between the price 
and time saved. If the driver decides to enter the toll lane, when the 
vehicle crosses the toll entrance, the sensor at the toll entrance will 
record the time, location, and toll price table inside the device in the 
vehicle. When the vehicle leaves the toll lane, the sensor at the exit 
reads this information from the device in the vehicle and charges the 
appropriate toll to the driver.

Model-Based Travel Time Prediction

When making decisions, drivers compare the travel time from the 
toll entrance to the toll exit on both lanes. Because traffic on the toll 
lane is maintained under free-flow conditions with a hard constraint, 
travel time from one location to another on the toll lane is constant 
and depends only on the distance. Let vf denote the free-flow speed 
on the toll lane and let τm

n denote the travel time from toll entrance n 
to toll exit m on the toll lane. Its value is given by Equation 1.
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Unlike the situation on the toll lane, the general lane is normally 
congested, especially during peak hours. Thus, travel time on the 
general lane is not constant and prediction of the travel time, which 
must be displayed right before the toll entrances, is needed in this 
model. Here an assumption about the underlying traffic flow model 
on the general lane is made and is presented in Assumption 1.

Assumption 1. The traffic flow switching to the toll lane has no impact 
on the traffic density evolution in the general lane, and the density 
evolution in the general lane is a stochastic process that follows the 
stochastic partial differential equation model in Equation 2.
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where

	 a(x, t)	=	� traffic flow entering highway through on-ramp 
at location x and time t;

	 b(x, t)	=	� traffic flow leaving highway through off ramp at 
location x and time t;

	 (x, t)	=	space–time pair;
	 Q̂(x, t)	=	� volume (i.e., number of vehicles passing through 

per unit time) at location x and time t on general 
lane;

	 ρ̂(x, t)	=	� density (i.e., number of vehicles per unit distance) 
at location x and time t on general lane;

	 v(i)	=	speed–density function;
	g(ρ̂(x, t), x, t)	=	 forcing term;
	 W(x, t)	=	� Brownian sheet, a Gaussian process indexed by 

two parameters (8);
	 σ(x, t)	=	� volatility of traffic density evolution at location 

x and time t; and
	 d	=	differential operator.

This paper assumes that the traffic flow evolution in the general 
lane is not affected by the flow switching to the toll lane. Under  
this assumption, the travel time in the general lane is not affected 
by the toll prices, and the complicated multidimensional stochastic 
optimization problem can be decomposed into several easier and 
smaller problems, as explained later by Theorem 2. If this assump-
tion is violated, the pricing problem is unsolvable (because of 
the curse of dimensionality) when the number of toll stations is 
large. The solution of optimal pricing without the independence 
assumption is under study, and results obtained will be reported 
in future.

The stochastic traffic flow model in Equation 2 was developed 
by Chu et al. (7 ). It is built on the classical Lighthill–Whitham–
Richards model, which was proposed in 1955 (9). This model is 
a deterministic partial differential equation on traffic flow derived 
from conservation law. Chu et al. generalized it to a stochastic ver-
sion by introducing a stochastic forcing function. The forcing func-
tion incorporates the Brownian sheet introduced by Walsh (8) and a 
mean reverting term. A detailed explanation of the stochastic model 
can be found in Chu et al. (7 ).

Let τ̃ m
n denote the travel time from toll entrance n to toll exit m on 

the general lane at time t, and let ρ̂(i , t) denote the density vector of 
the general lane at time t. Travel time on the general lane therefore 
has the property described in Theorem 1.

Theorem 1. Under Assumption 1, travel time between any two 
locations on the general lane at time t is a function of the traffic den-
sity vector on the general lane at that time. The relationship is given 
in Equation 3, where f mn (i) does not have a closed-form solution and 
can be derived only by simulation.

ˆ ˆ , , , ( )τ ρn
m

n
mf t n N m M= ( )( ) ∈[ ] ∈( )i 1 1 3

Proof. Because of the shock wave caused by the nonlinearity of 
the flux function in Equation 2, no closed-form solution is available. 

FIGURE 1    General lane and managed toll lane scheme.
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Therefore, finite difference schemes are used to solve it numeri-
cally and obtain approximate solutions. However, because of shock 
waves, any simple finite difference scheme will fail to solve the 
stochastic partial differential equation because the solution is 
generally discontinuous. Godunov’s scheme is a numerical method 
that can handle this difficulty and give a high-resolution solution to 
homogeneous conservation law (10). The present stochastic model 
is a nonhomogeneous conservation law because of the forcing 
term g(ρ̂(x, t), x, t). Leveque has developed a modified Godunov 
scheme in which the forcing terms can be incorporated into the 
scheme (11). ◾

In Model 2, the forcing term g(ρ̂(x, t), x, t) is a stochastic func-
tion, so the evolution of ρ̂ is also stochastic. Simulation is used to 
obtain the travel time function f mn (i) in two stages. In Stage 1, a 
number of scenarios are simulated and the density evolution under 
each scenario is generated. In Stage 2, after the density evolution is 
generated, travel time can be calculated under each scenario via the 
speed–density function and the average travel time over all scenarios 
is considered the prediction of the travel time.

The steps used to obtain the density evolution in Stage 1 by the 
modified Godunov scheme are described below. For a detailed 
explanation, refer to Leveque’s paper (11).

Step 1.  Simulate a number of Brownian sheets for each scenario 
according to the numerical generation algorithm (8).

Step 2.  Divide the highway into small cells with length Δx and 
discretize the time by Δt. Let ρ̂j

i denote the average density on the 
general lane over cell i at time t + jΔt. When j is equal to 0, obtain 
the initial condition for ρ̂0

i according to Equation 4, where ρ̂(i , t) 
represents the initial density vector on the general lane at time t.
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Step 3.  Each cell is divided into two segments. Let ρ̂i
j,− denote 

the average value of the density in the upstream segment of cell i, 
and let ρ̂i

j,+ denote the average value of density in the downstream 
segment of cell i. Obtain the values with the following equations:
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Step 4.  Let ρ̂j
i−0.5 and ρ̂j

i+0.5 denote the average value of density 
over time interval [tj, tj+1] at the left boundary and the right boundary 
of cell i, respectively. The value of ρ̂j

i+0.5 can be obtained according 
to the solution of the Riemann problem (12). Define a Riemann 
problem with the following initial condition that jumps from ρ̂i

j,+ to 
ρ̂j,−

i+1 at location xi+0.5.
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Step 5.	Update the state variables for the next time interval 
according to Equation 7. The state variables in the next time interval 
are also averaged over each cell and become a piecewise constant 
approximation. After the update, make j equal to j + 1 and then go 
back to Step 2.
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After a number of scenarios and the density evolution under each 
scenario are generated, the steps used to obtain the travel time function 
in Stage 2 are described below.

Step 1.  Let Tk(x) denote the arrival time of location x on the general 
lane under scenario k, given that the vehicle is at location ln at time t.

Step 2.  Solve the following differential equation numerically by 
discretization of the time and space to obtain T k(l̂m) which is the 
arrival time of location l̂m. The travel time from ln to l̂m under scenario 
k is then T k(l̂m) − T k(ln).

d
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Step 3.  Take the average of Tk(l̂m) − T k(ln) as the predicted travel 
time from ln to l̂m. The value of f mn (i) is then obtained.

On the basis of the explanation presented above, function f mn (i) 
is complicated and can be obtained only through simulation. How-
ever, the complexity of the travel time function does not affect the 
pricing model. For any traffic flow model, as long as the travel time 
can be expressed as a function of the density vector, the pricing 
model and the methodology described here apply.

Demand Function

For every toll entrance, the traffic demand can be classified by the 
destination. For example, for toll entrance n, let Φn denote the set 
of indexes of all toll exits behind toll entrance n. Let Dn(t) denote 
the traffic entering the toll lane through toll entrance n at time t. It 
consists of Dm

n (t) (m ∈ Φn), where Dm
n (t) represents the traffic enter-

ing at toll entrance n at time t and destined to leave at toll exit m. 
Equation 9 describes this relationship.

D t D tn n
m

m n

( ) = ( )
∈
∑

Φ

( )9

At time t, the toll entrance n publishes the prices for every down-
stream exit as well as the corresponding estimated travel times in both 
the general lane and the toll lane. On the basis of this information, 
the drivers decide whether to stay in the general lane or switch to the 
toll lane. Let pm

n (t) denote the toll for entry at entrance n at time t and 
departure at exit m. The demand function is given in Equation 10.
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Little information on the modeling of the demand function is 
available in the literature. Lou et al. proposed use of a logit model 
for the demand function (5). The logit model is widely used to 
model the demand function with alternative choices. Equation 11 
describes the basic idea of a logit model, in which D is the realized 
traffic demand for the toll lane, A is the potential total demand, Uh 
is the utility of the choice of the toll lane, and Ug is the utility of the 
choice of the general lane.

D A
U

U U

h

h g
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exp
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Lou et al. assume that the utility functions follow Equation 12, 
where τ and τ̂ are the travel times on the toll lane and general lane, 
respectively, from the driver’s origin to destination; p is the toll 
price for the driver’s travel distance (5). α, η, γ h, and γ g are param-
eters. It should be noted that α and η are less than 0 because the 
utility function is decreasing in the travel time and toll price. This 
utility function is used in the model described here.

U p
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h h
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When Equation 12 is plugged into Equation 11, the demand func-
tion is obtained in Equation 13. Thus, the traffic volume entering the 
toll lane is related to the time saved and toll price.
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The traffic demand for each origin–destination pair is assumed to 
follow the logit model and is given in Equation 14. In Equation 14, 
Am

n (t), α mn , ηm
n , and γ mn are the parameters for the origin–destination 

pair consisting of toll entrance n and toll exit m. These parameters 
can be calibrated by use of the reactive self-learning algorithm 
developed by Lou et al. (5).

D t A t
t t pn

m
n
m

n
m

n
m

n
m

n
m( ) = ( )

+ ( ) − ( )( ) +
1

1 exp ˆα τ τ η nn
m

n
mt( ) +( )γ

( )14

Constraint

In the present model, maintenance of free-flow speed on the toll 
lane is a hard constraint, and the toll prices are adjusted dynami-
cally to make sure that this constraint is not violated. However, in 
practice, this constraint might be violated because of sudden spike 
in demand. Once this situation happens, the pricing strategy will 
be switched to another mode under which all the toll prices will be 
set to the maximum price or the toll lane will even be temporarily 
closed until the managed toll lane again recovers to the free-flow 
speed condition. The maximum price is usually predetermined by 
an agreement between the public and highway administrators and 
serves as an upper threshold for the toll prices.

The main focus in this paper is the pricing strategy used when this 
constraint is not violated. Therefore, the authors consider retention of 
the toll lane congestion being free as a hard constraint. In other words, 
the traffic on the toll lane must travel at the free-flow speed. To satisfy 
this constraint, the traffic flow entering the toll lane cannot affect the 
existing traffic on the toll lane. Every lane has a traffic flow capacity. It 
is assumed that if the flow does not exceed this capacity, then free-flow 
speed is attained. Such a constraint can be mathematically described 
in Equation 15, where Cn is the flow capacity on the toll lane for toll 
entrance n. At time t, qn(t) is the incoming total traffic flow on the toll 
lane right before toll entrance n. The constraint guarantees that the 
total flow after every toll station will not exceed the flow capacity of 
the toll lane. qn(t) consists of q mn (t), where q mn (t) represents the traffic 
volume whose destination is toll exit m among traffic flow qn(t).
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Another constraint is for the flow conservation on the toll lane. Let 
κn denote the travel time between toll entrance n and toll entrance 
n + 1 on the toll lane. Because the toll lane is under free-flow speed 
vf, κn is given in Equation 16.

κn
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v
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The vehicles passing toll entrance n at time t will arrive at toll 
entrance n + 1 at time t + κn; therefore, q mn (t) will follow Equa-
tion 17. qm

1  (t) is 0, as the first toll entrance is assumed to be located 
at the beginning of the toll lane.
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Complete Model Formulation

The objective of the pricing strategy is to maximize the total revenue 
from time T0 to time t. When the information presented above is 
combined, the complete model of distance-based dynamic pricing is 
given in Equation 18, where ρ̂(i , t) is the density vector of the general 
lane at time t and it follows Model 2.
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Markov Decision Process Modeling

The managed toll lane system can be modeled as a Markov decision 
process. In this model, the state of the system is defined by the vol-
ume on the toll lane and the density on the general lane. The deci-
sion variables are the toll prices. The modified Godunov scheme 
describes the transition equation for the density on the general lane, 
and the flow conservation equation (Equation 17) describes the tran-
sition for the volume on the toll lane. The reward function of the 
Markov decision process is defined in Equation 19. It is the total 
revenue rate (R) at time t.
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According to the capacity constraint in Equation 15, the decision 
variable is not unconstrained. In conclusion, the Markov decision 
process modeling of distance-based dynamic pricing is summa-
rized in Equation 20. At time s, given the perfect observation of 
the system state variables q(i , s) and ρ̂(i , s), the decision pm

n (s) is 
determined to maximize the expected total revenue from time s to 
interested time horizon t. The decision pm

n (s) at any time s is solely 
based on the state of the system at time s, and the state of the system 
follows a controlled Markov process. This results in Equation 20 
where E represents the expectation.
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The Bellman equation for the stochastic control problem (Equa-
tion 20) is given in Equation 21, where J(t, q(i , t), ρ̂(i , t)) represents 
the maximum expected total revenue from time t to t given that the 
state of the system at t is ρ̂(i , t) and q(i , t). ℙ represents the space of 
all possible prices satisfying the constraint. Theoretically, the optimal 
solution of the stochastic control problem can be obtained by solving 
the Hamilton–Jacobi–Bellman partial differential equation. However, 
it is extremely difficult to get an analytic solution for the equation in 
practice. A closed-form solution for the Hamilton–Jacobi–Bellman 
equation exists in only a few special cases.
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Analysis of Optimal Distance-Based 
Dynamic Pricing Strategy

Complexity Analysis

In most cases, the analytical solution of the stochastic control problem 
is impossible, especially when the state variables are infinite dimen-
sional. A numerical solution is also sometimes impossible because of 
the curse of dimensionality. This section discusses the complexity of 
the numerical solution for the stochastic control problem in this model.

In the numerical solution, both the time and state variables are 
discretized. After discretization, the model becomes a discrete-time 
Markov decision process with time intervals Δt, and the highway 
is also discretized into small cells with length Δx. The state of the 
system is represented by a vector instead of a function. When time 
and space are discretized, to guarantee that the waves do not interact 
with each other, the Courant–Friedrichs–Lewy condition must be 
satisfied, as shown below.

v t xf ∆ ∆≤ ( )22

The solution to the stochastic control problem encounters sev-
eral difficulties. First, the dimension of the state space is very high, 
which makes it impossible to solve because of the curse of dimen-
sionality. Second, the dimension of the decision variables presents 
another difficulty. The decision variables are the prices of all the toll 
stations for all downstream toll exits. When the number of toll sta-
tions is large, the dimension of the decision variables may also blow 
up the computational time for a solution. The high dimensionality of 
both the state space and the decision variables makes the stochastic 
control problem almost impossible to solve.

Separation of Toll Station Pricing

Assumption 1 assumes that the evolution of the traffic density on 
the general lane is independent of the traffic entering and leaving 
the toll lane. Although some limitation on this assumption exists, the 
assumption is reasonable when the capacity of the managed toll 
lane is much smaller than that of the general lane, so that the traffic 
switching to the toll lane is only a small proportion of the traffic 
on the general lane. Equation 2 also shows that ρ̂(i , t) is a Markov 
process independent of the control variables. On the basis of such 
a property, the stochastic control problem can be decomposed, as 
shown in Theorem 2.

Theorem 2. At time t, the price vector of toll entrance n, pm
n (t) (m 

∈ Φn) affects the price vector of downstream toll entrance n + 1 only 
at time t + κn, which is pm

n +1(t + κn) (m ∈ Φn+1). In other words, the 
decision at any toll entrance affects only the decision of downstream 
toll entrances along the characteristic line with slope 1/vf shown in 
Figure 2. It does not have any impact on the decisions that are not 
on the characteristic line.

Proof. First, prove that pm
n (t) (m ∈ Φn) affects the price vector of 

downstream toll entrance n + 1 at time t + κn. At time t in toll entrance 
n, pm

n (t) will determine Dm
n (t), and it must satisfy the capacity con-

straint. According to flow conservation, the traffic will travel along 
the line with slope 1/vf. The entering traffic flow, Dm

n (t), will reach 
toll station n + 1 at time t + κn. Because of the capacity constraint, it 
will set a constraint for the price vector of toll entrance n + 1 at time 
t + κn. For example, at time t + κn, the upcoming traffic flow at toll 
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station n + 1 is a function of Dm
n (t), as shown in Equation 17. Because 

qm
n +1(t + κn) would set a constraint for the decision pm

n +1(t + κn), as 
illustrated in Equation 15, pm

n +1(t + κn) will be affected by pm
n (t). For 

the same reason, pm
n +2(t + κn + κn+1) is affected by pm

n +1(t + κn), so it is 
also affected by pm

n (t); therefore, pm
n (t) will affect the decisions of all 

of its downstream toll entrances on the characteristic line.
Second, pm

n (t) does not have any impact on the decisions of down-
stream toll entrances outside the line. For example, for toll station 
ñ at time s, suppose (lñ, s) is not on the same characteristic line with 
(ln, t). In other words, the line connecting (lñ, s) and (ln, t) does not 
have slope 1/vf. pm

ñ  (s) is determined by qm
ñ  (s) and ρ̂(i , s) because 

qm
ñ  (s) is affected only by the upstream decisions on the characteristic 

line of (lñ, s) and ρ̂(i , s) is independent of all the decision variables. 
Therefore, pm

ñ  (s) is not affected by pm
n (t) if (lñ, s) and (ln, t) are not 

on the same characteristic line. Therefore, the proof is complete. ◾

On the basis of Theorem 2, the problem could be decomposed 
along the characteristic solution of the Transport Partial Differen-
tial Equation shown in Figure 2. Because the decision variables in 
one characteristic line are independent of those on any others, pm

n (t) 
affects only the total revenue rate collected on its characteristic line 
and does not have any impact on other lines. Therefore, at time t, 
the price of each toll entrance is independent of the prices of the 
others, so the original problem can be decomposed into N subprob-
lems, in which each subproblem obtains the optimal prices for one 
toll entrance to maximize the expected total revenue rate along the 
characteristic line passing this toll station at time t. In other words, 

pm
n (t) is determined to maximize the expected total revenue rate of 

all its downstream toll entrances along the characteristic line. For 
example, for toll entrance N_, the dynamic programming problem for 
this toll entrance is formulated as Equation 23 and N such dynamic 
programming problems are formulated and solved at time t to obtain 
the optimal prices for each of the N toll entrances.
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FIGURE 2    Decomposition of dynamic toll pricing problem.
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In Equation 23, Dm
n , pm

n , qm
n , and τ̂m

n  are simplified notations for 
their values at time t + Σn−1 

i=N_ κi, where t + Σn−1 
i=N_ κi is the corresponding 

time to toll entrance n on the characteristic line. N– represents the 
index of the farthest toll entrance on the characteristic line with the 
definition given in Equation 24.
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The Bellman equation for Problem 23 could be formulated as 
shown in Equation 25. In Equation 25, Σm∈Φn

 D mn p mn  is the immedi-
ate revenue rate collected at toll entrance n at time t. Jn+1 (ρ̂(t + κn), 
qn+1) is the maximum expected total revenue rate of all downstream 
toll entrances along the characteristic line. ℙ is the set of possible 
prices satisfying the constraint in Equation 23. The terminal condition 
is also given.
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Simulation-Based Numerical Algorithm

When the pricing problem is solved separately for each toll station, 
the dimensions of both the decision variables and the state variables 
are reduced from those in the problems in Equations 21 to 25. How-
ever, the dimension of the state space is still very high because ρ̂ is 
a vector. Under Assumption 1, the evolution of ρ̂ is independent of 
the decision variables, and this independence makes the problem 
solvable. The simulation-based numerical algorithm for the solution 
to the optimal pricing problem is presented below.

First generate k random paths for the evolution of ρ̂ according to 
the stochastic partial differential equation model (Equation 2): ωk 
(k ∈ [1, K]). Each path represents a scenario, and ρ̂(ωk) represents 
the evolution of the density under scenario k. The stochastic model 
is then approximated by these scenarios. The stochastic program-
ming problem (Equation 23) can then be converted to the nonlinear 
programming problem of Equation 26.

max p D
K

p DN
m

N
m

n
m

k n
m

k
mn N

N

n

+ ( ) ( )






∈= +
∑∑1

1

ω ω
Φ



( ) = ( ) + ( )
=∈

− −

∑∑
K

K

m

n
m

k n
m

k n
m

k

N

q q D

1

1 1

26
Φ

( )

ω ω ω

∀∀ ∈ +[ ] ∈ ∀ ∈[ ]
( ) = ( )

n N N m k K

q q

n

n k n
m

k

1 1, , , ,Φ

ω ω
mm

N
m

k N
m

n

n N N k K

q q k

∈
∑ ∀ ∈ +[ ] ∀ ∈[ ]

( ) = ∀ ∈

Φ

1 1

1

, , ,

ω ,,

,

exp

K

p p k K

D A

N
m

k N
m

n
m

k n
m

[ ]
( ) = ∀ ∈[ ]

( ) =
+

ω

ω

1

1

1 aa p

D

n
m

n
m

k n
m

k n
m

n
m

k n
m

n k

τ ω τ ω η ω γ

ω

( ) − ( )( ) + ( ) +( )ˆ

(( ) = ( ) ∀ ∈ +[ ] ∀ ∈[ ]
∈
∑ D n N N k Kn

m

m
k

nΦ

ω 1 1, , ,

D C q n N N k Kn k n n k

n
m

k

ω ω

τ ω

( ) ≤ − ( ) ∀ ∈[ ] ∀ ∈[ ]

( )

, , ,1

== − ∈[ ] ∈ ∀ ∈[ ]

( )

l l

v
n N m k Km n

f
n

n
m

k

, , , ,

ˆ

1 1Φ

τ ω == +










=

−

∑f tn
m

i k
i N

n

ˆ ,ρ κ ω
1

In Equation 26, the decision variables include pm
N_ and p mn (ωk) 

(n ∈ [N_  + 1, N– ], m ∈ Φn, ∀k ∈ [1, K]). For toll entrance N_ , only 
one decision, pm

N_, exists for all scenarios; however, for other toll 
entrances, each scenario is associated with a decision variable. The 
reason is that at time t, only the current state is observed and it 
is impossible to infer the scenario that would happen afterwards 
on the basis of the current state information. However, the deci-
sion for toll entrance N_  must be made at time t before the scenario 
that would happen can be known, so only one decision variable 
exists for toll entrance N_  for all scenarios. When decisions for other 
toll entrances are made, the scenario that is occurring is identi-
fied by observation of the density, so the corresponding pricing 
strategy under this scenario can be chosen. Thus, each scenario 
has its corresponding decision variables for all other toll entrances. 
ρ̂(t + Σn−1 

i=N_ κi, ωk) represents the density of the general lane at time 
t + Σn−1 

i=N_ κi under scenario k. Dm
n (ωk), pm

n (ωk), qm
n (ωk), and τm

n (ωk) are 
actually simplified notations of their values at time t + Σn−1 

i=N_ κi under 
scenario k. qm

N_ is the input of the programming problem, and it is 
observed at time t.

Summary

In summary, to obtain the optimal prices at all toll entrances, a 
Markov decision process is first formulated and then the Bellman 
equation is derived. However, because of the high dimension of both 
state variables and decision variables, the Bellman equation is diffi-
cult to solve. Under the assumption of the independence between the 
toll entrances, the original problem is decomposed to n subproblems 
and a discrete Markov decision process model is formulated for each 
of the n toll entrances. Each subproblem solves the optimal prices 
for one toll entrance. The Bellman equation for this discrete Markov 
decision process is also presented. Finally, because the density on the 
general lane is independent of the decision variables, the stochastic 
model is approximated by simulation of k scenarios with equal prob-
ability 1/K. The stochastic dynamic programming problem can then 
be converted to a nonlinear programming problem. Its solution gives 
an approximate optimal solution to the original problem and thus an 
approximate optimal price.

Numerical Case Study

Specifications

In the case study described here, a managed toll lane and a parallel 
general lane are assumed to be 15 mi long. The free-flow speed is 
65 mph. Here, Δ  x was chosen to be 5 mi and Δt was chosen to be 
0.5/65, or 0.0077 h. Thirty cells exist in both the toll lane and the 
general lane. In the toll lane, it is assumed that only a single exit 
is located at the end of the toll lane and that three toll entrances 
are located 0, 3, and 6 mi from the start of the toll lane. These are 
at the beginning of the first, seventh, and 13th cells, respectively. 
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The demand function for each toll station follows Equation 14. It is 
assumed that all the stations have the same parameters, as follows: 
A = 1,200, � = 15, � = 0.5, � = 0.69, and C = 1,800. The free-flow 
speed on the toll lane is 65 mph.

Numerical Result

In the numerical experiment, a path for the evolution of the density 
on the general lane is simulated. Figure 3, a and b, show the evolu-
tion of the density and speed on the general lane, respectively. The 
time interval is 0.5/65, or 0.0077 h. The vertical axis represents 
the number of time intervals. The total time in the simulation is 
400 * 0.0077, or 3.0769 h. It can be seen that congestion starts from 
the 75th time interval and ends at about the 270th time interval. 
The prices of all toll stations are shown in Figure 3c. Figure 3d 
shows the evolution of the travel time from each toll entrance to 
the toll exit.

COncLUSIOn AnD FUTUrE WOrK

The study described in this paper investigated a dynamic distance-
based pricing strategy for a managed toll lane with multiple toll 
entrances and exits. The mathematical model is very general and can 
easily be applied in practice. A stochastic partial differential equation 
model was used to describe the traffic evolution of the general lane. 
However, the general pricing model developed in this study is not 
limited to a specific traffic flow model and is readily adapted to other 
macroscopic traffic models, such as the classical Lighthill–Whitham–
Richards model. Any model that fits the real data can be used in the 
pricing model, as long as the traffic flow model has the ability to 
predict the travel time. This pricing model can be used with other 
objective functions, such as maximization of the total throughput, and 
thus, a comparison of the pricing strategies under different objectives 
can be carried out. In another direction, an empirical study of the 
pricing model can be carried out: obtain real data on both toll prices 
and traffic flow, calibrate the stochastic model by use of the real data, 

FIGURE 3    Numerical results of dynamic distance-based toll pricing: (a) density (in number of cars per mile per lane) evolution on general 
lane, (b) speed (in miles per hour) evolution on general lane, (c) evolution of toll prices, and (d) evolution of travel time to destination.
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plug in the calibrated traffic model into the pricing model to obtain 
the optimal prices, and compare theoretical prices with the real prices. 
A simulation can also be used to obtain an idea of the increment in 
revenue by implementation of the optimal pricing strategy obtained.
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