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Abstract

We consider the power of “linear reconstruction attacks” in statistical data privacy, showing that
they can be applied to a much wider range of settings than previously understood. Linear attacks have
been studied before [3, 6, 11, 1, 14] but have so far been applied only in settings with releases that are
“obviously” linear.

Consider a database curator who manages a database of sensitive information but wants to release
statistics about how a sensitive attribute (say, disease) in the database relates to some nonsensitive at-
tributes (e.g., postal code, age, gender, etc). This setting is widely considered in the literature, partly
since it arises with medical data. Specifically, we show one can mount linear reconstruction attacks
based on any release that gives:

1. the fraction of records that satisfy a given non-degenerate boolean function. Such releases include
contingency tables (previously studied by Kasiviswanathan et al. [11]) as well as more complex
outputs like the error rate of classifiers such as decision trees;

2. any one of a large class of M -estimators (that is, the output of empirical risk minimization algo-
rithms), including the standard estimators for linear and logistic regression.

We make two contributions: first, we show how these types of releases can be transformed into a linear
format, making them amenable to existing polynomial-time reconstruction algorithms. This is already
perhaps surprising, since many of the above releases (like M -estimators) are obtained by solving highly
nonlinear formulations.

Second, we show how to analyze the resulting attacks under various distributional assumptions on
the data. Specifically, we consider a setting in which the same statistic (either 1 or 2 above) is released
about how the sensitive attribute relates to all subsets of size k (out of a total of d) nonsensitive boolean
attributes.

1 Introduction

The goal of private data analysis is to provide global, statistical properties of a database of sensitive infor-
mation while protecting the privacy of the individuals whose records the database contains. There is a vast
body of work on this problem in statistics and computer science.

Until a few years ago, most schemes proposed in the literature lacked rigor: typically, the schemes had
either no formal privacy guarantees or ensured security only against a specific suite of attacks. The seminal
results of Dinur and Nissim [3] and Dinur, Dwork and Nissim [2] initiated a rigorous study of the tradeoff
between privacy and utility. The notion of differential privacy (Dwork, McSherry, Nissim and Smith [5],
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Dwork [4]) that emerged from this line of work provides rigorous guarantees even in the presence of a
malicious adversary with access to arbitrary side information. Differential privacy requires, roughly, that
any single individual’s data have little effect on the outcome of the analysis. Recently, many techniques
have been developed for designing differentially private algorithms. A typical objective is to release as
accurate an approximation as possible to some high-dimensional function f evaluated on the database D.

A complementary line of work seeks to establish lower bounds on how much distortion is necessary for
particular functions f . Some of these bounds apply only to specific notions of privacy (e.g., lower bounds
for differential privacy [5, 8, 9, 13, 1]). A second class of bounds rules out any reasonable notion of privacy
by giving algorithms to reconstruct almost all of the data D given sufficiently accurate approximations to
f(D) [3, 6, 7, 11, 1]. We refer to the latter results as reconstruction attacks.

We consider reconstruction attacks against attribute privacy: consider a curator who manages a database
of sensitive information but wants to release statistics about how a sensitive attribute (say, disease) in the
database relates to some nonsensitive attributes (e.g., postal code, age, gender, etc). This setting is widely
considered in the applied data privacy literature, partly since it arises with medical and retail data.

For concreteness, consider a database D that contains, for each individual i, a sensitive attribute si ∈
{0, 1} as well as some other information Ui ∈ Rd which is assumed to be known to the attacker. The ith
record is thus (Ui, si). We denote the entire database D = (U |s) where U ∈ Rn×d, s ∈ {0, 1}n, and |
denote concatenation. Given some released information y, the attacker constructs an estimate ŝ that she
hopes is close to s. We measure the attack’s success in terms of the Hamming distance dH(s, ŝ). A scheme
is not attribute private if an attacker can consistently get an estimate that is within distance o(n). Formally:

Definition 1 (Failure of Attribute Privacy). 1 A (randomized) mechanismM : Rn×d+1 → Ra is said to
allow (α, β) attribute reconstruction if there exists a setting of the nonsensitive attributes U ∈ Rn×d and an
algorithm (adversary) A : Rn×d × Ra → Rn such that for every s ∈ {0, 1}n,

Pr
y←M((U |s))

[A(U,y) = ŝ : dH(s, ŝ) ≤ α] ≥ 1− β.

Asymptotically, we say that a mechanism is attribute nonprivate if there is an infinite sequence of n for
which M allows (o(1), o(1))-reconstruction. Here d = d(n) is a function of n. We say the attack A is
efficient if it runs in time poly(n, d).

Instead of simply showing that a setting of U exists, we will normally aim to show that reconstruction
is possible with high probability when U is chosen from one of a class of natural distributions.

Linear Reconstruction Attacks. In this paper, we consider the power of linear reconstruction attacks.
Given the released information y, the attacker constructs a system of approximate linear equalities, namely
a matrix A and vector z such that As ≈ z and attempts to solve for s. A typical algorithmic approach is to
find ŝ which minimizes some norm (`2 or `1) of the error (Aŝ − z). Minimizing the `2 error is known as
least squares decoding and minimizing the `1 error is known as LP decoding. One sometimes also considers
algorithms that exhaustively search over all 2n possible choices for s (as in [3, 14]).

Such attacks were first considered in the context of data privacy by Dinur and Nissim [3]. They showed
that any mechanism which answers (or allows the user to compute) Ω(n log n) random inner product queries
with {0, 1} vectors on a database s ∈ {0, 1}n with o(

√
n) noise per query is not private. That is, they assume

that the mechanism releases y = As + e, where A is a random matrix in {0, 1}Ω(n logn)×n and e is a noise

1This definition generalizes blatant non-privacy (Dinur and Nissim [3]) and first appeared in [11]. The order of the qualifiers
here has been changed, correcting an error pointed out by Graham Cormode.
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vector with ‖e‖∞ = o(
√
n). Their attack was subsequently extended to use a linear number of queries [6],

allow a small fraction of answers to be arbitrarily distorted [6], and run significantly more quickly [7].
In their simplest form, such inner product queries require the adversary to be able to “name rows”, that

is, specify a coefficient for each component of the vector s. Thus, the lower bound does not seem to apply to
any functionality that is symmetric in the rows of the database (such as, for example, “counting queries”).2

Natural Queries. This paper focuses on linear attacks mounted based on the release of natural, symmetric
statistics. A first attack along these lines appeared in a previous work of ours (together with J. Ullman) [11]
in which we analyzed the release of marginal tables (also called contingency tables). Specifically, in [11],
we showed that any mechanism which releases the marginal distributions of all subsets of k + 13 attributes
with o(

√
n) noise per entry is attribute non-private if d = Ω̃(n1/k).4 These noise bounds were improved

in [1], which presented an attack that can tolerate a constant fraction of entries with arbitrarily high noise,
as long as the remaining positions have o(

√
n) noise. We generalize both these results in this paper.

Recently, linear attacks were also considered based on range query releases [14] (which, again, are
natural, linear queries).

Our Results. We greatly expand the applicability of linear attacks in “natural” settings. Specifically, we
show one can mount linear reconstruction attacks based on any release that gives:

1. the fraction of records that satisfy a given non-degenerate boolean function (a boolean function over
p variables is non-degenerate if its multilinear representation has degree exactly p). Such releases
include contingency tables as well as more complex outputs like the error rate of certain classifiers
such as decision trees; or

2. the M -estimator associated with a differentiable loss function. M -estimators are a broad class of
estimators which are obtained by minimizing sums of functions of the records (they are also called
empirical risk minimization estimators). M -estimators include the standard estimators for linear and
logistic regression (both these estimators are associated with differentiable loss functions). See Sec-
tion 4 for definitions.

Our contributions are two-fold. First, we show how these types of releases can be transformed into
a (noisy) linear release problem, making them amenable to linear reconstruction attacks. This is already
perhaps surprising, since many of the above statistics (like M -estimators) are obtained by solving highly
nonlinear formulations. After performing this transformation, we can apply polynomial-time methods (like
least squares or LP decoding) on this linear release problem to estimate the sensitive data.

Second, we show how to analyze these attacks under various distributional assumptions on the data.
This gives lower bounds on the noise needed to release these statistics attribute privately. Specifically, we
consider a setting in which the same statistic (either 1 or 2 above) is released about how the sensitive attribute
relates to all subsets of (constant) size k (out of a total of d) nonsensitive boolean attributes. For a subset
J ⊆ [d] of size k, let U |J denote the submatrix of U consisting of the columns in J .

2It was pointed out in [2] that in databases with more than one entry per row, random inner product queries on the sensitive
attribute vector s can be simulated via hashing: for example, the adversary could ask for the sum the function H(Ui) · si over the
whole database, where H : {0, 1}d−1 → {0, 1} is an appropriate hash function. This is a symmetric statistic, but it is unlikely to
come up in a typical statistical publication.

3For asymptotic statements, k is considered constant in this paper, as in previous works [11, 1].
4The Ω̃ notation hides polylogarithmic factors.
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The
(
d
k

)
entries for a statistic are obtained by evaluating the same statistic on (U |J |s) for all sets J of

size k. Specifically:

• Consider a mechanism which releases, for every set J of size k, the fraction of records (rows) in (U |J |s)
satisfying a non-degenerate boolean function over k + 1 variables. We show that if the mechanism adds
o(1/
√
n) noise per entry and if d = Ω̃(n1/k), then it is attribute non-private.

• Consider a mechanism which releases, for every set J of size k, a particular M -estimator evaluated over
(U |J |s). We show that if the mechanism adds o(1/(λ

√
n)) noise per entry and if d = Ω(n), then it is

attribute non-private. Here, λ is the Lipschitz constant of the loss function gradient. The loss function
also needs to satisfy a mild variance condition. For the case of linear and logistic regression estimators,
λ = Θ(1) for bounded data, and so the noise bound is o(1/

√
n).

The statements above are based on the least squares attack. For most settings, we show the LP decoding
attack can also handle a constant fraction of entries with arbitrarily high noise (the exception is the setting
of general M -estimators).

Techniques for Deriving the Attacks. Casting the releases as a system of linear equations requires two
simple insights which we hope will be broadly useful. First, we note that when s = (s1, . . . , sn) is boolean,
then any release which allows us to derive an equation which involves a sum over database records can in
fact be made linear in s. Specifically, suppose we know that

∑
i gi(si) = t, where t is a real number and gi

is an arbitrary real-valued function that could depend on the index i, the public record Ui, and any released
information. We can rewrite gi(si) as gi(0) + si(gi(1) − gi(0)); the constraint

∑
i gi(si) = t can then be

written as
∑

i si · (gi(1) − gi(0)) = t −
∑

i gi(0), which is affine in s. This allows us to derive linear
constraints from a variety of not-obviously-linear releases; for example, it allows us to get linear attacks
based on the error rate of a given binary classifier (see Section 3).

The second observation is that for many nonlinear optimization problems, every optimal solution must
satisfy constraints that are, in fact, sums over data records. For example, for M -estimators associated with
differentiable loss functions, the gradient at the solution θ̂ must equal 0, leading to an equation of the form∑

i ∂ `(θ̂; (Ui, si)) = 0. This can be made linear in s using the first technique. We bound the effect of
any noise added to the entries of M -estimator (θ̂) via the Lipschitz properties of the gradient of the loss
function `.

Techniques for Analyzing the Attacks. The techniques just mentioned give rise to a variety of linear
reconstruction attacks, depending on the type of released statistics. We can provide theoretical guarantees
on the performance of these attacks in some settings, for example when the same statistic is released about
many subsets of the data (e.g., all sets of a given size k) and when the data records themselves are drawn i.i.d.
from some underlying distribution. The main technique here is to analyze the geometry of the constraint
matrixA that arises in the attack. For the case of non-degenerate boolean functions, we do so by relating the
constraint matrix to a row-wise product of a matrix with i.i.d. entries (referred to as a random row product
matrix, see Section 3.2.1), which was recently analyzed by Rudelson [17] (see also [11]). The results of [17]
showed that the least singular value of a random row product matrix is asymptotically the same as that of a
matrix of same dimensions with i.i.d. entries, and a random row product matrix is a Euclidean section. Our
results show that a much broader class of matrices with correlated rows satisfy these properties.

Organization. In Section 2, we introduce some notation and review the least squares and LP decod-
ing techniques for solving noisy linear systems. In Section 3, we present our results on evaluating non-
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degenerate boolean functions. As mentioned earlier, we first reduce the release problem to a linear recon-
struction problem (Section 3.1), and then the attacks works by using either least squares or LP decoding
techniques. The analysis requires analyzing spectral and geometric properties of the constraint matrix that
arises in these attack which we do in Section 3.2. In Section 4, we present our results on releasing M -
estimators associated with differentiable loss functions. For clarity, we first discuss the attacks for the
special cases of linear and logistic regression estimators (in Section 4.1), and then discuss the attacks for the
general case (in Section 4.2).

2 Preliminaries

Notation. We use [n] to denote the set {1, . . . , n}. dH(·, ·) measures the Hamming distance. Vectors used
in the paper are by default column vectors and are denoted by boldface letters. For a vector v, v> denotes
its transpose, ‖v‖ denotes its Euclidean norm, ‖v‖1 denotes its `1 norm, and ‖v‖∞ denotes its `∞ norm.
For two vectors v1 and v2, 〈v1,v2〉 denotes the inner product of v1 and v2. We use (a)n to denote a vector
of length of n with all entries equal to a. For a matrix M , ‖M‖ denotes the operator norm and Mi denotes
the ith row of M . Random matrices are denoted by boldface capitalized letters. We use diag(a1, . . . , an) to
denote an n×n diagonal matrix with entries a1, . . . , an along the main diagonal. The notation vert(·, . . . , ·)
denotes vertical concatenation of the argument matrices.

LetM be anN×n real matrix withN ≥ n. The singular values σj(M) are the eigenvalues of
√
M>M

arranged in non-increasing order. Of particular importance in this paper is the least singular value σn(M) =
infz:‖z‖=1 ‖Mz‖. The unit sphere in n dimensions centered at origin is denoted by Sn−1 = {z : ‖z‖ = 1}.

Our analysis uses random matrices, and we add a subscript of r to differentiate a random matrix from a
non-random matrix. As mentioned earlier, k is a constant in this paper and we often omit dependence on k
in our results.

2.1 Background on Noisy Linear Systems.

Noisy linear systems arise in a wide variety of statistical and signal-processing contexts. Suppose we are
given a matrix A and vector z such that z = As + e, where e is assumed to be “small” (in a sense defined
below). A natural approach to estimating s is to output ŝ = argmins ‖As − z‖p for some p ≥ 1. We will
consider p = 1 and 2; we summarize the assumptions and guarantees for each method below. When it is
known that s ∈ {0, 1}n, the attacker can then round the entries of ŝ to the nearer of {0, 1} to improve the
estimate.

In the sequel, we call a vector z ∈ Rm (a, b)-small if at least 1−a fraction of its entries have magnitude
less than b. In other words, for some set S, |S| ≥ (1− a) ·m, it is the case that |zi| ≤ b for all i ∈ S.

`2 error minimization (“least squares”). Widely used in regression problems, the least squares method
guarantees a good approximation to s when the Euclidean norm ‖e‖ is small andA has no small eigenvalues.
It was first used in data privacy by Dwork and Yekhanin [7]. For completeness, we present the entire analysis
of this attack (in a general setting) here.

Let A = PΣQ> be the singular value decomposition of A. Here, P is an orthogonal m×m matrix, Σ
is a diagonal m× n matrix, and Q is an orthogonal n× n matrix. Let 0n×(m−n) be an n× (m− n) matrix
with all entries zero. Define

Γinv = (diag(σn(A)−1, . . . , σ1(A)−1)|0n×(m−n)).
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The dimension of Γinv is n×m. Define Ainv = QΓinvP
>.

Given y, the adversary uses Ainv to construct ŝ = (ŝ1, . . . , ŝn) as follows:

ŝi =

{
0 if ith entry in Ainvz < 1/2,
1 otherwise.

In other words, ŝ is obtained by rounding Ainvz to closest of 0, 1.
Now the claim is that ŝ is a good reconstruction of s. The idea behind the analysis is that Ainvz =

s +Ainve. Now (as P and Q are orthogonal matrices, they don’t affect the norms),

‖Ainve‖ = ‖QΓinvP
>e‖ ≤ ‖Γinv‖‖P>e‖ =

‖e‖
σn(A)

.

Let us assume that σn(A) = σ. If (the absolute value of) all the entries in e are less than β then
‖e‖ = β

√
m, and therefore ‖Ainve‖ = (β

√
m)/σ. In particular, this implies that Ainve cannot have

(4mβ2)/σ2 entries with absolute value above 1/2, and therefore the Hamming distance between ŝ and s is
O(4mβ2)/σ2 (as the adversary only fails to recover those entries of s whose corresponding Ainve entries
are greater than 1/2). The time complexity of the attack is dominated by the cost of computing the singular
value decomposition of A which takes O(mn2) time.5

Theorem 2.1. Let A : Rn → Rm be a full rank linear map with (m > n) such that the least singular
value of A is σ. Then if e is (0, β) small (that is, if ‖e‖∞ ≤ β), the vector argmins ‖As − z‖, rounded to
{0, 1}n, satisfies dH(s, ŝ) ≤ (4mβ2)/σ2. In particular, if σ = Ω(

√
m) and β = o(

√
n), then ŝ agrees with

a 1− o(1) fraction of s. The attack runs in O(mn2) time.

`1 error minimization (“LP decoding”). In the context of privacy, the “LP decoding” approach was first
used by Dwork et al. [6]. (The name stems from the fact that the minimization problem can be cast as a
linear program.) The LP attack is slower than the least squares attack but can handle considerably more
complex error patterns at the cost of a stronger assumption on A. Recently, De [1] gave a simple analysis of
this attack based on the geometry of the operator A. We need the following definition of Euclidean section.

Definition 2. A linear operator A : Rn → Rm is said to be a α-Euclidean section if for all s in Rn,
√
m‖As‖ ≥ ‖As‖1 ≥ α

√
m‖As‖ .

Note that by Cauchy-Schwarz, the first inequality,
√
m‖As‖ ≥ ‖As‖1, always holds. We remark that when

we say A is Euclidean, we simply mean that there is some constant α > 0 such that A is α-Euclidean.

The following theorem gives a sufficient condition under which LP decoding gives a good approximation
to s. The time bound here was derived from the LP algorithm of Vaidya [21], which usesO(((N1+N2)N2

2 +
(N1 + N2)1.5N2)N3) arithmetic operations where N1 is the number of constraints, N2 is the number of
variables, and N3 is a bound on the number of bits used to describe the entries of A. In our setting, the LP
has n variables,m constraints, andN3 could be upper bounded bymn, and therefore the LP could be solved
in O(m2n3 +m2.5n2) time.

Theorem 2.2 (From [1]). Let A : Rn → Rm be a full rank linear map (m > n) such that the least singular
value ofA is σ. Further, letA be a α-Euclidean section. Then there exists a γ = γ(α) such that if e is (γ, β)
small, then any solution ŝ = argmins ‖As − z‖1, rounded to {0, 1}n, satisfies dH(s, ŝ) ≤ O(β

√
mn/σ)

where the constant inside the O(·) notation depends on α. In particular, if σ = Ω(
√
m) and β = o(

√
n),

then this attack recovers 1− o(1) fraction of s. The attack runs in O(m2n3 +m2.5n2) time.
5SVD decomposition of N1 ×N2 sized matrix can be done in O(N1N

2
2 ) time.
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3 Releasing Evaluations of Non-Degenerate Boolean Functions

In this section, we analyze privacy lower bounds for releasing evaluations of non-degenerate boolean func-
tions. We use the following standard definition of representing polynomial (see Appendix A for a back-
ground about representing boolean functions as multilinear polynomials).

Definition 3. A polynomial P (f) over the reals represents a function f over {0, 1}k+1 if f(x1, . . . , xk+1) =
P (f)(x1, . . . , xk+1) for all (x1, . . . , xk+1) ∈ {0, 1}k+1.

Definition 4. A function f : {0, 1}k+1 → {0, 1} is non-degenerate iff it can be written as a multilinear
polynomial of degree k + 1.

If f is non-degenerate, then it depends on all of its k + 1 variables. Note that non-degenerate functions
constitute a large class of functions.6 For example, it includes widely used boolean functions like AND, OR,
XOR, MAJORITY, and depth k + 1 decision trees [15].

Problem Statement. Let f : {0, 1}k+1 → {0, 1} represent the function that we want to evaluate on a
database D. Let D = (U |s) ∈ ({0, 1})n×(d+1), where U ∈ ({0, 1})n×d and s ∈ {0, 1}n. Let U = (δi,j),
i.e., δi,j denotes the (i, j)th entry in U (with 1 ≤ i ≤ n and 1 ≤ j ≤ d). Let

J = (j1, . . . , jk) ∈ {1, . . . , d}k

(where {1, . . . , d}k = {1, . . . , d} × · · · × {1, . . . , d}︸ ︷︷ ︸
k times

).

Note that J allows repeated entries.7 Let D|J be the submatrix of D restricted to columns indexed by J . For
a fixed J , define F (D|J) as

F (D|J) =

n∑
i=1

f(δi,j1 , . . . , δi,jk , si), J = (j1, . . . , jk).

Note that F (D|J) is an integer between 0 to n. Let Σf (D) be the vector obtained by computing F on all
differentD|J ’s: Σf (D) = (F (D|J)) where J ∈ {1, . . . , d}k. Note that Σf (D) is a vector of length dk. The
goal is to understand how much noise is needed to attribute privately release Σf (D) (or Σf (D)/n) when f
is non-degenerate.

Our Results. We prove the following results using the `2 and `1 error minimization attacks outlined in
Section 2.1.

Theorem 3.1 (Informal Statements). Let f : {0, 1}k+1 → {0, 1} be a non-degenerate boolean function.
Then

1. any mechanism which for every databaseD ∈ ({0, 1})n×(d+1) with n� dk releases Σf (D) by adding
o(
√
n) (or releases Σf (D)/n by adding o(1/

√
n)) noise to each entry is attribute non-private. The attack

that achieves this non-privacy violation runs in O(dkn2) time.

6A simple counting argument shows that among the 22k+1

boolean functions over k + 1 variables, 22k+1

−
(
2k+1

2k

)
are non-

degenerate.
7We allow repeated entries for convenience of notation. Our results also hold if we use the more natural J ⊆ [d], |J | = k.
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2. there exists a constant γ > 0 such that any mechanism which for every database D ∈ ({0, 1})n×(d+1)

with n � dk releases Σf (D) by adding o(
√
n) (or releases Σf (D)/n by adding o(1/

√
n)) noise to

at most 1 − γ fraction of the entries is attribute non-private. The attack that achieves this non-privacy
violation runs in O(d2kn3 + d2.5kn2) time.

For convenience of notation, in this section, we work mostly with the transpose of U . Let T = U>. So
T is a d× n matrix.

3.1 Reducing to a Linear Reconstruction Problem.

In this section, we reduce the problem of releasing Σf (D) for a database D into a linear reconstruction
problem. First, we define a simple decomposition of boolean functions. Consider a non-degenerate boolean
function f : {0, 1}k+1 → {0, 1}. Now there exists two function f0 : {0, 1}k → {0, 1} and f1 : {0, 1}k →
{0, 1} such that

f(δ1, . . . , δk+1) = f0(δ1, . . . , δk)(1− δk+1) + f1(δ1, . . . , δk)δk+1 ∀(δ1, . . . , δk+1) ∈ {0, 1}k+1.

This can be re-expressed as

f(δ1, . . . , δk+1) = f0(δ1, . . . , δk) + (f1(δ1, . . . , δk)− f0(δ1, . . . , δk))δk+1.

Define f2(δ1, . . . , δk) = f1(δ1, . . . , δk)− f0(δ1, . . . , δk). Therefore,

f(δ1, . . . , δk+1) = f0(δ1, . . . , δk) + f2(δ1, . . . , δk)δk+1. (1)

Note that f2 is a function from {0, 1}k → {−1, 0, 1}. Since both f0 and f1 are both boolean functions
and can be represented as multilinear polynomials over the variables δ1, . . . , δk, therefore f2 also could be
represented as a multilinear polynomial over the variables δ1, . . . , δk. Since f is represented by a multilinear
polynomial of degree k+ 1, therefore, the multilinear polynomial representing f2 has degree k (if it has any
lower degree, then f could be represented as multilinear polynomial of degree strictly less than k+1, which
is a contradiction). To aid our construction, we need to define a particular function of matrices.

Definition 5 (Row Function Matrix). Let h be a function from {0, 1}k → {−1, 0, 1}. Let T(1) = (δ
(1)
i,j ), T(2) =

(δ
(2)
i,j ), . . . , T(k) = (δ

(k)
i,j ) be k matrices with {0, 1} entries and dimensions d × n. Define a row function

matrix (of dimension dk × n) Πh(T(1), . . . , T(k)) as follows. Any row of this matrix will correspond to a
sequence

J = (j1, j2, . . . , jk) ∈ {1, . . . , d}k

of k numbers, so the entries of Πh(T(1), . . . , T(k)) will be denoted8 by πJ,a, where a ∈ {1, . . . , n}. For
J = (j1, j2, . . . , jk) the entries of the matrix Πh(T(1), . . . , T(k)) will be defined by the relation

πJ,a = h(δ
(1)
j1,a

, δ
(2)
j2,a

, . . . , δ
(k)
jk,a

).

The row product matrices from [11] (see Definition 6) is a particular example of this construction where
the function h(δ1, δ2, . . . , δk) = δ1 · δ2 · . . . · δk,, which implies that Πh(T(1), . . . , T(k)) = T(1)� · · · �T(k),
where � is the row-product operator from Definition 6.

8The definition assumes a certain order of the rows of the matrix Πh(T(1), . . . , T(k)). This order, however, is not important, for
our analysis. Note that changing the relative positions of rows of a matrix doesn’t affect its eigenvalues and singular values.
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Let D = (U |s) be a database, and let T = U>. Let U = (δi,j). Consider any fixed J = (j1, . . . , jk) ∈
{1, . . . , d}k. Now for this J , there exists an entry in Σf (D) equaling

∑n
i=1 f(δi,j1 , . . . , δi,jk , si). Now con-

sider the matrices Πf2(T, . . . , T ) and Πf0(T, . . . , T ). Consider the rows in Πf0(T, . . . , T ) and Πf2(T, . . . , T )
corresponding to this above J . Let this be the lth row in these matrices. Then the lth row of the matrix
Πf0(T, . . . , T ) has n entries equaling f0(δi,j1 , . . . , δi,jk) and the lth row of the matrix Πf2(T, . . . , T ) has n
entries equaling f2(δi,j1 , . . . , δi,jk) for i = 1, . . . , n. Since

f(δi,j1 , . . . , δi,jk , si) = f0(δi,j1 , . . . , δi,jk) + f2(δi,j1 , . . . , δi,jk)si,

it follows that
n∑
i=1

f(δi,j1 , . . . , δi,jk , si) =
n∑
i=1

f0(δi,j1 , . . . , δi,jk) + f2(δi,j1 , . . . , δi,jk)si

= 〈Πf0(T, . . . , T )l,1n〉+ 〈Πf2(T, . . . , T )l, s〉,

where Πf0(T, . . . , T )l and Πf2(T, . . . , T )l denote the lth row of matrices Πf0(T, . . . , T ) and Πf2(T, . . . , T )
respectively and 1n denotes the vector (1)n. Now define a vector Hf (D) whose lth element (1 ≤ l ≤ dk) is

Hf (D)l = 〈Πf0(T, . . . , T )l,1n〉+ 〈Πf2(T, . . . , T )l, s〉. (2)

The length of vector Hf (D) is dk. The above arguments show that all the entries of Hf (D) are contained in
the vector Σf (D). Since every row in these Σf (D) correspond to some J , it also follows that all the entries
of Σf (D) are contained in the vector Hf (D), implying the following claim.

Claim 1. Σf (D) = Hf (D).9

Setting up the Least Squares Attack. The privacy mechanism releases a noisy approximation to Σf (D).
Let y = (y1, . . . , ydk) be this noisy approximation. The adversary tries to reconstruct an approximation of
s from y. Let bfi = 〈Πf0(T, . . . , T )i,1n〉, and bf = (bf1 , . . . , bfdk ). Given y, the adversary solves the
following linear reconstruction problem:

y = bf + Πf2(T, . . . , T )s. (3)

In the setting of attribute non-privacy the adversary knows T , and therefore can compute Πf2(T, . . . , T )
and Πf0(T, . . . , T ) (hence, bf ). The goal of the adversary is to compute a large fraction of s given y. The
definition of iterated logarithm (log(q)) is given in Definition 8. In the below analysis, we use a random
matrix T and the least singular value lower bound on a random row function matrix from Theorem 3.9. We
use boldface letters to denote random matrices.

Theorem 3.2 (Part 1, Theorem 3.1). Let f : {0, 1}k+1 → {0, 1} be a non-degenerate boolean function and
n ≤ cdk/ log(q) d for a constant c depending only on k, q. Any privacy mechanism which for every database
D ∈ ({0, 1})n×(d+1) releases Σf (D) by adding o(

√
n) (or releases Σf (D)/n by adding o(1/

√
n)) noise to

each entry is attribute non-private. The attack that achieves this non-privacy violation runs inO(dkn2) time.

Proof. Consider the least squares attack outlined in Theorem 2.1 on Equation (3). Let T be a random matrix
of dimension d × n with independent Bernoulli entries taking values 0 and 1 with probability 1/2, and let
database D = (T>|s) for some s ∈ {0, 1}n. For analyzing the attack in Theorem 2.1, we need a lower
bound on the least singular value of Πf2(T, . . . ,T). The following claim follows from Theorem 3.9. Note
that f2 is a function over k variables.

9Under proper ordering of both the vectors.
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Claim 2. For function f2 defined above and n ≤ cdk/ log(q) d (where c is the constant from Theorem 3.8),
the matrix Πf2(T, . . . ,T) satisfies

Pr
[
σn(Πf2(T, . . . ,T)) ≤ C ′

√
dk
]
≤ c1 exp (−c2d) .

Proof. Apply Theorem 3.9 with function h = f2.

Claim 2 shows that with exponentially high probability σn(Πf2(T, . . . ,T)) = Ω(
√
dk). Invoking The-

orem 3.9 with m = dk and β = o(
√
n) shows that with exponentially high probability the adversary fails to

recover only o(n) entries of s. Noise bound of o(
√
n) for releasing Σf (D) translates into a noise bound of

o(1/
√
n) for releasing Σf (D)/n.

Setting up the LP Decoding Attack. The LP decoding attack solves a slightly different reconstruction
problem than Equation (3). The reason is because Πf2(T, . . . ,T) is not a Euclidean section10 (a property
needed for applying Theorem 2.2). However, we show that a related reconstruction problem has all the
properties needed for the LP decoding attack. The analysis goes via matrices with {1,−1} entries which
have the desired properties. We establish the Euclidean section property in Appendix B.

Let D = (U |s) be a database, and let T = U>. Let V = 2T − 1d×n where 1d×n is a d × n matrix of
all 1’s. Define g : {−1, 1}k+1 → {−1, 1} as

g(φ1, . . . , φk+1) = 2f

(
1 + φ1

2
, . . . ,

1 + φk+1

2

)
− 1. (4)

We can decompose g as

g(φ1, . . . , φk+1) =

(
1 + φk+1

2

)
g1(φ1, . . . , φk) +

(
1− φk+1

2

)
g−1(φ1, . . . , φk),

where g1 : {−1, 1}k → {−1, 1} and g−1 : {−1, 1}k → {−1, 1}. Using the notation, g1 = g1(φ1, . . . , φk)
and g−1 = g−1(φ1, . . . , φk), we get

g(φ1, . . . , φk+1) = (g1 + g−1)/2 + φk+1(g1 − g−1)/2.

Define g2 = g2(φ1, . . . , φk) = (g1 − g−1)/2 and g3 = g3(φ1, . . . , φk) = (g1 + g−1)/2. Let us denote
δi = (1 + φi)/2. Using the decomposition of f from Equation (1),

f

(
1 + φ1

2
, . . . ,

1 + φk+1

2

)
= f(δ1, . . . , δk+1) = f0(δ1, . . . , δk) + f2(δ1, . . . , δk)δk+1.

Using the notation, f0 = f0(δ1, . . . , δk) and f2 = f2(δ1, . . . , δk), and substituting the decomposition of f
and g into Equation (4) gives:

g3 + g2φk+1 = 2(f0 + f2δk+1)− 1 ≡ f0 + f2δk+1 = (1/2)(g3 + g2φk+1 + 1). (5)

10If we take a matrix T of dimension d × n with independent Bernoulli entries taking values 0 and 1 with probability 1/2, the
resulting matrix Πf2(T, . . . ,T) is not a Euclidean section. This is because the matrix T is non-centered (expectation of each entry
in the matrix is 1/2) which makes the ‖Πf2(T, . . . ,T)‖ to be ≈ dk instead of

√
dk.
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Claim 3. Let D = (U |s), T = U>, and V = 2T − 1d×n. Then

Σf (D)i =
1

2
(〈Πg3(V, . . . , V )i,1n〉+ 〈Πg2(V, . . . , V )i, 2s− 1n〉+ n) .

Proof. Note that from the earlier established decomposition

Σf (D)i = 〈Πf0(T, . . . , T )i,1n〉+ 〈Πf2(T, . . . , T )i, s〉.

The reminder of the proof follows by using Equation (5) along with the definition of row-function matrices
(Definition 5).

Define

qgi =
〈Πg3(V, . . . , V )i,1n〉

2
+
n

2
− 〈Πg2(V, . . . , V )i,1n〉

2
.

Then Σf (D)i = qgi + 〈Πg2(V, . . . , V )i, s〉. Let qg = (qg1 , . . . , qgdk ). We get

Σf (D) = qg + Πg2(V, . . . , V )s. (6)

Let y be the noisy approximation to Σf (D) released by the privacy mechanism. Given y, the linear
program that the adversary solves is:

argmins ‖y − qg −Πg2(V, . . . , V )s‖1 . (7)

The following theorem analyzes this attack using a random matrix V.

Theorem 3.3 (Part 2, Theorem 3.1). Let f : {0, 1}k+1 → {0, 1} be a non-degenerate boolean function and
let n ≤ cdk/ log(q) d for a constant c depending only on k, q. Then there exists a constant γ = γ(k, q) > 0
such that any mechanism which for every database D ∈ ({0, 1})n×(d+1) releases Σf (D) by adding o(

√
n)

(or releases Σf (D)/n by adding o(1/
√
n)) noise to at most 1 − γ fraction of the entries is attribute non-

private. The attack that achieves this non-privacy violation runs in O(d2kn3 + d2.5kn2) time.

Proof. The proof uses the LP decoding attack outlined in Theorem 2.2 on Equation (7). Let T be a ran-
dom matrix of dimension d × n with independent Bernoulli entries taking values 0 and 1 with probabil-
ity 1/2, and let database D = (T>|s) for some s ∈ {0, 1}n . Let V = 2T − 1d×n. To use The-
orem 2.2, we need to (i) establish that Πg2(V, . . . ,V) is a Euclidean section and (ii) establish a lower
bound on its least singular value. Since g2 : {−1, 1}k → {−1, 0, 1} has a representation as a multilinear
polynomial of degree k, Theorem B.4 shows that Πg2(V, . . . ,V) is with exponentially high probability
a Euclidean section. Repeating an analysis similar to Theorem 3.9 shows that the least singular value of
Πg2(V, . . . ,V) is with exponentially high probability at least Ω(

√
dk). Hence, with exponentially high

probability both of the following statements hold simultaneously: (i) Πg2(V, . . . ,V) is a Euclidean section
and (ii) σn(Πg2(V, . . . ,V)) = Ω(

√
dk).

Invoking Theorem 2.2 with β = o(
√
n), a =

√
n, b = dk, and σ = Ω(

√
dk) shows that with exponen-

tially high probability the adversary fails to recover only o(n) entries of s. This shows that the mechanism
is attribute non-private.

In the running time analysis of Theorem 2.2, m gets replaced by dk, and N3 by dkn (as the input matrix
can be represented using O(dkn) bits). Noise bound of o(

√
n) for releasing Σf (D) translates into a noise

bound of o(1/
√
n) for releasing Σf (D)/n.
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3.2 Spectral and Geometric Properties of Random Row Function Matrices.

Analysis of our reconstruction attacks rely on spectral and geometric properties of random row function
matrices that we discuss in this section. Rudelson [17] and Kasiviswanathan et al. [11] analyzed certain
spectral and geometric properties of a certain class of correlated matrices that they referred to as row prod-
uct matrices (or conjunction matrices). Our analysis builds upon these results. We first summarize some
important definitions and useful results from [17, 11] in Section 3.2.1, and establish our least singular value
bound in Section 3.2.2. The Euclidean section property is established in Appendix B.

3.2.1 Spectral and Geometric Properties of Random Row Product Matrices.

For two matrices with the same number of columns we define the row product as a matrix whose rows
consist of entry-wise product of the rows of original matrices.

Definition 6 (Row Product Matrix). The entry-wise product of vectors p, q ∈ Rn is the vector in p� q ∈ Rn
with entries (p�q)i = pi ·qi. If T(1) is anN1×n matrix, and T(2) is anN2×n matrix, denote by T(1)�T(2)

an N1N2 × n matrix, whose rows are entry-wise products of the rows of T(1) and T(2) : (T(1) � T(2))j,k =

T1j � T2k , where (T(1) � T(2))j,k, T1j , T2k denote rows of the corresponding matrices.11

Rudelson [17] showed that if we take entry-wise product of k independent random matrices of dimension
d×n, then the largest and the least singular values of the resulting row product matrix (which of dimension
dk × n) is asymptotically the same order as that of a dk × n matrix with i.i.d. entries. To formulate this
result formally, we introduce a class of uniformly bounded random variables, whose variances are uniformly
bounded below.

Definition 7 (τ -random variable and matrix). Let τ > 0. We will call a random variable ξ a τ -random
variable if |ξ| ≤ 1 a.s., E[ξ] = 0, and E[ξ2] ≥ τ2. A matrix M is called a τ -random matrix if all its entries
are independent τ -random.

We would also need the notion of iterated logarithm (log(q)) that is defined as:

Definition 8. For q ∈ N, define the function log(q) : (0,∞)→ R by induction.

1. log(1) t = max(log t, 1);

2. log(q+1) t = log(1)(log(q) t).

We are now ready to state the main result from [17] that establishes a lower bound on the `1 norm of
(T(1) � · · · �T(k))x where each T(i) is an independent τ -random matrix and x is a unit vector.

Theorem 3.4 ( [17]). Let k, q, n, d be natural numbers. Assume that n ≤ cdk/ log(q) d. Let T(1), . . . ,T(k)

be k matrices with independent τ -random entries and dimensions d×n. Then the k-times entry-wise product
T(1) �T(2) � · · · �T(k) is a dk × n matrix satisfying

Pr
[
∃x ∈ Sn−1 ‖(T(1) � · · · �T(k))x‖1 ≤ C1d

k
]
≤ c1 exp(−C2d).

The constants c, C1, c1, C2 depends only on k and q.

One of the main ingredients in proving the above theorem is following fact about the norm of row
product matrices.

11When N1 = N2, the row product matrix is also called the Hadamard product matrix.
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Theorem 3.5 ( [17]). Let T be a matrix with independent τ -random entries and dimension d× n. Then the
k-times entry-wise product T� · · · �T is a dk × n matrix satisfying

Pr
[
‖T� · · · �T‖ ≥ c3

(√
dk +

√
n
)]
≤ exp

(
−c4n

1
12k

)
.

The constants c3, c4 depends only on k.

The bound on the norm appearing in the above theorem (asymptotically) matches that for a dk×nmatrix
with independent τ -random entries (refer [22] for more details).

3.2.2 Least Singular Value of Random Row Function Matrices.

We start by proving a simple proposition about functions that can be represented as multilinear polynomials.
The main step behind the following proposition proof is the following simple fact about multilinear poly-
nomials. Let P (h) be a multilinear polynomial representing function h, and let (δ1, . . . , δk) ∈ {0, 1}k and
δ′i ∈ {0, 1} then

P (h)(δ1, . . . , δi, . . . , δk)− P (h)(δ1, . . . , δ
′
i, . . . , δk) = h(δ1, . . . , δi, . . . , δk)− h(δ1, . . . , δ

′
i, . . . , δk)

= (δi − δ′i) ·
∂

∂δi
P (h).

Proposition 3.6. Let h be a function from {0, 1}k → {−1, 0, 1} having a representation as a multilin-
ear polynomial of degree k. Let P (h) denote this multilinear polynomial. Let (δ1, . . . , δk), (δ

′
1, . . . , δ

′
k) ∈

{0, 1}k. For I ⊆ {1, . . . , k} let δ(I) ∈ {0, 1}k be the point with coordinates δj(I) = δ′j if j ∈ I; and δj(I) =
δj if j /∈ I . Then

(δ1 − δ′1) · . . . (δk − δ′k) = ch(k)
∑
I⊆[k]

(−1)|I|h(δ1(I), . . . , δk(I)),

where 1/ch(k) is the coefficient of the monomial corresponding to all k variables in the multilinear repre-
sentation of h.

Proof. By definition, we know that for all (δ1, . . . , δk) ∈ {0, 1}k, h(δ1, . . . , δk) = P (h)(δ1, . . . , δk). Since
P (h) is a linear function of δ1,

P (h)(δ1, δ2, . . . , δk)− P (h)(δ′1, δ2, . . . , δk) = h(δ1, δ2, . . . , δk)− h(δ′1, δ2, . . . , δk)

= (δ1 − δ′1) · ∂
∂δ1

P (h),

where ∂
∂δ1
P (h) denotes the partial derivative of P (h)(δ1, δ2, . . . , δk) with respect to δ1. Repeating this for

the other coordinates, we get∑
I⊆[k]

(−1)|I|h(δ1(I), . . . , δk(I)) = (δ1 − δ′1) · . . . · (δk − δ′k) ·
(
∂

∂δ1
. . .

∂

∂δk
P (h)

)
.

The last term in the right hand side is the coefficient of the polynomial P (h)(δ1, . . . , δk) corresponding to
the monomial δ1 · . . . · δk, and we denote it by 1/ch(k).
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Corollary 3.7 (Corollary to Proposition 3.6). Let T(1), . . . , , T(k), T
′
(1), . . . , T

′
(k) be 2k matrices with {0, 1}

entries and dimensions d× n. For a set I ⊆ [k] denote T(j)(I) = T(j) if j ∈ I and T(j)(I) = T ′(j) if j /∈ I .
Then the following holds,

(T(1) − T ′(1))� . . .� (T(k) − T ′(k)) = ch(k)
∑
I⊆[k]

(−1)|I|Πh(T(1)(I), . . . , T(k)(I)).

Proof. Follows by a simple extension of Proposition 3.6 and using Definitions 5 and 6.

For a random T, the following theorem shows that the `1-norm of Πh(T, . . . ,T)x is “big” for all
x ∈ Sn−1.

Theorem 3.8. Let k, q, n, d be natural numbers. Assume that n ≤ cdk/ log(q) d. Consider a d × n matrix
T with independent Bernoulli entries taking values 0 and 1 with probability 1/2. Let h be a function from
{0, 1}k → {−1, 0, 1} having a representation as a multilinear polynomial of degree k. Then the matrix
Πh(T, . . . ,T) satisfies

Pr
[
∃x ∈ Sn−1 ‖Πh(T, . . . ,T)x‖1 ≤ C

′dk
]
≤ c1 exp(−c2d).

The constants c, C ′, c1, c2 depend only on k and q.

Proof. First notice that if an a1 × n matrix M ′ is formed from the a2 × n matrix M by taking a subset of
rows, then for any x ∈ Rn, ‖M ′x‖1 ≤ ‖Mx‖1.

Let d = 2kd′ + l, where 0 ≤ l < 2k. For j = 1, . . . , k denote by T1
j the submatrix of T consisting of

rows (2d′(j− 1) + 1), . . . , (2d′(j− 1) +d′), and by T0
j the submatrix consisting or rows (2d′(j− 1) +d′+

1), . . . , 2jd′. For a set I ⊆ [k] denote

T(j)(I) =

{
T0
j if j ∈ I,

T1
j if j /∈ I.

Then Corollary 3.7 implies

(T1
1 −T0

1)� . . .� (T1
k −T0

k) = ch(k)
∑
I⊆[k]

(−1)|I|Πh(T(1)(I), . . . ,T(k)(I)).

Therefore, by triangle inequality,∥∥(T1
1 −T0

1)� . . .� (T1
k −T0

k)x
∥∥

1
≤ ch(k)

∑
I⊆[k]

∥∥Πh(T(1)(I), . . . ,T(k)(I))x
∥∥

1

≤ ch(k)2k ‖Πh(T, . . . ,T)x‖1 .

The last inequality follows since ∀I Πh(T(1)(I), . . . ,T(k)(I)) is a submatrix of Πh(T, . . . ,T), which
implies that ∥∥Πh(T(1)(I), . . . ,T(k)(I))x

∥∥
1
≤ ‖Πh(T, . . . ,T)x‖1 .

The entries of the matrices (T1
1 − T0

1), . . . , (T1
k − T0

k) are independent τ -random variables. Thus, Theo-
rem 3.4 (note that d′ = O(d)) yields

Pr[∃x ∈ Sn−1
∥∥(T1

1 −T0
1)� . . .� (T1

k −T0
k)x
∥∥

1
≤ Cdk] ≤ c1 exp (−c2d) ,

which along with Equation (??) proves the theorem. Note that ch(k) can be bounded as a function of k
alone.
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Combining Theorem 3.8 with Cauchy-Schwarz’s inequality, we obtain a lower bound on the least sin-
gular value of Πh(T, . . . ,T). It is well known [19, 22] that the least singular value of a dk × n matrix with
independent τ -random entries is ≈ dk. Therefore, we get that in spite of all the correlations that exist in
Πh(T, . . . ,T) its least singular value is asymptotically the same order as that of an i.i.d. matrix.

Theorem 3.9. Under the assumptions of Theorem 3.8

Pr
[
σn(Πh(T, . . . ,T)) ≤ C ′

√
dk
]
≤ c1 exp (−c2d) .

Proof. By Cauchy-Schwarz inequality,

‖Πh(T, . . . ,T)x‖1 ≤
√
dk ‖Πh(T, . . . ,T)x‖ .

Therefore,

Pr
[
∃x ∈ Sn−1 ‖Πh(T, . . . ,T)x‖ ≤ C ′

√
dk
]
≤ Pr

[
∃x ∈ Sn−1 ‖Πh(T, . . . ,T)x‖1 ≤ C

′dk
]
.

The right-hand side probability could be bounded using Theorem 3.8 and the left-hand probability is exactly
Pr
[
σn(Πh(T, . . . ,T)) ≤ C ′

√
dk
]
.

4 Releasing M -estimators

In this section, we analyze privacy lower bounds for releasing M -estimators. Assume we have n samples
x1, . . . ,xn ∈ Rk+1, consider the following optimization problem:

L(θ;x1, . . . ,xn) =
1

n

n∑
i=1

`(θ;xi), (8)

where θ ∈ Θ ⊂ Rk+1, the separable loss function L : Θ × (Rk+1)n → R measures the “fit” of θ ∈ Θ to
any given data x1, . . . ,xn, and ` : Θ× Rk+1 → R is the loss function associated with a single data point.
It is common to assume that the loss function has certain properties, e.g., for any given sample x1, . . . ,xn,
the loss function assigns a cost L(θ;x1, . . . ,xn) ≥ 0 to the estimator θ. The M -estimator (θ̂) associated
with a given a function L(θ;x1, . . . ,xn) ≥ 0 is

θ̂ = argminθ∈Θ L(θ;x1, . . . ,xn) = argminθ∈Θ

n∑
i=1

`(θ;xi).

For a differentiable loss function `, the estimator θ̂ could be found by setting ∂ L(θ;x1, . . . ,xn) to zero.
M -estimators are natural extensions of the Maximum Likelihood Estimators (MLE) [16]. They enjoy

similar consistency and are asymptotically normal. natural extensions of the MLE. There are several reasons
for studying these estimators: (i) they may be more computationally efficient than the MLE, and (ii) they
may be more robust (resistant to deviations) than MLE. The linear regression MLE is captured by setting
`(θ;x) = (y − 〈z, θ〉)2 in Equation (8) where x = (z, y), and MLE for logistic regression is captured by
setting `(θ;x) = y〈z, θ〉 − `(1 + exp(z, θ)) [12].
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Problem Statement. Let D = (U |s) be a database dimension n×d+1, and let U be a real-valued matrix
of dimension n× d and s ∈ {0, 1}n be a (secret) vector. Let D = (δi,j). Consider the submatrix D|J of D,
where J ∈ {1, . . . , d}k. Let θ̂J be the M -estimator for D|J defined as

θ̂J = argminθ∈Θ

n∑
i=1

`(θ; (δi,j1 , . . . , δi,jk , si)) where J = (j1, . . . , jk).

The goal is to understand how much noise is needed to attribute privately release θ̂J for all J’s when the loss
function (`) is differentiable.

Basic Scheme. Consider a differentiable loss function `. Let D = (U |s). Let U = (U(1)|, . . . , |U(d/k)),
where each U(i) is an n× k matrix (assume d is a multiple of k for simplicity). Consider any U(i). We have

∂ L(θ; (U(i), s)) =
1

n

n∑
j=1

∂ `(θi; (U(i)j , sj)),

where U(i)j is the jth row in U(i). Then M -estimators θ̂i for i ∈ [d/k] is obtained by solving

1

n

n∑
j=1

∂ `(θi; (U(i)j , sj)) = 0. (9)

This gives a set of constraints over s which the adversary could use to construct ŝ. For the case of linear and
logistic regression, Equation (9) reduces to a form U>(i)s− r = 0, where r is a vector independent of s. For
general loss function, we would use the fact that s is binary and use a decomposition similar to Equation (1).
The other issue is that the adversary gets only a noisy approximation of θ̂1, . . . , θ̂d/k and we overcome this
problem by using the Lipschitz properties of the gradient of the loss function.

In the next subsection, we focus on the standard MLE’s for linear and logistic regression. In Section 4.2,
we consider general M -estimators. Here, we would require an additional variance condition on the loss
function. We would use this following standard definition of Lipschitz continuous gradient.

Definition 9 (Lipschitz Continuous Gradient). The gradient of a function G : Rk → R is Lipschitz contin-
uous with parameter λ > 0 if, ‖∂ G(x)− ∂ G(y)‖ ≤ λ‖x− y‖.

Remark: Also, for any twice differentiable function G, λI � ∂2G(x) for all x (where ∂2G(x) denotes the
Hessian matrix) [20].

4.1 Releasing Linear and Logistic Regression Estimators.

In this section, we establish distortion lower bounds for attribute privately releasing linear and logistic
regression estimators.

Linear Regression Background. A general linear regression problem could be represented as s = Xθ+ε,
where s = (s1, . . . , sn) ∈ Rn is a vector of observed responses, X ∈ Rn×k is a matrix of regressors,
ε = (ε1, . . . , εn) is an unobserved error vector where each εi accounts for the discrepancy between the
actual responses (si) and the predicted outcomes (〈Xi, θ〉), and θ ∈ Rk is a vector of unknown estimators.
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This above optimization problem has a closed-form solution given as θ̂ = (X>X)−1X>s (also known as
the ordinary least squares estimator). Let Llin(θ; s, X, σ2) denote the log-likelihood of linear regression
(the likelihood expression is given in Appendix C). The gradient (w.r.t. to θ) of the log-likelihood is given
by [12]

∂ Llin(θ; s, X, σ2) =
1

σ2

(
X>s−X>Xθ

)
.

Logistic Regression Background. Logistic regression models estimate probabilities of events as func-
tions of independent variables. Let si be binary variable representing the value on the dependent variable for
ith input, and the values of k independent variables for this same case be represented as xi,j (j = 1, . . . , k).
Let n denote the total sample size, and let ζi denote the probability of success (Pr[si = 1]). The design
matrix of independent variables, X = (xi,j), is composed of n rows and k columns.

The logistic regression model equates the logit transform, the log-odds of the probability of a success,
to the linear component:

ln

(
ζi

1− ζi

)
=

k∑
i=1

xi,jθ ≡ ζi =
1 + exp(〈θ,Xi〉)

exp(〈θ,Xi〉)
where Xi is the ith row in X.

To emphasize the dependence of ζi on θ, we use the notation ζi = ζi(θ). Let Llog(θ; s, X) denote the log-
likelihood of logistic regression (see Appendix C for the likelihood expression). The gradient (w.r.t. to θ) of
the log-likelihood is given by [12]

∂ Llog(θ; s, X) = X>s−X>vert(ζ1(θ), . . . , ζn(θ)),

where the notation vert(·, . . . , ·) denotes vertical concatenation of the argument matrices/vectors. Our anal-
ysis will require a bound on the Lipschitz constant of the gradient of the log-likelihood function, which we
bound using the following claim.

Claim 4. The Lipschitz constant Λlog of the gradient of the log-likelihood ∂ Llog(θ; s, X) can be bounded

by the operator norm of X>X .

Proof. From Definition 9, we know that the Lipschitz constant of the gradient of the log-likelihood (∂ Llog(θ; s, X)),
can be bounded by maximum eigenvalue of Hessian of Llog(θ; s, X). The (i, j)th entry of Hessian of
Llog(θ; s, X) is

∂2 Llog(θ; s, X)

∂θi∂θj
= −

n∑
l=1

ζ`(θ)(1− ζ`(θ))Xl,iXl,j ,

where Xa,b denote the (a, b)th entry in X . Note that the Hessian is a k × k matrix. Since 0 ≤ ζ`(θ) ≤ 1 (as
ζ`(θ) represents a probability), we have

∂2 Llog(θ; s, X)

∂θi∂θj
≤ −

n∑
l=1

Xl,iXl,j .

The Hessian matrix is therefore −X>X . Hence, the Lipschitz constant (Λlog) of ∂ Llog(θ; s, X) can be

bounded by the operator norm of X>X (see the remark after Definition 9).
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Creating a Linear Reconstruction Problem for Linear Regression. Let U = (U(1)|, . . . , |U(d/k)),
where each U(i) is an n × k matrix (assume d is a multiple of k). Let θ̂i be the solution to the MLE
equation

U>(i)s− U
>
(i)U(i)θ = 0.

The adversary gets θ̃i’s which are a noisy approximation to θ̂i’s. Given θ̃1, . . . , θ̃d/k, the adversary solves
the following set of linear constraints12 to construct ŝ:

∂ Llin(θ̃1; s, U(1), σ
2) =, . . . ,= ∂ Llin(θ̃d/k; s, U(d/k), σ

2) = 0.

This can be re-written as:

U>(1)s− U
>
(1)U(1)θ̃1 =, . . . ,= U>(d/k)s− U

>
(d/k)U(d/k)θ̃d/k = 0. (10)

Creating a Linear Reconstruction Problem for Logistic Regression. This reduction is very similar to
the linear regression case. As before letU = (U(1)|, . . . , |U(d/k)). Let θ̂i be the solution to the MLE equation

U>(i)s− U
>
(i)vert(ζ(i)1(θ), . . . , ζ(i)n(θ)) = 0.

Let ζ(i)(θ) = vert(ζ(i)1(θ), . . . , ζ(i)n(θ)). The adversary gets θ̃i’s which are a noisy approximation to θ̂i’s.
Using θ̃1, . . . , θ̃d/k and U , the adversary can construct ζ(1)(θ̃1), . . . , ζ(d/k)(θ̃d/k). The adversary then solves
the following set of linear constraints to construct ŝ:

∂ Llog(θ̃1; s, U(1)) =, . . . ,= ∂ Llog(θ̃d/k; s, U(d/k)) = 0.

This can be re-written as:

U>(1)s− U
>
(1)ζ(1)(θ̃1) =, . . . ,= U>(d/k)s− U

>
(d/k)ζ(d/k)(θ̃d/k) = 0. (11)

Setting up the Least Squares and LP Decoding Attacks. Consider linear regression. The attacks operate
on the linear reconstruction problem of Equation (10). The least squares attack constructs ŝ (an approxima-
tion of s) by minimizing the `2 norm of the left hand side of Equation (10), whereas LP decoding attack
works by minimizing `1 norm. The attacks are similar for logistic regression except that they now operate
on Equation (11).

In the following analysis, we use a random matrix for U where each entry of the random matrix is an
independent τ -random variable (Definition 7).

Theorem 4.1. Let d ≥ 2n and set k = 1. Then

• Any privacy mechanism which for every database D = (U |s) where U ∈ Rn×d and s ∈ {0, 1}n
releases the estimators of the linear/logistic regression model between every column of U and s by adding
o(1/
√
n) noise to each estimator is attribute non-private. The attack that achieves this attribute non-

privacy violation runs in O(dn2) time.

12Equivalently, we could write the below equation as a single constraint:

vert(∂ Llin(θ̃1; s, U(1), σ
2), . . . , ∂ Llin(θ̃d/k; s, U(d/k), σ

2)) = 0.
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• There exists a constant γ > 0 such that any mechanism which for every database D = (U |s) where
U ∈ Rn×d and s ∈ {0, 1}n releases the estimators of the linear/logistic regression model between every
column of U and s by adding o(1/

√
n) noise to at most 1 − γ fraction of the estimators is attribute

non-private. The attack that achieves this attribute non-privacy violation runs in O(d2n3 + d2.5n2) time.

Proof. We first do the analysis for linear regression. Let D = (U|s), where U is a τ -random matrix of
dimension n× d.
Analysis for Linear Regression. Now θ̂i is the solution to the MLE equation: U>(i)s − U>(i)U(i)θ = 0

where U(i) is the ith column of U. Since k = 1, we have θ̂i ∈ R. The adversary gets noisy approximations
of θ̂1, . . . , θ̂d. Let θ̃1, . . . , θ̃d be these noisy approximations with θ̃i = θ̂i + ei (for some unknown ei). The
adversary solves the following set of linear constraints:

U>(1)s−U>(1)U(1)θ̃1 =, . . . ,= U>(d)s−U>(d)U(d)θ̃d = 0.

This could be re-written as:

U>s− vert(U>(1)U(1)θ̃1, . . . ,U
>
(d)U(d)θ̃d) = 0.

Let us first look at the least squares attack. Let e = (e1, . . . , ed) (i.e., e is the error vector). We have
U>(i)U(i) ≤ n for all i ∈ [d] (as U is a τ -random matrix, all entries in the matrix are at most 1, and U(i) is
the ith column in U). The least squares attack produces an estimate ŝ by solving:

argmins ‖U>s− vert(U>(1)U(1)θ̃1, . . . ,U
>
(d)U(d)θ̃d)‖.

Since θ̃i = θ̂i + ei, we get for all i ∈ [d]

U>(i)U(i)θ̃i = U>(i)U(i)θ̂i + U>(i)U(i)ei ≤ U>(i)U(i)θ̂i + nei.

This implies

U>s− vert(U>(1)U(1)θ̃1, . . . ,U
>
(d)U(d)θ̃d) ≤ U>s− vert(U>(1)U(1)θ̂1, . . . ,U

>
(d)U(d)θ̂d) + n · e.

The remaining analysis is similar to Theorem 2.1, except that again each error term ei is scaled up by a
factor (at most) n. Since U is a τ -random matrix, it is well-known that if d ≥ 2n, then the least singular
value of U is with exponentially high probability Ω(

√
d) (see, e.g., [19]). Therefore, if a privacy mechanism

adds o(
√
n)/n13 noise to each θ̂i, then the least squares attack with exponentially high probability recovers

1 − o(1) fraction of the entries in s. The time for executing this attack is O(dn2) as the attack requires
computing the SVD of a d× n matrix.

The LP decoding attack produces an estimate ŝ by solving:

argmins ‖U>s− vert(U>(1)U(1)θ̃1, . . . ,U
>
(d)U(d)θ̃d)‖1.

The analysis follows from Theorem 2.2, except that each error is scaled up by a factor (at most) n. Since U
is a τ -random matrix, it also holds that with exponentially high probability U is a Euclidean section [10].
Therefore, if a privacy mechanism adds o(

√
n)/n = o(1/

√
n) noise to at most 1 − γ fraction of the θ̂i’s,

then the LP decoding attack with exponentially high probability recovers 1− o(1) fraction of the entries in
s. The time for executing this attack is O(d2n3 + d2.5n2) (as there are d constraints, n variables, and the

13The n in the denominator is because of the scaling of the noise e.
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number of the bits in the input is bounded by dn).
Analysis for Logistic Regression. Consider the estimator θ̂i of the logistic regression model between the
ith column of U and s. θ̂i is the solution to the MLE equation: U>(i)s −U>(i)ζ(i)(θ) = 0 where U(i) is the

ith column of U. Since k = 1, we have θ̂i ∈ R. The adversary gets noisy approximations of θ̂1, . . . , θ̂d. Let
θ̃1, . . . , θ̃d be these noisy approximations with θ̃i = θ̂i + ei.

Using θ̃1, . . . , θ̃d and U, the adversary can construct ζ(1)(θ̃1), . . . , ζ(d)(θ̃d). The adversary then solves
the following set of linear constraints:

U>(1)s−U>(1)ζ(1)(θ̃1) =, . . . ,= U>(d)s−U>(d)ζ(d)(θ̃d) = 0.

Let us now apply Lipschitz condition on the gradient of the log-likelihood function. Note that since k = 1,
∂ Llog(θ̃i; s,U(i)) is a scalar variable (for every i ∈ [d]). By Lipschitz condition,

|∂ Llog(θ̃i; s,U(i))− ∂ Llog(θ̂i; s,U(i))| ≤ Λlog |θ̃i − θ̂i| = Λlog |ei|,

where Λlog = U>(i)U(i) ≤ n (using Claim 4). Therefore,

∂ Llog(θ̃i; s,U(i)) ≤ n|ei|+ ∂ Llog(θ̂i; s,U(i)).

Substituting ∂ Llog(θ̃i; s,U(i)) = U>(i)s−U>(i)ζ(i)(θ̃i) and ∂ Llog(θ̂i; s,U(i)) = U>(i)s−U>(i)ζ(i)(θ̂i) in the
above equation,

U>(i)s−U>(i)ζ(i)(θ̃i) ≤ U>(i)s−U>(i)ζ(i)(θ̂i) + n|ei|.

This implies

U>s− vert(U>(1)ζ(1)(θ̃1), . . . ,U>(d)ζ(1)(θ̃d)) ≤ U>s− vert(U>(1)ζ(1)(θ̂1), . . . ,U>(d)ζ(d)(θ̂d)) + n · |e|.

The least squares attack produces an estimate ŝ by solving:

argmins ‖U>s− vert(U>(1)ζ(1)(θ̃1), . . . ,U>(d)ζ(d)(θ̃d))‖.

The remaining analysis follows as in the linear regression case (from Theorem 2.1) and again the errors are
scaled by a factor (at most) n. Therefore, if a privacy mechanism adds o(

√
n)/n = o(1/

√
n) noise to each

θ̂i, then the least squares attack with exponentially high probability recovers 1− o(1) fraction of the entries
in s. The time for executing this attack is O(dn2).

The LP decoding attack produces an estimate ŝ by solving:

argmins ‖U>s− vert(U>(1)ζ(1)(θ̃1), . . . ,U>(d)ζ(d)(θ̃d))‖1.

Again like in the linear regression case (using Theorem 2.2), we get that any mechanism that adds o(
√
n)/n =

o(1/
√
n) noise to at most 1−γ fraction of the θ̂i’s is attribute non-private. The time for executing this attack

is O(d2n3 + d2.5n2).

Compared to Theorems 3.2 and 3.3, this above theorem requires a much larger d (about O(n)). How-
ever, it is possible to reduce to dependence on d ≈ nO(1/k) if the released statistic is a degree k polynomial
kernel of these regression functions. We defer the details to the full version.
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4.2 Releasing General M -estimators.

In this section, we establish distortion lower bounds for attribute privately releasingM -estimators associated
with differentiable loss functions.

Creating a Linear Reconstruction Problem. Consider Equation (9). Since s is a binary vector, we can
decompose ∂ `(θ; (U(i)j , sj)) ∈ Rk as follows:

∂ `(θ; (U(i)j , sj)) = `0(θ;U(i)j )(1− sj) + `1(θ;U(i)j )sj = `0(θ;U(i)j ) + (`1(θ;U(i)j )− `0(θ;U(i)j ))sj ,

where `0(θ;U(i)j ) = ∂ `(θ; (U(i)j , 0)) ∈ Rk and `1(θ;U(i)j ) = ∂ `(θ; (U(i)j , 1)) ∈ Rk. This is similar to
the decomposition in Equation (1). Let

`2(θ;U(i)j ) = `1(θ;U(i)j )− `0(θ;U(i)j ).

Now the M -estimator (θ̂i) between U(i) and s can be found by setting ∂ L(θ; (U(i), s)) = 0. Therefore, θ̂i is
the solution to (ignoring the scaling multiplier 1/n)

∂ L(θ; (U(i), s)) =
n∑
j=1

∂ `(θi; (U(i)j , sj)) = 0

≡
n∑
j=1

`0(θ;U(i)j ) + `2(θ;U(i)j )sj = 0.

The adversary gets θ̃i’s which are a noisy approximation to θ̂i’s. Given θ̃1, . . . , θ̃d/k, the adversary solves
the following set of linear constraints:

∂ L(θ̃1; (U(1), s)) =, . . . ,= ∂ L(θ̃d/k; (U(d/k), s)) = 0 (12)

≡

 n∑
j=1

`0(θ̃1;U(1)j ) + `2(θ̃1;U(1)j )sj

 =, . . . ,=

 n∑
j=1

`0(θ̃d/k;U(d/k)j ) + `2(θ̃d/k;U(d/k)j )sj

 = 0.

This could also be represented in a matrix-form as we show below. For every i ∈ [d/k], define A(i) as a
k×n matrix whose jth column is `0(θ̃i;U(i)j ) and B(i) as a k×n matrix whose jth column is `2(θ̃i;U(i)j ).
Then Equation (12) can be re-written as

A(1)1n +B(1)s =, . . . ,= A(d/k)1n +B(d/k)s = 0.

The adversary solves the above equation to obtain ŝ. The analysis uses the following condition on `.

Definition 10 (Variance Condition). 14 Consider the decomposition of the gradient of a loss function, ` :
Θ×Rk+1 → R as ∂`(θ; (x, y)) = `0(θ;x)+`2(θ;x)y where θ ∈ Rk,x ∈ Rk, y ∈ {0, 1}. The loss function
` is said to be satisfy the variance condition if for every θ, Varx[`2(θ;x)] is bounded away from zero.

14For the LP decoding attack, we need a stricter condition to achieve the guarantees of Theorem 2.2. We defer this discussion to
the full version.
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Theorem 4.2. Let ` be a differentiable loss function which satisfies the variance condition. Let λ denote
the Lipschitz constant of the gradient of the loss function `. Let d ≥ 2n and set k = 1. Then any privacy
mechanism which for every database D = (U |s) where U ∈ Rn×d and s ∈ {0, 1}n releases the M -
estimators associated with the loss function ` of the models fitted between every column ofU and s by adding
o(1/(

√
nλ)) noise to each M -estimator is attribute non-private. The attack that achieves this attribute non-

privacy violation runs in O(dn2) time.

Proof. Let D = (U|s), where U is a τ -random matrix of dimension n× d .
TheM -estimator θ̂i ∈ R between the ith column U(i) of U and s is given by the solution to the equation:

n∑
j=1

`0(θ;U(i)j ) + `2(θ;U(i)j )sj = 0.

The adversary gets noisy approximations of θ̂1, . . . , θ̂d. Let θ̃1, . . . , θ̃d be these noisy approximations with
θ̃i = θ̂i + ei. Consider ∂ L(θ̃i; (U(i), s)) and ∂ L(θ̂i; (U(i), s)). By Lipschitz condition15,

|∂ L(θ̃i; (U(i), s))− ∂ L(θ̂i; (U(i), s))| ≤ Λ|θ̃i − θ̂i| ≤ λn|θ̃i − θ̂i| = λn|ei|.

This implies that
∂ L(θ̃i; (U(i), s)) ≤ ∂ L(θ̂i; (U(i), s)) + λn|ei|.

Substituting for the decomposition of ` in the above equation gives

n∑
j=1

`0(θ̃i;U(i)j ) + `2(θ̃i;U(i)j )sj ≤
n∑
j=1

`0(θ̂i;U(i)j ) + `2(θ̂i;U(i)j )sj + λn|ei|. (13)

Let A1,B2,A2,B2 be four matrices of dimension d× n defined as follows:

A1 : ith row of A1 is `0(θ̂i;U(i)1), . . . , `0(θ̂i;U(i)n),

B1 : ith row of B1 is `2(θ̂i;U(i)1), . . . , `2(θ̂i;U(i)n),

A2 : ith row of A2 is `0(θ̃i;U(i)1), . . . , `0(θ̃i;U(i)n),

B2 : ith row of B2 is `2(θ̃i;U(i)1), . . . , `2(θ̃i;U(i)n).

The adversary solves the following reconstruction problem to compute ŝ:

A21n + B2s = 0. (14)

From Equation (13) it follows that

A21n + B2s ≤ A11n + B1s + λn|e|.

B2: Least Singular Value. Since U is a τ -random matrix, B2 is another random matrix. However, B2

may not be centered (i.e., its entries might have non-zero means). We can re-express B2 as

B2 = B2 − E[B2]︸ ︷︷ ︸
R

+E[B2].

15The Lipschitz constant Λ of L is at most n times the Lipschitz constant of `, and therefore Λ ≤ nλ.
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Here, R is a τ ′-random matrix16 and E[B2] is a matrix of the form uv> where u is a d-dimensional column
vector with entries Ex[`2(θ̃1;x)], . . . ,Ex[`2(θ̃d;x)] and v is a n-dimensional column vector of all ones.

Claim 5. Pr[σn(B2) ≤ c19

√
d] ≤ exp(−c20d).

Proof. B2 = R + uv>, where R is a τ ′-random matrix. The rank of uv> is 1, and its operator norm can
be polynomially bounded in d. Applying Lemma D.2 implies the result.

Least Squares Attack. The least squares attack produces an estimate ŝ by solving:

ŝ = argmins ‖A21n + B2s‖.

The analysis is similar to Theorem 2.1, except that each error term ei is scaled up by a factor (at most) λn.
Therefore, if a privacy mechanism adds o(1/(

√
nλ)) noise to each θ̂i, then the least squares attack with

exponentially high probability recovers 1 − o(1) fraction of the entries in s. The time for executing this
attack is O(dn2).
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A Preliminaries about Boolean Functions

We start with an alternate definition of non-degeneracy and show that it is equivalent to Definition 4.

Definition 11. A boolean function f : {0, 1}k+1 → {0, 1} is called non-degenerate if∑
(δ1,...,δk+1)∈{0,1}k+1

(−1)f(δ1,...,δk+1)−
∑k+1

j=1 δj 6= 0.

Any function on the discrete cube {−1, 1}k+1 can be decomposed into a linear combination of charac-
ters, which are Walsh functions. Such representation allows to extend the function f from the discrete cube
to Rk+1 as a multilinear (i.e., linear with respect to each variable separately) polynomial. In what follows,
we will use this extension. The following lemma shows that the non-degeneracy condition is equivalent to
the fact that this polynomial has the maximal degree.
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Lemma A.1. Definitions 11 and 4 are equivalent.

Proof. Consider the function g : {−1, 1}k+1 → {−1, 1} defined by

g(φ1, . . . , φk+1) = 2f

(
1

2
(1 + φ1), . . . ,

1

2
(1 + φk+1)

)
− 1.

Let φ = (φ1, . . . , φk+1). For S ⊆ {1, . . . , k + 1} let χS(φ) =
∏
j∈S φj be the corresponding Walsh

function. Then the function g can be decomposed as

g(φ) =
∑

S⊆{1,...,k+1}

ĝ(S)χS(φ).

Note that deg(f) = deg(g), and so deg(f) = k + 1 iff ĝ(1, . . . , k + 1) 6= 0. We have

ĝ(1, . . . , k + 1) = 2−k−1
∑

φ∈{−1,1}k+1

g(φ)

k+1∏
j=1

φj . (15)

Since

g(φ) = (−1)f(δ1,...,δk+1) and
k+1∏
j=1

φj = (−1)
∑k+1

j=1 δj ,

where δj = (1− φj)/2, the lemma follows.

Remark: There are 10 non-degenerate functions of two boolean variables:

AND: δ1 ∧ δ2, δ1 ∧ (¬δ2), (¬δ1) ∧ δ2, (¬δ1) ∧ (¬δ2),

OR: δ1 ∨ δ2, δ1 ∨ (¬δ2), (¬δ1) ∨ δ2, (¬δ1) ∨ (¬δ2),

XOR: δ1 ⊕ δ2, (¬δ1)⊕ (¬δ2).

The remaining 6 boolean functions of two variables are degenerate.

B Euclidean Section Property of Random Row Function Matrices

In this section, we establish the Euclidean section property needed for Theorem 3.3 (LP decoding attack).
Let us consider a function h : {−1, 1}k → {−1, 0, 1} having a representation as a multilinear polyno-
mial of degree k. Let P (h) denote this multilinear polynomial. We first prove a proposition analogous to
Proposition 3.6 for h. For I ⊆ [k], let us define

P
(h)
I (φ1, . . . , φk) = P (h)(φ′1, . . . , φ

′
k) where φ′i = φi if i ∈ I, else φ′i = 0.

That is P (h)
I (φ1, . . . , φk) is the multilinear polynomial Ph(φ1, . . . , φk) restricted to variables only in I .

Under this notation
P

(h)
[k] (φ1, φ2, . . . , φk) = P (h)(φ1, φ2, . . . , φk).
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Proposition B.1. Let h be a function from {−1, 1}k → {−1, 0, 1} having a representation as a multilinear
polynomial of degree k. Let P (h) be this multilinear polynomial. Let (φ1, . . . , φk) ∈ {−1, 1}k. Then

φ1 · . . . · φk = ch(k)(
∑
I⊂[k]

(−1)k−|I|P
(h)
I (φ1, . . . , φk) + h(φ1, . . . , φk)),

where 1/ch(k) is the coefficient of the monomial corresponding to all k variables in P (h).

Proof. The proof is similar to Proposition 3.6. Since P (h) is a linear function in φ1,

P (h)(φ1, φ2, . . . , φk)− P (h)(0, φ2, . . . , φk) = P
(h)
[k] (φ1, φ2, . . . , φk)− P

(h)
{2,...,k}(φ1, φ2, . . . , φk)

= φ1
∂

∂φ1
P (h),

where ∂
∂φ1

P (h) is the partial derivative of P (h)(φ1, . . . , φk) with respect to φ1. Repeating this for other
coordinates, we get∑

I⊆[k]

(−1)k−|I|P
(h)
I (φ1, . . . , φk) = φ1 · . . . · φk ·

(
∂

∂φ1
. . .

∂

∂φk
P (h)

)
.

When I = [k],
h(φ1, . . . , φk) = P

(h)
I (φ1, . . . , φk),

so the above equation could be re-expressed as∑
I⊂[k]

(−1)k−|I|P
(h)
I (φ1, . . . , φk) + h(φ1, . . . , φk) = φ1 · . . . · φk ·

(
∂

∂φ1
. . .

∂

∂φk
P (h)

)
.

The last term in the right hand side is the coefficient of the polynomial P (h)(φ1, . . . , φk) corresponding to
the monomial φ1 · . . . · φk, and we denote it by 1/ch(k).

Let V(1) = (φ
(1)
i,j ), . . . , V(k) = (φ

(k)
i,j ) be k matrices with {−1, 1} entries and dimensions d × n. Let us

define a dk×n matrix Π
P

(h)
I

(V(1), . . . , V(k)) as in Definition 5 using the multilinear polynomial P (h)
I . More

concretely, for J = (j1, j2, . . . , jk) ∈ {1, . . . , d}k the (J, a) entry of the matrix Π
P

(h)
I

(V(1), . . . , V(k)) will
be defined by the relation

πJ,a = P
(h)
I (φ

(1)
j1,a

, φ
(2)
j2,a

, . . . , φ
(k)
jk,a

).

Using this definition, the following corollary follows immediately from Proposition B.1.

Corollary B.2. Let V(1), . . . , , V(k) be k matrices with {−1, 1} entries and dimensions d× n. Then

V(1) � . . .� V(k) = ch(k)

∑
I⊂[k]

(−1)k−|I|Π
P

(h)
I

(V(1), . . . , V(k)) + Πh(V(1), . . . , V(k))

 .
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Theorem B.3. Let k, n, d be natural numbers. Consider a d × n matrix V with independent Bernoulli
entries taking values −1 and 1 with probability 1/2. Let h be a function from {−1, 1}k → {−1, 0, 1}
having a representation as a multilinear polynomial of degree k. Then the matrix Πh(V, . . . ,V) satisfies

Pr
[
‖Πh(V, . . . ,V)‖ ≥ c6

(√
dk +

√
n
)]
≤ c7 exp

(
−c8

(
n

1
12k

))
.

The constants c6, c7, c8 depend only on k.

Proof. From Corollary B.2, we know that

Πh(V, . . . ,V) = Π
P

(h)
[k]

(V, . . . ,V) =
V � . . .�V

ch(k)
−
∑
I⊂[k]

(−1)k−|I|Π
P

(h)
I

(V, . . . ,V). (16)

To prove the theorem, we use induction over the size of I . Our inductive claim is that for every I ⊆ [k],

Pr
[∥∥∥Π

P
(h)
I

(V, . . . ,V)
∥∥∥ ≥ c6

(
d|I|/2 +

√
n
)]
≤ c7 exp

(
−c8n

1
12|I|

)
,

where constants c6, c7, c8 depend only on |I|.
Step 1. Let |I| = 1. Then

Π
P

(h)
I

(V, . . . ,V) = c9V

for some constant c9. Therefore, ∥∥∥Π
P

(h)
I

(V, . . . ,V)
∥∥∥ = c9 ‖V‖ .

Since V is a random {−1, 1} matrix, it is well known that (see e.g., [22]) there exists constant c10, c11 such
that

Pr[‖V‖ ≥ c10(
√
d+
√
n)] ≤ exp(−c11n).

Therefore,
Pr
[∥∥∥Π

P
(h)
I

(V, . . . ,V)
∥∥∥ ≥ c9c10(

√
d+
√
n)
]
≤ exp (−c11n) .

Therefore, there exists constants c6, c7, c8 such that

Pr
[∥∥∥Π

P
(h)
I

(V, . . . ,V)
∥∥∥ ≥ c6

(√
d+
√
n
)]
≤ c7 exp (−c8n) ≤ c7 exp

(
−c8n

1
12

)
.

This completes the basis for induction.
Step 2. Let |I| = k, i.e., I = {1, . . . , k} = [k]. We want to bound

∥∥∥Π
P

(h)
I

(V, . . . ,V)
∥∥∥. By inductive

hypothesis, we assume that for every L ⊂ [k],

Pr
[∥∥∥Π

P
(h)
L

(V, . . . ,V)
∥∥∥ ≥ c6

(
d|L|/2 +

√
n
)]
≤ c7 exp

(
−c8

(
n

1
12|L|

))
, (17)

where constants c6, c7, c8 depend only on |L|. From Theorem 3.5, we know that the k-times entry wise
product V � · · · � V satisfies the following norm condition (as V is matrix with independent τ -random
entries)

Pr
[
‖V � · · · �V‖ ≥ c3

(√
dk +

√
n
)]
≤ exp

(
−c4n

1
12k

)
, (18)
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where again the constants c3, c4 depend only on k. From Equations (17) and (18), we get that there exists
constants c6, c7, c8 (depending only on k) such that

Pr[
∑
L⊂[k]

∥∥∥Π
P

(h)
L

(V, . . . ,V)
∥∥∥+ ‖V � · · · �V‖ ≥ c6

(√
dk +

√
n
)

] ≤ c7 exp
(
−c8n

1
12k

)
. (19)

From Equation (16),

Pr
[∥∥∥Π

P
(h)
I

(V, . . . ,V)
∥∥∥ ≥ c6

(√
dk +

√
n
)]

= Pr

‖V � . . .�V −
∑
L⊂[k]

(−1)k−|L|Π
P

(h)
L

(V, . . . ,V)‖ ≥ c6(
√
dk +

√
n)


≤ c7 exp

(
−c8

(
n

1
12k

))
.

The last inequality comes by applying triangle inequality and then using from Equation (19). Note that for
I = [k],

∥∥∥Π
P

(h)
I

(V, . . . ,V)
∥∥∥ = ‖Πh(V, . . . ,V)‖. This completes the proof of the theorem.

Theorem B.4. Let k, q, n, d be natural numbers. Assume that n ≤ cdk/ log(q) d. Consider a d × n matrix
V with independent Bernoulli entries taking values −1 and 1 with probability 1/2. Let h be a function
{−1, 1}k → {−1, 0, 1} having a representation as a multilinear polynomial of degree k. Then the matrix
Πh(V, . . . ,V) is with exponentially high probability a Euclidean section.

Proof. Firstly note that Πh(V, . . . ,V) is an operator from Rn → Rdk . As mentioned before, by Cauchy-
Schwarz’s inequality

∀x ∈ Sn−1
√
dk ‖Πh(V, . . . ,V)x‖2 ≥ ‖Πh(V, . . . ,V)x‖1 .

Note that the proof idea of Theorem 3.8 also works for h. That is if n ≤ cdk/ log(q) d then

Pr
[
∃x ∈ Sn−1 ‖Πh(V, . . . ,V)x‖1 ≤ C

′dk
]
≤ c1 exp (−c2d) .

In other words,

Pr
[
∀x ∈ Sn−1 ‖Πh(V, . . . ,V)x‖1 ≥ C

′dk
]
≥ 1− c1 exp (−c2d) .

Theorem B.3 implies that

Pr[∀x ∈ Sn−1 ‖Πh(V, . . . ,V)x‖2 ≤ c6

(√
dk +

√
n
)

]

≥ 1− c7 exp
(
−c8

(
n

1
12k

))
.

If n ≤ cdk/ log(q) d, then there exists a constant c13 (depending only on k) such that

Pr
[
∀x ∈ Sn−1 ‖Πh(V, . . . ,V)x‖2 ≤ c13

√
dk
]
≥ 1− c7 exp

(
−c8

(
n

1
12k

))
.

Therefore, with probability at least 1− c1 exp (−c2d)− c7 exp
(
−c8

(
n

1
12k

))
, there exists a α (depending

only on k and q) such that

∀x ∈ Sn−1 ‖Πh(V, . . . ,V)x‖1 ≥ α
√
dk ‖Πh(V, . . . ,V)x‖2 .

This shows that the matrix Πh(V, . . . ,V) is with exponentially high probability a Euclidean section.
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C MLE’s for Linear and Logistic Regression

Consider the linear regression problem s = Xθ+ ε. The likelihood function for linear regression (under the
assumption that the entries in s are normally distributed) is:

n∏
i=1

1√
2πσ2

exp

(
−si − 〈Xi, θ〉

2σ2

)
,

where Xi is the ith row in X . The log-likelihood is:

Llin(θ; s, X, σ2) =

n∑
i=1

ln(
1√

2πσ2
exp(−si − 〈Xi, θ〉

2σ2
))

= −n
2

ln(2π)− n

2
lnσ2 − 1

2

(
(s−Xθ)>(s−Xθ)

σ2

)
.

For the logistic regression problem, the likelihood function (under the assumption that the entries in s
are binomially distributed) is:

n∏
i=1

ζsii (1− ζi)1−si =

n∏
i=1

(
ζi

1− ζi

)si
(1− ζi).

The log-likelihood is:

Llog(θ; s, X) =
n∑
i=1

si〈Xi, θ〉 − ln(1 + exp(〈Xi, θ〉)).

D Least Singular Value of Perturbed Random Matrices

In this section, we bound the least singular value of a random matrix perturbed by a low rank matrix. We
need the following fact.

Lemma D.1. Let R be a d×n random matrix with independent centered subgaussian entries with variances
uniformly bounded below (τ -random entries fall into this category) and with d ≥ c14n. For any z ∈ Rd,

Pr
[
∃x ∈ Sn−1 ‖Rx + z‖ ≤ c15

√
d
]
≤ exp(−c16d).

The constants c14, c15, and c16 are all independent of n and d.

For z = 0 this follows from Proposition 2.5 [19] and the standard estimate of the norm of a subgaussian
matrix (see e.g., Proposition 2.3 [18]). The proof for a general z follows the same lines.

The lemma below gives an estimate of the smallest singular value of a perturbed random matrix.

Lemma D.2. Let R be a d×n random matrix with independent centered subgaussian entries with variances
uniformly bounded below and d ≥ c14n. Let D be a deterministic d × n matrix such that rank(D) =
K, ‖D‖ ≤ da, where a > 0 is a constant. If{

K ≤ c17d
(a−1/2) log d if a > 1/2,

K ≤ c18d if a ≤ 1/2.
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then
Pr[σn(R +D) ≤ c19

√
d] ≤ exp(−c20d).

The constants c17, c18, c19, and c20 are all independent of n and d.

Proof. Set Q = DBn
2 (where Bn

2 denotes the unit Euclidean ball in Rn), and let ε = c15

√
d/2. By the

volumetric estimate, there exists an ε-net N in Q of cardinality at most

|N | ≤
(

3

ε

)K
‖D‖ ≤ (c21d)(a−1/2)K

for a > 1/2 and |N | ≤ cK22 for a ≤ 1/2. Assume that there exists x ∈ Sn−1 such that ‖(R +D)x‖ ≤
c15

√
d/2. Choose z ∈ N so that ‖Dx− z‖ < ε. Then

‖Rx + z‖ ≤ ‖(R +D)x‖+ ‖z−Dx‖

< c15

√
d/2 + ε = c15

√
d.

Lemma D.1 and the union bound yield

Pr[∃x ∈ Sn−1 ‖(R +D)x‖2 ≤ c15

√
d/2]

≤ Pr[∃x ∈ Sn−1∃z ∈ N ‖Rx + z‖2 ≤ c15

√
d]

≤ |N | · exp(−c16d)

≤ exp(−c20d).

The last inequality follows from the assumption on K. Here, c21 and c22 are constants independent of n
and d.
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