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Abstract. We prove that if a metric probability space with a
usual concentration property embeds into a Banach space X, then
X has a proportional Euclidean subspace. In particular, this yields
a new characterization of weak cotype 2. We also find optimal lower
estimates on embeddings spaces with concentration properties (i.e.
uniformly convex spaces) into lk∞, thus providing an ”isomorphic”
extension to results of Gromov-Milman and also generalizing esti-
mates of Carl-Pajor and Gluskin.

1. Introduction

The concentration of measure phenomenon in various classes of prob-
ability metric spaces is a remarkable and well known theme in Geomet-
ric Functional Analysis. Discovered by V. Milman, it has been crucial
in proofs of many results in the asympthotic theory of finite dimen-
sional normed spaces.

Consider a probability metric space (T, µ, d) with the following con-
centration property for some constant c. For every ε > 0 and every
subset A of T of measure at least 1/2, the ε-inflation Aε = {t ∈ T :
d(t, A) < ε} has measure at least 1 − 4 exp(−cε2n). Here n is a pa-
rameter, usually an integer. If n varies, n = 1, 2, . . ., then the family of
such metric probability spaces (Tn, µn, dn) is called a Lèvy family. The
constant 4 is not important in this definition.

The notion of Lèvy family, introduced by M. Gromov and V. Mil-
man [Gr-M], is by now standard, as it covers many natural families
of spaces. Important examples of Lèvy families include the euclidean
spheres (Sn−1, σn, ρn) with the normalized geodesic distance and the
normalized Lebesgue measure, the orthogonal groups (O(n), µn, ρn)
with the Hilbert-Schmidt metric and the normalized Haar measure (and
all homogeneous spaces of O(n), like Stiefel manifolds and Grassmanian
manifolds). A remarkable class of discrete Lèvy families is given by the
powers (T n, µ⊗n, dn), where (T, µ) is arbitrary probability space, µ⊗n
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is the product measure, and dn is the normalized Hamming distance.
More examples and references can be found in [M-S] and [Ta].

Let (Tn, µn, dn) be a Lèvy family. To eliminate a trivial case, where
the whole measure is concentrated in one atom or in its small neig-
borhood, let us assume that the ε-neighborhood of any point in Tn
has measure smaller than 1 − δ, for some positive ε and δ indepen-
dent of n. We prove that if (Tn, dn) can be C-Lipschitz embedded into
an n-dimensional Banach space X, then X has a Euclidean subspace
of dimension proportional to n. In other words, the Euclidean sphere
Sk−1, which itself is a member of a Levy family, Lipschitz embeds into
X (with k ∼ dimX). This result highlights the importance of the con-
centration of measure phenomenon in the Euclidean sphere: if some
metric space with a standard concentration property embeds into X,
then so does the euclidean sphere.

This result gives a new characterization for the Banach spaces of
weak cotype 2. Recall that X has weak cotype 2 iff there exist constants
c1, c2 such that every finite dimensional subspace Y of X contains in
turn a subspace c1-isomorphic to ln2 with n > c2 dimY . In particular,
Sn−1 Lipschitz embeds into Y with n proportional to dimY . The result
stated above yields that if this definintion of weak cotype 2 holds for
some Levy family (Tn, µn, dn) instead of the Euclidean spheres Sn−1,
then it must also hold for the Euclidean spheres, i.e. X must have
weak cotype 2.

Our second result states that Levy families poorly embed into lk∞. If
(Tn, µn, dn) is a regular Lèvy family, then for any map F : Tn → lk∞

(1) ‖F‖Lip‖F−1|F (Tn)‖Lip ≥ c

√
n

log(2 + k/n)
.

This bound is optimal, which can be seen from the recent ”isomorphic
Dvoretzky theorem” [M-S 98]: every k-dimensional Banach space con-
tains an n-dimensional subspace ψ(k, n)-isomorphic to the Euclidean
space, where ψ(k, n) denotes the right side of (1). If T = Sn−1 is a Eu-
clidean sphere and F is a linear operator, the estimate (1) was proved
independently by J. Bourgain, J. lindenstrauss and V. Milman [B-L-M],
B. Carl, A. Pajor [C-P] and E. Gluskin [G 89]: any n-dimensional sub-
space of lk∞ has distance to ln2 at least ψ(k, n).

Our approach to (1) easily carries over to probability metric spaces
with different concentration behavior. An important example is given
by the class of uniformly convex Banach spaces. M. Gromov and
V. Milman [Gr-M] (see [Schm]) proved that the sphere SX of an n-
dimensional uniformly convex space X has the same concentration
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property as a Levy family, but with the exponent p instead of 2 (p
depends in a natural way on the degree of the uniform convexity).

Then an analogue of (1) for the metric space SX proves that every
n-dimensional subspace of lk∞ has distance to X at least c(n/ log(2 +
k/n))1/p. In the range 1 ≤ n ≤ c log k this estimate is known from
the paper of M. Gromov and V. Milman [Gr-M], so our result can be
viewed as the ”isomorphic” extension of their theorem.

It is worthwhile to note that in this paper we make no restrictions
on the nature of the metric space besides the measure concentration
property. This differs our perspective from the earlier results on embed-
ding finite metric spaces into normed spaces, where different particular
classes of metric spaces were considered: a generic n point metric space
[Bo], [Ma 95], [J-L-S], [Ma 97], certain classes of graphs (expanders,
trees) [L-L-R], [Ma 97], [Ma 99].

2. Norms of Subgaussian Random Vectors

Let T = (T, µ, d) be a probability metric space and A be a subset of
T . For ε > 0, the ε-neighborhood of A is defined as Aε = {x ∈ X :
ρ(x,A) ≤ ε}. We define the concentration function of X as

(2) α(T, ε) = 1− inf{µ(Aε) : A ⊂ T with µ(A) ≥ 1/2}.

Then a family (Tn, µn, dn)∞n=1 of probability metric spaces is a Lèvy
family with constant c > 0 if

(3) α(Tn, ε) ≤ 4 exp(−cε2n) for all ε > 0

and for all n = 1, 2, . . .
A natural nondegeneracy condition, which we will assume in some

results, is the following: there exists positive constants ε and δ such
that ε-neighborhood of any point in Tn has measure smaller than 1−δ,
n = 1, 2, . . . Such Levy families are called regular.

It is a standard fact that if (Tn, µn, dn) is a Lèvy family then every
1-Lipschitz function F : Tn → R concentrates, i.e.

(4) µn{|F − EF | > ε} ≤ 8 exp(−cε2n) for all ε > 0

(see [M-S]).
This concentration property is convenient to be described in terms

of the norm in the space Lψ2 . The norm of a function f in Lψ2(T, µ) is
the minimal number λ such that E exp(f 2/λ2) ≤ 4. Equivalently, it is
the minimal number λ such that

µ{|f | > s} ≤ 8 exp(−λ2s2) for all s > 0.
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We see from (4) that if (Tn, µn, dn) is a Lèvy family then for any mean
zero 1-Lipschitz function f : Tn → R

(5) ‖f‖Lψ2
(Tn,µn) ≤ c1n

−1/2,

(where c1 = c−1/2).
This easily generalizes to Banach space valued functions. Let X

be a Banach space, and F : Tn → X be a 1-Lipschitz mean zero
map. Then for every x∗ ∈ BX∗ the function f : Tn → R defined
as f(ω) = 〈F (ω), x∗〉, w ∈ Tn, is a 1-Lipschitz scalar valued mean
zero function. Therefore by (4) ‖〈F, x∗〉‖Lψ2

(Tn,µn) ≤ c1n
−1/2 for every

x∗ ∈ BX∗ .
This motivates the following definition. Let (T, µ, d) be a probability

metric space and X be a Banach space. We will call a map F : T → X
a subgaussian random vector if

(6) ‖〈F, x∗〉‖Lψ2
(T,µ) ≤ 1 for every x∗ ∈ BX∗ .

A ”canonical” example of a subgaussian random vector is the standard
Gaussian vector g in (Rn, ‖ · ‖X), whose coordinates are independent
N(0, 1) random variables, and the unit Euclidean ball Bn

2 is contained
in BX . In this case, up to an absolute constant, 1√

n
E‖g‖ ∼MX , where

MX is known as the M-estimate of X, MX =
∫
Sn−1 ‖x‖X dσn(x). The

considered example is in some sense extremal. The main result in this
section is

Theorem 1. Let X = (Rn, ‖ · ‖X) be a Banach space such that the
maximal volume ellipsoid in BX is the standard Euclidean ball Bn

2 . Let
F be a subgaussian random vector in X, i.e. (6) holds. Then

1√
n
E‖F‖ ≤ CM

1/2
X .

Here, as well as in the rest of the paper, C denotes absolute constants
(possibly different in different places).
Proof. We write the average of ‖F‖X as the expectation of the supre-
mum of a sub-gaussian process:

E‖F‖X = E sup
x∗∈BX∗

〈F, x∗〉.

We will cover BX∗ by translates of small Euclidean balls. Fix an ε > 0.
By Sudakov’s inequality ([Le-Ta] 3.3),(

logN(BX∗ , B
n
2 , ε)

)1/2

≤ Cε−1
E‖g‖X

(N(BX∗ , B
n
2 , ε) denotes the minimal number of translates of εBn

2 needed
to cover BX∗). Let N be the set of points guaranteed by this entropy
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bound, i.e.

BX∗ = N + εBn
2 and (log |N |)1/2 ≤ cε−1

E‖g‖X .

Then

(7) E sup
x∗∈BX∗

〈F, x∗〉 = E sup
x∗∈N
〈F, x∗〉+ ε · E sup

x∗∈Bn2
〈F, x∗〉.

We can certainly assume that N ⊂ BX∗ , so by (6) we have

(8) ‖〈F, x∗〉‖Lψ2
(T,µ) ≤ 1 for all x∗ ∈ N .

It is easy to see that (8) alone implies that E supx∗∈N 〈F, x∗〉 ≤ C(log |N |)1/2

(see [Le-Ta] 3.1). Thus the first summand in (7) is bounded by

Cε−1
E‖g‖X .

Next, the second summand in (7) is

E sup
x∗∈Bn2

〈F, x∗〉 = E‖F‖2

(by ‖ · ‖2 we denote the euclidean norm). We use the John’s decom-
position of the identity on X. Namely, if Bn

2 is the maximal volume
ellipsoid inscribed in BX , then the identity operator on X can be de-
composed as

idX =
m∑
j=1

xj ⊗ xj,

where xj/‖xj‖X are contact points, i.e. ‖xj‖X = ‖xj‖X∗ = ‖xj‖2,
j = 1, . . . ,m, and

∑m
j=1 ‖xj‖2

2 = n. We have

E‖F‖2 ≤ (E‖F‖2
2)1/2 =

(
E

m∑
j=1

〈F, xj〉2
)1/2

=
( m∑
j=1

‖〈F, xj〉‖2
L2(T,µ)

)1/2

≤ C
( m∑
j=1

‖〈F, xj〉‖2
Lψ2

(T,µ)

)1/2

≤ C
( m∑
j=1

‖xj‖2
X∗

)1/2

by (8)

= C
( m∑
j=1

‖xj‖2
2

)1/2

= Cn1/2.
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As a consequence, (7) is bounded by

C(ε−1
E‖g‖X + εn1/2).

Therefore

1√
n
E‖F‖X ≤ C

(
ε−1E‖g‖X√

n
+ ε
)
≤ C(ε−1MX + ε).

Now taking ε = M
1/2
X we obtain the required estimate. The proof is

complete.
A consequence for Levy families follows immediately.

Corollary 2. Let X = (Rn, ‖ · ‖X) be a Banach space such that Bn
2 is

the maximal volume ellipsoid in BX . Let (T, d, µ) be the n-th term of
a Levy family, i.e. (3) is satisfied. Then for any 1-Lipschitz mean zero
map F : T → X

E‖F‖X ≤ C1M
1/2
X ,

where C1 depends only on the constant c in the definition of Levy family.

It is a difficult question whether the estimates obtained are optimal.

In particular, it is natural to ask whether the bound CM
1/2
X can be

improved to CMX . One of the ways to improve it is to replace the John
ellipsoid by an ellipsoid E ⊂ BX for which MX is maximal. An example
in the paper by A. A. Giannopoulos, V. D. Milman and M. Rudelson
[G-M-R] shows that this ellipsoid can be very far from the John’s one.

Corollary 2 easily modifies to a dimension of X different from n.

Corollary 3. Let X = (Rm, ‖ · ‖X) be a Banach space, and all the
remaining assumptions of Corollary 2 hold. Then

E‖F‖X ≤ C1

(m
n

)1/2

M
1/2
X .

Proof. We modify the metric on T by setting d′(t, s) = (n/m)1/2d(t, s)
for t, s ∈ T . Then (T, µ, d′) is an m-th term of a Lèvy family, and F is
an (m/n)1/2-Lipschitz map from (T, µ, d′) to X. Applying Corollary 2
to (n/m)1/2F we complete the proof.

Corolary 2 naturally applies to Lipschitz embeddings. As usual, a
one-to-one map F : (T, d)→ X is called an M -Lipschitz embedding if
‖F‖Lip‖F−1|F (T )‖Lip ≤ M . We will be interested in estimating k(X),
the maximal dimension k of a subspace of X that is 2-isomorphic to
lk2 .

Corollary 4. Let X be an n-dimensional Banach space, and (T, µ, d)
be an n-th term of a regular Lèvy family. Assume that (T, d) can be
M-Lipschitz embedded into X. Then

k(X) ≥ C(c, ε, δ,M)n,
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where c, ε, δ are the constants in the definition of the regular Lèvy fam-
ily.

Proof. We choose the Euclidean structure on X as in Corollary 2. By
[M-S] 4.2,

(9) k(X) ≥ CM2
Xn,

and Corollary 2 will provide a lower bound for MX .
Indeed, consider the map Φ = (F − EF )/‖F‖Lip. Then Φ is mean

zero, 1-Lipschitz, and ‖Φ−1|Φ(T )‖Lip ≤ M . Let Φ′ be an independent
copy of Φ; then

E‖Φ‖X ≥ E‖Φ− Φ′‖X ≥
1

M

∫
T×T

d(ω, ω′) dµ(ω) dµ(ω′)

≥ 1

M
εδ.

Then by Corollary 2 we have M
1/2
X ≥ C−1

1
1
M
εδ which, when combined

with (9), completes the proof.

3. Weak Cotype 2

One of several equivalent definitions of weak cotype 2 of a Banach
space X is through a saturation of X by finite dimensional euclidean
subspaces in the following sense. There are constants α,M > 0 such
that for every n and every subspace Y of X there exist a further sub-
space Y ⊂ X with k = dimY ≥ αn, which is M -isomorphic to lk2 (see
[Pi 89]).

Our aim is to show that (the sphere of) the space lk2 in this definition
can be replaced by the k-th term of any regular Lèvy family. The linear
embedding is replaced naturally by a Lipschitz embedding or, more
generally, by a semi-Lipschitz embedding.

Definition 5. Let (Tn, dn) be a sequence of metric spaces, and X be
a Banach space. Suppose we have for each n a one-to-one map Fn :
Tn → X. We call the family (Fn) a semi-Lipschitz embedding if

(i) supn ‖Fn‖Lip <∞;
(ii) The family of maps (F−1

n ) defined on the images of Fn is equicon-
tinuous.

We say that a family of metric spaces (Tn, dn) semi-Lipschitz sat-
urates a Banach space X if there is a constant α > 0 such that for
every sequence of subspaces (Xn) of X with dimXn ≥ αn there is a
semi-Lipschitz embedding (Fn) of (Tn, dn) into X so that Fn(Tn) ⊂ Xn

for all n.
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Theorem 6. Suppose X is a Banach space, and there exists a regular
Levy family which semi-Lipschitz saturates X. Then X has weak cotype
2.

Proof. Consider a regular Levy family (Tn, dn, µn) with regularity
constants ε, δ > 0, which saturates X. Let Xn be any subspaces of
X with dimXn ≥ αn, and consider the corresponding semi-Lipschitz
embedding (Fn : Tn → Xn). Since (F−1

n ) is equicontinuous, there exists
a γ > 0 such that

‖Fn(ω)− Fn(ω′)‖Xn ≥ γ whenever dn(ω, ω′) ≥ δ.

Let F ′n be an independent copy of Fn; then

E‖Fn − F ′n‖Xn ≥ γ · µn × µn{‖Fn(ω)− Fn(ω′)‖Xn ≥ γ}
≥ γ · µn × µn{dn(ω, ω′) ≥ δ}

≥ γε.

Then, as in the proof of Corollary 4, k(Xn) ≥ C(c, ε, δ, γ)n. Thus X
has weak cotype 2.

In general, it is impossible to interchange Lipshitzness and equicon-
tinuity properties of Fn and F−1

n in the definition of the semi-Lipschitz
embedding. This is illustrated by the next two propositions.

Consider the discrete cube Cn
2 = {−1, 1}n, endowed with the nor-

malized Hamming metric dn(x, y) = 1
2n
|{i : x(i) 6= y(i)}|.

Proposition 7. Cn
2 cannot be semi-Lipschitz embedded into any normed

space with type p > 1.

Proof. This follows from a result of J. Bourgain, V. Milman and
H. Wolfson [B-M-W]. Assume there is such an embedding F : Cn

2 → X,
and put Xε = F (ε) for all ε ∈ Cn

2 . We will show that X fails to
have metric type p > 1. Since dn(ε,−ε) = 1, it follows from the
equicontinuity of the family (F−1

n ) that ‖Xε −X−ε‖X ≥ δ, where δ is
some positive constant independent of n. Given a vertex ε ∈ Cn

2 , let
ε[i] be the vertex in Cn

2 differing from ε in the i-th coordinate only.
The unordered pair (ε, ε[i]) is called an edge. There are n2n−1 edges in
Cn

2 . We have dn(ε, ε[i]) = 1/n, hence ‖Xε −Xε[i]‖X ≤ 1/n. Then

D :=
(∑

ε

‖Xε −X−ε‖2
X

)1/2

≥ 2n/2δ

and

E :=
( ∑

edges

‖Xε −Xε[i]‖2
X

)1/2

≤ (n2n−1)1/2(1/n) =
2n/2√

2n
.



EMBEDDINGS OF LEVY FAMILIES INTO BANACH SPACES 9

If X had a metric type p > 1, then by the definition [B-M-W],

D ≤ αn1/p−1/2E

for some constant α independent of n. But this would clearly fail for
n large enough. Finally, since X has no metric type p > 1, it has no
type p > 1 [B-M-W]. This contradiction completes the proof.

In particular, Cn
2 cannot be semi-Lipschitz embedded into lnp (1 <

p <∞). However, we have

Proposition 8. There is a sequence of mappings Fn : Cn
2 → lp such

that
(i) The family (Fn) is equicontinuous;
(ii) supn ‖F−1

n ‖Lip <∞.

Proof. Define Fn by

Fn(x) = n−1/px for x ∈ Cn
2 .

It is straightforward to verify that F−1
n is 1-Lipschitz. Now pick any

x, y ∈ Cn
2 . Since the coordinates of x, y are either zero or one, we have

‖F (x)− F (y)‖ = n−1/p‖x− y‖p = (dn(x, y))1/p.

This proves (i) and therefore completes the proof.

4. Embeddings into `k∞.

We begin with a result stating that a Lipschitz map from a Lèvy
family into lk∞ concentrates. Given an k-dimensional normed space X,
we denote by d∞(X) its Banach-Mazur distance to lk∞.

Define the function

ϕ(k, n) =

√
ln(2 + k/n)

n
.

Theorem 9. Let (Tn, dn, µn) be a Lèvy family with constant c. Let
(Xn) be a sequence of finite dimensional normed spaces with

(10) d∞(Xn)ϕ(dimXn, n)→ 0 as n→∞.
Let ε > 0. If n is large enough then every 1-Lipschitz map F : Tn → Xn

concentrates. That is,

P{‖F − EF‖Xn > ε} ≤ 8 exp(− c

16
ε2n).

The words ”large enough” in the statement mean that there is a
number n0 which depends only on c, ε, and the rate of convergence in
(10) such that the conclusion holds for every n > n0.

In general, n0 must depend on ε, as the following example shows. Let,
for every n, εn = (log n)−1/2, Tn = Sn−1, and Xn = ln2+εn . Consider
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Fn : Tn → Xn, the formal identity in Rn restricted to Sn−1. Then (10)
is satisfied:

d∞(Xn)ϕ(n, n) ≈ n1/(2+εn)n−1/2 → 0 (n→∞).

Assume that n0 from the preceding discussion is independent of ε, and
take ε = n−1/4. Then F must concentrate for large n, in particular
‖Fn‖Xn ≤ n−1/4 with non-zero probability provided n is large enough.
This yields with non-zero probability

‖Fn‖ln2 ≤ n−1/4d(ln2 , Xn) = n−1/4n1/2−1/(2+εn) < n−1/8 for large n.

This clearly contradicts the definition of F .
We postpone the proof of Theoremcorconc to the end of the sec-

tion, and discuss some of its conclusions. First, Theorem 9 applies to
Lipschitz embeddings.

Theorem 10. Let (Tn, dn, µn) be a regular Lèvy family. Then any map
F from Tn into lk∞ satisfies

(11) ‖F‖Lip‖F−1|F (Tn)‖Lip ≥ C(c, ε, δ)ϕ(k, n)−1,

where c, ε, δ are the constants from the definition of the regular Levy
family.

The regularity assumption is essential here. Indeed, let Tn be any
subset of ln∞. We consider it as a metric probability space with the
induced metric and the probability concentrated in one (any) atom.
Then (Tn, dn, µn) is a Lèvy family and it is nicely embedded into ln∞.

There is an important instance of Theorem 10, namely when Tn =
Sn−1 and F is a linear operator. This corresponds to the problem
of approximating the standard Euclidean ball by a polyhedron with a
given number of faces (or, alternatively, vertices). The precise estimate
was obtained by Bourgain, Lindenstrauss and Milman [B-L-M], Carl
and Pajor [C-P] and Gluskin [G 89]. Their result now follows from
Theorem 10.

Corollary 11. Let X be an n-dimensional subspace of lk∞. Then
d(X, ln2 ) ≥ Cϕ(k, n)−1, where c is an absolute constant.

Equivalently, let X be an n-dimensional normed space whose unit
ball has at most k extreme points. Then d(X, ln2 ) ≥ Cϕ(k, n)−1.

The estimates are exact up to absolute constants, see [G 89], [G 86].
Moreover, any k-dimensional normed space Y has an n-dimensional
subspace X, n ≥ log k, satisfying d(X, ln2 ) ≤ Cϕ(k, n)−1 [M-S 98].

Our approach to (11) generalizes Corollary 11 to spaces different from
ln2 . Actually, the use of concentration of measure provides a result more
general than Corollary 11. Recall a result of M. Gromov and V. Mil-
man ([Gr-M], see also [Schm]), which states that the concentration of
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measure phenomenon holds on the unit spheres of uniformly convex
spaces. Let X be a uniformly convex space. By a result of G. Pisier
[Pi 75], there exists an equivalent norm on X such that the modulus
of uniform convexity δX(t) grows as tp for some p > 1. Gromov and
Milman proved that there exists a (natural) probability measure on
the unit sphere SX of the space X such that any 1-Lipschitz function
F : SX → R concentrates:

P{|F − EF | > ε} ≤ 4 exp(−cεpn) for ε > 0.

Then a trivial modification of the technique used for Lèvy families
iproves the following generalization of Corolary 11.

Corollary 12. Let X be an n-dimensional subspace of lk∞, and let Y
be a k-dimensional space whose modulus of uniform convexity satisfies

δY (t) ≤ Ktp, t > 0.

Then d(X, Y ) ≥ c(n/ log(2 + k/n))1/p, where c depends on K only.

The key to the results of this section is provided by the following
lemma.

Lemma 13. Let (Tn, dn, µn) be a Lèvy family with constant c, and let
ε > 0. Suppose F : Tn → lk∞ is a 1-Lipschitz function. Then there is a
set A ⊂ Tn such that

µn(A) ≥ 1

2
exp(−ε2n) and diam(F (A)) ≤ C(c, ε)ϕ(k, n).

Proof. One can assume that k/n ≥ e by embedding lk∞ into some

lk
′
∞ with some larger k′. So we can substitute ϕ(k, n) by

√
ln(k/n)/n

in the statement of the Lemma. Let t = t(c, ε) > 0 be a number to
be defined later. Write F = (f1, . . . , fk), where all fi are real valued
1-Lipschitz functions; we can also assume that they are mean zero.

Define a map T : Tn → Z
k as follows: T (ω) = (b1(ω), . . . , bk(ω)),

where

bi(ω) is the nearest integer to
fi(w)

tϕ(k, n)
.

thus

bi(ω) = s ⇐⇒ s− 1/2 <
fi(ω)

tϕ(k, n)
≤ s+ 1/2.

Then for every i and s ∈ Z+

µn{|bi(ω)| ≥ s} = µn

{
s− 1/2 <

fi(ω)

tϕ(k, n)
or

fi(ω)

tϕ(k, n)
≤ −s+ 1/2

}
≤ µn{|fi(ω)| ≥ (s− 1/2)tϕ(k, n)}
≤ 8 exp

(
− c(s− 1/2)2t2ϕ(k, n)2n

)
=: P,
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by (4). Since expectation is linear,

E|{i : |bi(ω)| ≥ s}| ≤ kP.

Set

αs = P · 2s+1.

By Chebyshev’s inequality

µn

{
|{i : |bi(x)| ≥ s}| ≥ kαs

}
≤ 1/2s+1.

Now we define a set B ⊂ Zn by

(b1, . . . , bn) ∈ B ⇐⇒ |{i : |bi| ≥ s}| ≤ kαs for all s ∈ Z+.

Then

(12) µn{Tx ∈ B} ≥ 1−
∞∑
s=1

1/2s+1 = 1/2.

CLAIM. |B| ≤ exp(ε2n).

Once this is proved, we can apply the pigeonhole principle to (12).
There exists a set A ⊂ Tn with µn(A) ≥ 1

2
exp(−ε2n) such that T (A)

is a singleton. This will clearly complete the proof of lemma.
By the definition,

αs = 8 · 2s+1(k/n)−c(s−1/2)2t2 .

Now we proceed by a counting argument from [Sp]. By taking t large
enough we can assume that 1/2 > α1 > α2 > . . . Then

|B| ≤
∞∏
s=1

[( kαs∑
i=0

(
k

i

))
2kαs

]
.

Indeed, {i : |bi| = s} can be chosen in at most
∑kαs

i=0

(
k
i

)
ways, and,

having been selected, can be split into {i : bi = s} and {i : bi = −s} in
at most 2kαs ways. We bound

kαs∑
i=0

(
k

i

)
≤ 2kH(αs),

where H(α) = −α log2 α− (1− α) log2(1− α), see [Ch]. Therefore

(13) |B| ≤ 2bk, where b =
∞∑
s=1

(H(αs) + αs).

Note that

αs+1 ≤ γαs and αs ≤ α1 ≤ γ for all s ≥ 1,
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where
γ = 32 exp(−ct2/4) ≤ 1/100

(by an appropriate choice of t). Then

H(αs+1) + as+1 ≤ 3γ(H(αs) + as) for all s ≥ 1.

This yields that the series for b in (13) is dominated by the first term:

b ≤ H(α1) + α1

1− 3γ

≤ −3α1 log2(α1) since α1 ≤ γ ≤ 1/100,

= 24ct2(k/n)−ct
2/4 log2(32k/n).(14)

Then |B| ≤ exp(βn), where β = (ln 2)(k/n)b. If t = t(c, ε) is chosen
large enough, then β ≤ ε, since k/n ≥ e. This proves the Claim and
completes the proof of the lemma.

The following simple lemma was already used by N. Alon and V.
Milman [Al-M]. Recall that α(T, ε) is the concentration function of T
defined by (2).

Lemma 14. Let (T, d, µ) be a metric probability space. If A ⊂ T with
µ(A) ≥ α(T, ε/2), then µ(Aε) ≥ 1− α(T, ε/2).

In particular, for any subset A ⊂ T

µ(Aε) ≥ 1− α(T, ε/2)

µ(A)
.

Proof. Let µ(A) ≥ α(T, ε/2). We claim that µ(Aε/2) ≥ 1/2. Assume
the converse. That is, assume µ(Aε/2)c > 1/2. Then µ((Aε/2)c)ε/2 ≥
1 − α(T, ε/2). Clearly, ((Aε/2)c)ε/2 ∩ A = ∅, thus µ(A) ≤ α(T, ε/2).
This contradicts the assumption and proves the claim. Now

µ(Aε) = µ(Aε/2)ε/2 ≥ 1− α(T, ε/2).

The second statement of the Lemma follows from the first one. The
proof is complete.

Theorem 15. Let (Tn, dn, µn) be a Lèvy family with constant c, and
let ε > 0. Let X be a k-dimensional Banach space, and F : Tn → X be
a 1-Lipschitz map. Then

(15) µn

{
‖F − EF‖ > ε+ C(c, ε)d∞(X)ϕ(k, n)

}
≤ 8c1 exp(− c

16
ε2n).

Proof. Let c1 = C(ε, c). One can assume that 8 exp(− c
16
ε2n) ≤ 1.

We get a set A from Lemma 13 so that

µn(A) ≥ 1

2
exp(−c(ε/4)2n) and diam(F (A)) ≤ c1

2
d∞(X)ϕ(k, n).
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Then µn(A) ≥ α(Tn, ε/4). Lemma 14 gives for δ ≥ ε

(16) µn(Aδ/2) ≥ 1− α(Tn, δ/4) ≥ 1− 8 exp(− c

16
δ2n).

As F is 1-Lipschitz, it stabilizes not only on A but also on Aδ, so
that we have for all δ ≥ ε and for all ω ∈ Aε/2 ⊂ Aδ/2

µn

{
ω′ : ‖F (ω)− F (ω′)‖X > δ +

c1

2
d∞(X)ϕ(k, n)

}
≤ µn(Aδ/2)c

≤ 8 exp(− c

16
δ2n).

Then for every x ∈ Aε/2 we bound

‖F (ω)− EF‖X ≤
∫
Tn

‖F (ω)− F (ω′)‖X dµn(ω′)

≤ ε+
c1

2
d∞(X)ϕ(k, n) +

∫ ∞
ε

8 exp(− c

16
δ2n) dδ

≤ ε+
c1

2
d∞(X)ϕ(k, n) + 8

√
π

4Cn

≤ ε+ c1d∞(X)ϕ(k, n) by adjusting c1.

then the measure in (15) does not exceed µn(Aε/2)c which, in turn, is
majorized by (16). This concludes the proof.

Now Theorem 9 follows immediately from Theorem 15.

Proof of Theorem 10. We can assume that ‖F‖Lip = 1.
Choose δ and ε from the definition of regularity. Let δ0 = δ/2.

Clearly, we may assume that n > n0, where n0 = n0(c, δ, ε) is large
enough. Then we take a set A given by Lemma 13 so that

µn(A) ≥ α(Tn, δ0/2)

and

(17) µn(A) ≥ α(Tn, δ0/2) and diam(F (A)) ≤ C(c, δ)ϕ(k, n).

Then Lemma 14 yields

µn(Aδ0) ≥ 1− α(Tn, δ0/2)

≥ 1− 4 exp(−(c/4)δ2
0n) ≥ 1− ε

provided n0 was chosen sufficiently large, and n > n0. Then we
get from the regularity of (Tn, dn, µn) that diam(Aδ0) ≥ δ. Thus
diam(A) ≥ δ−δ0 = δ/2. Together with (17) this gives ‖F−1|F (Tn)‖Lip ≥
(δ/2)(C(c, δ)ϕ(k, n))−1, completing the proof.
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