Ryan Feng

EDUCATION

University of Michigan

2019-Present (Expected: Dec. 2025)

Ph.D, Computer Science and Engineering, Advisors: Atul Prakash and Stella X. Yu

Ann Arbor, MI

• Topic: Machine Learning Robustness in the Physical World

• University of Michigan 2019-2021

M.S., Computer Science and Engineering GPA: 4.0

• University of Washington

B.S., Computer Engineering, Summa Cum Laude

GPA: 3.95

SELECTED PROJECTS

• FoCal: Foundation Model Robustness via Test-Time Search [ICML 2025]

University of Michigan

Tools: CLIP, SAM, Stable Diffusion, 3D NVS Generators, TRELLIS, Zero-1-to-3

[0]

- Developed FoCal, a test-time search method to make foundation models (CLIP, SAM) more robust to input variations (3D viewpoints, lighting, contrast, 2D rotations, day-night).
- Used 3D generators (Trellis, Zero-1-to-3) and foundation model priors to canonicalize inputs at test-time.
- GRAPHITE: Automatic, Physical, Black-Box Attack Generator [EuroS&P 2022]

University of Michigan

Tools: CNNs, Zeroth-Order Optimization, Adversarial Attacks, Traffic Sign Recognizers

[🕥]

- Developed GRAPHITE, the first physical, black-box hard-label attack on deep learning computer vision models such as traffic sign recognizers. Includes a stop sign to speed limit sticker attack with 95.7% ASR.
- Contributed it to the Adversarial Robustness Toolbox, version 1.12.0.

• OARS: Adaptive Black-Box Attack [CCS 2023]

University of Michigan

Tools: MLaaS, Stateful Defenses, Zeroth-Order Optimization, Adversarial Attacks

 $[\mathbf{O}]$

- Developed OARS, an adaptive black-box attack that breaks MLaaS stateful defenses (ASR 0% to 99%).
- SPANet: Generalizing Assistive Feeding Robots to Unseen Food [ISRR 2019] Tools: CNNs, ROS

University of Washington

- Led data collection for ML-based skewering generalization to unseen food.
- Developed manipulation strategies for robotic, computer vision assistive feeding system.
- (Ongoing): Jailbreak Defense Against Embodied LLMs / VLA Agents

University of Michigan

• Developing a defense for jailbreaks against embodied VLA agents.

INDUSTRY EXPERIENCE

Xevo, Inc.

• KI.A Summer 2023

Algorithm Engineering Intern, AI / Algorithms Group

Tools: VLMs, LLMs, VLA agents, Jailbreaking

Ann Arbor, MI

Improved OOD robustness in ML metrology applications with adversarial examples and cGANs.

Software Development Engineer, AI Group

2017-2019 Seattle, WA

- Built deep learning computer vision-based eye-tracking system for driver attentiveness and incorporated it into our team's immersive driving demo.
- Trained lightweight CNNs for traffic sign recognition for autonomous vehicle technology.

HONORS AND AWARDS

• J. Robert Beyster Computational Innovation Graduate Fellowship

2023

Awarded to 4 students in the College of Engineering (University of Michigan)

Outstanding Computer Engineering Senior Award

2019

Awarded to top male and female student in Computer Engineering (University of Washington)

Microsoft Endowed Scholarship

2018

University of Washington

SOFTWARE RELEASES

- **GRAPHITE:** https://github.com/ryan-feng/GRAPHITE and https://github.com/Trusted-AI/adversarial-robustness-toolbox/tree/1.12.0
- OARS: https://github.com/nmangaokar/ccs_23_oars_stateful_attacks
- FoCal: https://github.com/sutkarsh/focal

PUBLICATIONS C=Conference, W=Workshop

- [C.9] Test-Time Canonicalization by Foundation Models for Robust Perception Utkarsh Singhal*, Ryan Feng*, Stella X. Yu, Atul Prakash International Conference on Machine Learning (ICML), 2025.
- [C.8] D4: Detection of Adversarial Diffusion Deepfakes Using Disjoint Ensembles
 Ashish Hooda*, Neal Mangaokar*, Ryan Feng, Kassem Fawaz, Somesh Jha, Atul Prakash
 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024.
- [C.7] Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks
 Ryan Feng*, Ashish Hooda*, Neal Mangaokar*, Kassem Fawaz, Somesh Jha, Atul Prakash
 ACM Conference on Computer and Communications Security (CCS), 2023.
- [C.6] Concept-based Explanations for Out-Of-Distribution Detectors
 Jihye Choi, Jayaram Raghuram, Ryan Feng, Jiefeng Chen, Somesh Jha, Atul Prakash
 International Conference on Machine Learning (ICML), 2023.
- [W.2] Theoretically Principled Trade-off for Stateful Defenses against Query-Based Black-Box Attacks Ashish Hooda*, Neal Mangaokar*, Ryan Feng, Kassem Fawaz, Somesh Jha, Atul Prakash ICML 2023 Workshop on New Frontiers in Adversarial Machine Learning (AdvML), 2023.
- [C.5] GRAPHITE: Generating Automatic Physical Examples for Machine-Learning Attacks on Computer Vision Systems Ryan Feng, Neal Mangaokar, Jiefeng Chen, Earlence Fernandes, Somesh Jha, Atul Prakash IEEE European Symposium on Security and Privacy (EuroS&P), 2022.
- [W.1] Using Anomaly Feature Vectors for Detecting, Classifying and Warning of Outlier Adversarial Examples Nelson Manohar-Alers, Ryan Feng, Sahib Singh, Jiguo Song, Atul Prakash ICML 2021 Workshop on Adversarial Machine Learning, 2021.
- [C.4] Leveraging Image Processing Techniques to Thwart Adversarial Attacks in Image Classification Yeganeh Jalalpour, Li-Yun Wang, Ryan Feng, Wu-chi Feng IEEE International Symposium on Multimedia (ISM), 2019.
- [C.3] Robot-Assisted Feeding: Generalizing Skewering Strategies across Food Items on a Realistic Plate Ryan Feng*, Youngsun Kim*, Gilwoo Lee*, Ethan K. Gordon, Matt Schmittle, Shivaum Kumar, Tapomayukh Bhattacharjee, Siddhartha S. Srinivasa International Symposium on Robotics Research (ISRR), 2019.
- [C.2] ISIFT: Extracting Incremental Results from SIFT Ben Hamlin, Wu-chi Feng, Ryan Feng ACM Multimedia Systems Conference (MMSys), 2018.
- [C.1] Understanding the Impact of Compression on Feature Detection and Matching in Computer Vision Wu-chi Feng, Ryan Feng, Paul Wyatt, Feng Liu IEEE International Symposium on Multimedia (ISM), 2016.

TEACHING, SERVICE AND ACTIVITIES

- Co-Instructor: Co-led EECS 598-012: Special Topics in Secure and Trustworthy Machine Learning (Winter 2023)
- GSI: EECS 442: Computer Vision (Winter 2025), EECS 542: Advanced Topics in Computer Vision (Fall 2024)
- TA: CSE 142: Comp. Programming I (Fall 2016), CSE 143: Comp. Programming II (Winter 2017, Spring 2017)
- Reviewer: ICML (2022, 2023, 2024, 2025), NeurIPS (2022, 2023, 2024, 2025), CVPR (2024, 2025), ECCV (2024), ICCV (2025), AAAI (2024, 2025), TIP (2021), EuroS&P (2021 external), IJCV (2022), IEEE S&P Posters (2024, 2025)
- Area Chair: R2HCAI (2023 selected as top area chair)
- Grad Student Mentor: College of Engineering (CoE) Lunch and Lab, University of Michigan, Fall 2021, Winter 2022, Computer Science and Engineering Graduate Student Organization (CSEG) Buddy Program, 2022-2024
- Vice-President and Treasurer: Computer Science and Engineering Graduate Student Organization (CSEG), University of Michigan, Winter-Spring 2020
- Lab Tour Guide: Discover Engineering, University of Michigan, Summer 2022

SKILLS

• Python, C, C++, Java, Shell Scripting, PyTorch, TensorFlow, OpenCV, Numpy, Android, Git, Slurm, Unity

^{*}denotes equal contribution.

RESEARCH EXPERIENCE

University of Michigan

2019 - Present Ann Arbor, MI

Graduate Student Research Assistant, Prakash and Yu Groups

· Machine learning robustness in the physical world. Includes foundation model robustness via test-time search (FoCal), physical black-box attacks (GRAPHITE), adaptive black-box attacks (OARS).

• Portland State University

Summer 2019

Research Intern, Intel Systems and Networking Lab

Portland, OR

• Designed adversarial machine learning image cleaning algorithms for CNNs.

• Led data collection for ML-based skewering generalization to unseen food.

University of Washington

2018-2019

Undergraduate Research Assistant, Personal Robotics Lab

Seattle, WA

• Developed manipulation strategies for robotic, computer vision assistive feeding system.

• Portland State University

Summer 2016, Summer 2015

Research Intern, Intel Systems and Networking Lab

Portland, OR

• Evaluated efficient image keypoint detection (ISIFT) and matching for vision and multimedia.

• Portland State University

Summer 2014

Research Intern, Graphics and Computer Vision Lab

Portland, OR

Developed Android apps for computational photography applications in changing color distributions.