A CHARACTERIZATION OF 2-TRIVIAL BANACH SPACES WITH UNCONDITIONAL BASIS

M. V. Rudel'son UDC 517.982.25

Let X be a Banach space with an unconditional basis such that each operator
from X into {£* is 2-absolutely summing. Then X is isomorphic either to G
or to t' or to C,,@{' B

A Banach space X is said to be 2-trivial if every linear operator, acting from the
space X into a Hilbert space, is 2-absolutely summing. LetY and Z be infinite dimensional
Banach spaces. It is known that if for some P » 1¢p<®, the space of p-absolutely summing
operators Mp(Y,2) coincides with the space of all linear operators L(Y,Z), then the space
Y is 2-trivial [1]. The properties of 2-trivial spaces have been considered in the survey

[2] (instead of the term "2-trivial space" the term "Hilbert-Schmidt space" is used).

The fundamental result of the present paper is the proof of one of the conjectures re-

garding the structure of 2-trivial spaces, formulated in [1].

THEOREM 1. A 2-trivial Banach space with an unconditional basis is isomorphic to one

of the following spaces: ¢, l}¢e@{’.

Obviously, for the proof of Theorem 1 the basis can be assumed to be normalized and

l-unconditional.

Some definitions and notations. Everywhere in the sequel X is a 2-trivial space with

3 . . “ . . - 3
a normalized l-unconditional basis {thu, » @ is the norm of the canonical isomorphism be-

tween the spaces L(X,t» andM,(X,{* , while W, is the norm in the space [,(X,t» . If Y and

Z are Banach spaces, then 4(Y,Z)is the Banach-Mazur distance between the spaces Y andZ,

S(Y) is the unit sphere of the space Y, kz(Y)dgmidimV=VcY,d(V,{va)d} (see [3]1).

Let # be some set. We say that the families of vectors {hlegr hlier <Y » and {%i}iey »

{2¢h°£<:z are (-equivalent if there exist numbers @ and ¢ such that a4« C and for any

finite subset B of the set £ and for any collection of scalars {A&}ieg we have the inequality

“.’ﬂ Eies)‘i'hl‘l E“B)‘ﬂiu“l zun)‘i%: .

By the letters I, J (possibly with indices) we denote finite subsets of the set N, I|II
is the cardinality of the set].

The smallest number C for which the sequence {%hﬂl is (-equivalent to the standard

basis of the space C&,,P=1;w » is denoted by DI  We set
X; 22 spanfe,: vl }, M, ) £ wan{|d]: 3T, 0,nsS} .

By E(a) we denote the integer part of the number a .
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We start with some auxiliary statements. First of all we present a result from I. A.

Komarchev's dissertation [4]. For the sake of the completeness of the presentation, we in-

clude the proof.

LEMMA 1. Let I be a finite set of natural numbers, let {#i}iey be an orthonormal basis
of the space tﬁn. and let iefh,l be a sequence in the space.X; » biorthogonal to the basis
{&}ia1. Let SI:Xf+€ﬁ| be the linear operator defined by the formula Spx= L, ;<xel>§; .
Then

1 s S|

sl .

2) Am<1,za”>>—“—2‘Q'—L-

Proof. Let «; (i€el) be arbitrary real numbers and let %;=VI¥le; . Making use of the
definition of a 2-absolutely summing operator, we obtain .
Lier " 51 ‘Ii"b‘“:( Sprsupt Dier ‘%ﬁ*;’:‘*‘ S‘X;’} =
<t Spaup{ Tiar ol l<es, ez eeS(X)} .
From the 2-triviality of the space X there follows that my(SpsQfS;].  Introducing this esti-

mate into the previous inequality and taking into account that the basis {Q&iel is I-uncondi-

tional, we obtain the inequality
% * 2
Tier logl = Dier | 1 ‘}a"z: <QISc 1 swpf Tiag o[- < s, €% €eSXD} < QIS 1™ | Tygp e, | (1

Part 1) is proved.

We consider a point ¥ on the sphere S(Xp) such that l|519H=IISIﬂ. We set «;= <yqe:> .
Making use of the inequality (1), we obtain

) % %2 * v 2 2 2
Liar OIS | Ty <thei>eall= 1Syl = Uzl
We denote by J the set of all indices i, eI satisfying the condition |<9,c:>|» 3%; . We as-
sume that IJI<"—S%E . We have |S:1"=]5z 9lw= Tics <hel>" + Liervy<ypei>?<|T] + Liera<yed™ d.e.,
“ Sﬂl’%lzid \7‘?"":)" . Thus, we have obtained the absurd inequality

* e .0 * % ®
>0 ] Sc<2Q” L <yeH'< T [cy,el].
I lpbole @ISl It T _kped

N

Consequently, [J|2 3 - From the definition of the set J there follows that for any collec-

tion of real numbers {“ﬂ;-: we have the inequality
v % &
. < X |&: ] {Y,e. s o,
maxlale] T oo J<slpazlal | T lghlasilnaglal. o
Applying Lemma 1 to the operator (S;f‘. we obtain

s

ERL]
COROLLARY 1. J, D<(IS;' 1% A(La@h >3k - o

COROLLARY 2. An(1,20%> g D)5 AL, 24> 705 DuD). 0
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LEMMA 2. There exists a positive number p such that for every #-element subset I of the

set N we have the inequalities
1) d/( XI,{%‘)?IW ’
2) l‘,,(XI);jn or k,,(X;)afn.

Proof. We assume that K(X;)‘H(XI)' By the Figiel-Lindenstraus—Milman theorem ([3], The-
orem 2.9), there exist a positive number ¢, a subspace Y in X; of dimension k,,(x;) and a pro-

jection P from XJ onto Y such that d(Y,¢% )¢l and

k(X)k(X);JP——~
I " l dz,xl,cg, (2)
Let T be an isomorphism between the spaces Y and c:m!' satisfying the condition |T[-[|T™}s

1, let id be the identity imbedding of the space Y into Xi’ and let {;m}:‘:::y be an orthonor-

mal basis of the space &:-mr From the 2-triviality of the space X"T there follows that

dimY =T 5 en TR T ') supd 7:4<5,..,f “15"[=1}<
™ exd (TR T4 RV

Introducing into (2) the obtained estimate for l<,,(X;) we can write

kXp dXg 62 ) > -g— v (3)

Combining the estimate (3) and the inequalities kg (X; )€n, and d,(XI,C )s\# , we obtain the

statements 1) and 2), respectively. e

LEMMA 3. There exists a positive number &, such that for any finite subset I of the set
N we have the inequality
(X
A0 AT, 2005 €11 .

Proof. Let SI be the linear operator defined in Lemma 1. According to Lemma 1 and Cor-

1py
ollary 1, we have the inequalities M4(I,20%)> ﬂ%! and MI,0Y2 "2%!" . Applying Lemma 2,

we obtain

2
)\1(1:20%'}‘09(1:%2)’%@ “SI "2” " ’404 ‘ﬁxpcm)’ e II' [ ]

LEMMA 4. Let K,m,%n,p be natural numbers satisfying the conditions ksm , k&n P”Sm 3
let I= {4..n}. Let {I ., be a collection of subsets of the set I of power x such that
for any p mutually distinct indices {‘i the set n{=‘I"i consists of at most p elements. Then

4
"> ‘TK"F .

Proof. Let # be the measure on ] that associates to each element of the set I a unit

charge and let ¥ be the characteristic function of the set I .

fThe 2-triviality of the space X is equivalent with the 2-triviality of the space X* (see
[21).
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Let 4= II( T, %) dp where meN. By Holder's inequality, we have
™4 e "y -1
(mK) =(I( cz{h)d/t) s 4 (4)
I =

On the other hand,
‘ ", ", d ",
# =w§m I jl,l ’a(j) dg‘" =m§(h, i S ch) /“";E% i}l Yap dp, (s)

where (00 is the set of all mappings w:{4..m}—{{..m} , (I, is the set of those mappings from
"

whose images have a cardinality not exceeding p, (= a\@, . If aell,, then flnp¢'f¢<})rdﬂ‘P'

Obviously, |wl=m~u|i,/<('¥)p™ <m’-p™ . Introducing these inequalities into (5) and taking into

account. the estimate (4) we obtain

lmk)m‘w“"'sﬁskfa,|+p|a,,lsxla.'l+pml< kmPp™ . pm ™ )
We set my=12p+{ . Then, since P<m  the previous estimate gives K"P"ﬁ"’i_Kp”P”.ﬁ"ﬂpsP(p‘fm'P,'
1)s%p. Consequently, ”’({T){T'K“I‘F >—;‘—K“1‘5F e

LEMMA 5. Let k,neN and assume that for all 4i,1si<n, there are given the numbers M,
and % ,meN, 7, €R, %,>0 . Assume that the operators Ti"‘:—*{:‘ are such that [T;ls1 for
all i and for any x from (} there exists an index ¢ for which we have the inequality |T;x|=
é—ilx“ . Then ks rmx'ftf{rgzﬂmgifsisn} with some absolute constant v,

The proof of the lemma is similar to the proof of Proposition 3.2 of [3]. Let f%gi;:

be the standard basis of the space ‘ﬂ:,q ,gﬁi—'—i Ti,“%j-’ For any ¢ and for any x from the set S’: .

T2 xeS(C:'):”; Xﬂ?%}’ we have the inequality mam}'kxy‘j.;}'?l = ‘Mﬂrle<T¢ x,%}&l = lTi’)(ﬂz.,,Li yfrom where

. , % . 1
there follows that mm}-mmiﬂx-é-%]l; “x+-é-y{j,| }$1-'|7?'- Thus, the points tﬁ'}{,} form a (»J1-17f ) -
net for the set Sy . Therefore, %m; balls with centers at the points t%—;%} and radii

des

1+Y1-2*"  cover the set [0;2]-§; frx:1ef0;9],x€8} . If mes is the normalized Lebesgue mea-

sure on the sphere 5(0:) then, due to U;‘ §;= S(C:) , for some % we have the inequality
mesS.;o > Lw . Comparing the volume of the set [0;2]'S;, with the volume of its covering balls,

we obtain the estimate - 1%¢ 2“musS; € am, (4¥1-2;*)" | which, after simple transformations, gives
" 0 Vo Yy 8

4 ; % .1
0y (2m; w) > log 1*‘14-_‘Vf> o o
Now we can obtain the following statement, necessary for the proof of Theorem 1, but ap-

parently, of interest also in its own right.

THEOREM 2. Let X, be a Banach space with a normalized l-unconditional basis iei}}z‘;,q .
If for every i the sequence feaif;:, is #-equivalent to the standard basis of the space fy
while for every J the sequence {ei,}-}’.:ﬂ is ff-equivalent to the standard basis of the space

1
lw, then we have the inequality k,.(X,)gcﬁ"’WS/g(ng with some absolute constant C .

Proof. First we present the outline of the proof. We divide the sphere S(,) into two

*
sets S, and S, . Then we extract from the sphere $(X¥) the subsets x: and ¥, of cardinalities
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m, and m, , respectively, possessing the following properties:
1) fvg W c,n&gn with some absolute constant ¢y ;
2) for any X from the set §, we have the inequality sup {< x,x*>:x%e X}z Ay

3) {ogmysc, A**u™lgn with some absolute constant ©,;

4) for any x from the set S, we have the inequality sup{<x, x*>: x“'ex:};-};

After the indicated objects have been constructed, we define the operators T;,T; :X,—
{:é’ i=1;2, in the following manner: Mf(’“"} Let k=k,(X,) and let T be an imbedding
of the space C:‘ in the space X, such that 7«'"9"‘"“} <yl  for all % from the space_{’: . Ap-
plying Lemma 5 to the operators T,eT and Ty-T we obtain the assertion of the theorem.
(Indeed, for each ¥ from 1Y the vector TV/"T?" is either in & or in S, , so that, by proper-
ties 2) and 4), either ﬂE‘TylZ%ﬁ'”gﬁmﬂgu or “T,,'Tyllzfﬂyu . We leave to the reader to con-

clude the computation.)

We proceed to the construction of the sets &, Sy, x: . We set X, —fsptm{ 1<4»<w}
let P; be the canonical projection of the space X, onto Xji let 5, be the subset of the sphere
SX,)  consisting of those X, for which there exists an index j satisfying the condition
1;xl>a= AP 5,498 S(X,)\'S, . For every x from the set § there exist an index § and

a functional x" from the sphere S(X;) such that <x, P;x">=<P}-X,X*>=HP5X"W~

By Lemma 2.4 of [3], in the set S(X;) there exists an (%) -net of cardinality at most
(1+7:-)” . Taking the union of these (%) -nets, we obtain a set 'Lf of cardinality at most
n({+ a‘i)"' , such that for any x from the set S, there exists x™ from the set I:, for which «<x,

x*>>% . The set Xy satisfies the conditions 1) and 2).

%0
Assume now that X€ S5, . Let ieij}%:‘ be the basis in the space X: , dual to the basis
"
{e"j}‘riﬂ . If the functional x* has in this basis the coordinates X% satisfying the con-
dition |x’{}-,<6=%ﬂ"/’w"”/’ for all i and } , then

|<x,x" >|s7: HP"“ I Z1X |« ﬂw 2 I§ X‘J " <ﬁa6n=%. (6)

&} v}l

Let B be the set of all subsets of the set {%..#} of power wm=E(4¢"). For B,...ByeB we
set Xn B 5pan{e} jeB;, fsisn}. We prove that [

\'J

»* *
°“’?i<xy x’”x*eUB'...B“eBXB,..-Bn’ "X"$1} % ‘ i (7) !

Let X*e S(X;) ,<x,X"™=1. We denote by %; the set of all those indices j for which lﬁ;lzé
L 24 - %
and we set x-fhf.k%xqetj.

i
|
(
From the inequality (6) there follows that (x,x“>>% . For any index i we have the in- |
equality :

6 1= 1835135 15 <6 TR llc.w%llﬁf, ylse'd i
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According to the previous estimate, from the set B we can select elements By such that
for every index i we have the relation #&;<B; - Then x"e X;’,,,xw and inequality (7) is

proved.

By Lemma 2.4 [3], in each of the sets S(x;,,,.x,,) there exists a ({') -net of power at
most 9‘“’””‘;,...3,5 g»n .,  Combining these ('.’;) -nets, we obtain a set x’;, satisfying the condi-
tions 3) and 4). Indeed, lx:[s(";)":g""‘qg”)’“"‘ (9;,)7'"””‘7: and for every x from the set §, the
inequality (7) leads to the estimate

* % . L
sup{ex, Xy : xe X}y supfcx,xMixtel S p)}- »,’ °
“P * B.B,eB B' B
Proof of Theorem 1. Let p=f;®o . A subset 3" of a finite set J of natural numbers is

said to be (§;p) -maximal if B,(39€5  and .\p(3,$)=7.

( ¢+ )We prove that there exists a positive number «,such that for any finite set of natu-

ral numbers I we have one of the inequalities: A(I,AQ“)>x|I|l or Au(I,2Q92«|I|.
For the sake of brevity we denote 2Q* by R.

Assume that what is asserted at ( ¥ ) is not satisfied. Then for every number =%,1>0,

there exists a finite subset I of the set N for which

.'.

MLl ana )\, (1,p) £ (8)

The scheme of the subsequent operations is the following. We extract from the set I, satis-
fying the estimates (8), a subset 7 such that the sequence {€lie; after anappropriate re-
numbering by pairs of indices will satisfy the assumption of Theorem 2. For large 7 this

subset will be so large that the conclusion of Theorem 2will bein contradictionwith the con-

clusion of Lemma 2.

Thus, we fix * and suppose that for the set I the estimates (8) hold. We construct a

sequence of subsets of the set I with the aid of an inductive proc}edure. We denote by J,,

ClIl

Tan’ %1 . Assume that
' )

some (R;1) -maximal subset of the set I. By Lemma 3, we have [J[|>

the sets 7,’,...,3,,( have been already constructed. If A(IN\ UE, J{,R)<‘b then the procedure

stops. Otherwise, for Ji. we take any (R;1) -maximal subset of the set I \ US 73 -

Assume that the inductive process concludes after N steps. We set I'= U:_‘ J; It is
easy to see that 'II’ > >3] since if |I‘|< a then, by Lemma 3, A(INI%R)2 _"(,\'_I'(T']]-;T');z
©
and the process can be continued.

. des of N
We renumber the sequence {JK}“, in reverse order: J,= Jy4-« . The sequence {mdJ,.,,

m.=|J.| , is nondecreasing. We set n—mm{x 16ksN, LE my> Fmg ), T*4¢ y™ 3, . The definition

K=q

of the number n is correct since Emm,‘z T,L"F”ul =5 My .

- = 3
For any number X,X<# we have the inequality meﬁ%mg . Consequently, my> _,11 T°
E"" ", . From here, by induction one can derive that Z:‘m,‘a‘cﬂ-%)"" « Indeed, by

fWe recall that ¢ is the constant from Lemma 3.
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construction, [%l>+ , i.e., for k=1 the inequality is satisfied. If it is satisfied for I

k<n-{ , then

el

L w>(1+ 4 ) { > (14— )-al4- ) Fe nga-£)F

k=1 a4/ 2 -1

Thus,

|1*|= }‘};mxzw({-—;‘;)b'” . (9)

From the definition of the number # there follows that |I"|= E::‘m.(?%'"b“- Therefore,

II¥
Z ’

for any subset J of the set I*, satisfying the condition |J|>

&I HIY v
Ao(0,R)> YA ‘;m‘, »%. . 1In particular, from the set I* one can select W=E(L]) mutually disjoint

we have the inequality

subsets I‘ , each of cardinality E(}), satisfying the condition lﬂm(Ié)SR . Since J,00sR for
all x, for any { we have the relation |J, nI,'Ie R* . Consequently, from each set I¢{ one can

extract a subset I; of cardinality K=E(gz) such that |J,aI¢l¢1 for allk.

We denote by P the projection of the set I* onto the set {1...n} associating to the num-

ber i, veI* that x for which ieJ,.

We fix some natural number p, satisfying the inequality IP*>cR*p ergp  (we recall that

f/ is the constant from Lemma 2 and ¢ is the constant from Theorem 2).

: o . w 14 g
a) Let nsfk"“% . Obviously, wz«Eﬁ% w,” » 7K .I:[”_|=l‘§1 m,» and, consequently, mau>K ,

We shall assume that 1+ is so large that w2 P" Applying Lemma 4 to the sequence iff'(Ig)};: we

,
obtain that there exists a sequence of mutually distinct indices {H such that |iQ‘ .?(I%)lap

i=1
This means that there exists a sequence of mutually distince indices {K}};ﬁ such that for

any indices ©j the intersection of the sets I, and J; consists of one element. The basis
vector corresponding to this element will be denoted by ©®ij . The sequence 1%;}2’5,:1 satisfies
the assumption of Theorem 2. We set X,=sPamieyl; ;.4 . Making use of the estimate 2) of Lemma
2, we obtain the inequality
PP max{ kX)), k(X }s cR"lSP"’Cagp )
contradicting the number p.
b) Assume that now u>-};K"'iT’ . Then ~<8R%' % . We select from each set I¢ a subset i¢

of cardinality p. We call the sets i{ and ‘ig equivalent if .?(fc)=f(f,) . If the cardinality

of each equivalence class is less than P, then m<P(’;) . But, according to the estimate (9),

)
fugmﬂm; ‘i.,,' > {rg(1- )’Mv4>(n«-l)1 1 >% 16R" nir*‘ while ﬁg[v(?)k&g[pn’]«pd)Ca’gu . Therefore, if v is
sufficiently large, then there exist P sets Tc whose projections coincide. Reasoning in the

same way as in the case a), we obtain a contradiction. Part (i) is proved.

We note that from the assertion of part (i) there follows that for A:(&M)R for any

finite subset I of the set N we have one of the inequalities:

MLas 8 e aaas I (10)
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(i) We prove that for some number C, any finite set I of natural numbers can be par-

titioned into disjoint subsets I; and I, such that J,(I,5C and J,(Iys<C.

We prove that, as shown by Johnson's example [5], the assertion of part (i) does not

follow from (10) if 2-triviality is not assumed.

! &
We prove statement (#i) by contradiction. We set B= SZQ ;W= M— ; C= B+— [ ®is from
statement of part (i)]. Let I be that set for which the partltlon 1nd1cated in part (4i) does

not exist.

We construct disjoint sets J; and J, of cardinalities greater thant#, satisfying one of

the following conditions: -

a) J, is a (B;1)-maximal subset of the set JuJ,, 3,0,)€B
or

b) J, is a (B;®)-maximal subset of the set 2032,3‘,(7,,)53.

It is easy to see that |I|>% since otherwise J(I)€%<( in spite of the fact that I
has no partition of the type mentioned in (4i). We assume that A(I,%d*>«|Il (the case
)\q,(I,ZQ”» «|TI| is considered in a similar manner). Let 31' be a «(B31) -maximal subset of the
set I. Then|J/|= A(LB)2AL,2Q% %. If |IN3]<% then JdrsB,WN+|Ir}|<B+&=¢ in spite of
the manner in which I has been selected. Consequently, |INJ/I>% . 1f A(I\3 B)># then
for J, we take any ( Bi! )-maximal subset of the set I\J . For the sets %,=9 and J, condi-
tion a) is satisfied. If, however, A«I \71',B)sﬁv then )\,(I\7,',2G")sn<dll\ﬂ,'l so that, by
part (i), we have )\m(I‘J.,,B)? Ao TN, 4Q%2 &|INY 1> n . Let ‘.7'” be a ( B,m )-maximal subset of the
set I\J . Then |3/|=Ao(INY,B)»w . If |INCHuls & then J (I\J')<$¢(J,”)+II\(J.,UL”)R
B+% =¢ , contradicting the selection of the set I. Thus, |IN(Ju])|>% . Let ACIN U0,
B)>w . We set =7/ and let 7 be a ( B, )-maximal subset of the set ‘I\ (3u3). The sets
3, and 3, satisfy condition a). If AM(IMIUYLBiw, then Mo(INYUI",BY># . In this case
the set 7,=71” and any ( B,©)-maximal subset of the set IN(Ifv 31”) satisfy condition b),

Assume that condition a) is satisfied [in the case of the validity of b), statement (ii)

is established by the same arguments],

Let J be any subset of the set J,uJ, for which we have the relation |J]|>|J!. By condi-
tion a) we have A(Jul,B)=|3,| and, consequently, J,(0)>B . Applying Corollary 2 of Lemma 1,

we obtain the inequality

Al 20%) > 2h>

_L
20% 20
*
Thus, from the set J,UYJ, one can extract not less than = E(QT"’) mutually disjoint sub-
sets i) , of cardinality E(-z%.-). such that D”(T;)S 2@'. We extract from each set 1; a subset I

of cardinality N=E(-,’B.j') contained in one of the sets J; or J, . We renumber the sets Ij so

that we should have the relations I,..T¢c? » Igpdpme Jy

First we consider the case when {3m=E(%). We set I- U’:' I; . Then e Nwe> T . Since

I3 , we have the inequality J,(I'’¢B . Consequently, 'Ayp(I’10%<2@*B . According to part (i),
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_—m

from the set I’ we can extract a subset I”, of cardinality greater than %%’, for which ﬂﬂ]:%i
2Q* (the inequality Ju(I”)¢ 2Q* is not possible since ’I”|>%=ZQLB>)W(II,$Q,'))-

For all } we have the inequalities

| BInINs 81N s 20%, BuTjnIN 50w (I; 440" .
Consequently, ler\I”]g4q* . Thus,

an ” - 3
<l = ﬁ:ll”ﬂlilﬁ‘r()*m‘$2/%1
The obtained inequality contradicts the definition of the number B.

If, however, {<m;, then m-f>m,. We set I'= U::',::' Ij . Since I'c J, the same arguments

lead to a contradiction.
Part (il ) is proved.

(4i ). With the aid of D. Konig's theorem [6] (Theorem 1, Chapter III, Sec. 53) one can
show that there exists a partition of the set N into disjoint subsets N and N, such that
J(Nnft..aD)sC and Jy(Nun{1..4€( for any natural number #. This means that the sequences

¢ )ien, and{%}ku, are equivalent to the standard bases of the spaces Q"J and Cmu| (¢, if

INaJ=:mL
Theorem 1 is completely proved. o

The author is grateful to I. A. Komarchev for a series of useful marks and for the per-

mission to publish the proof of Lemma 1.
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