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Abstract. This paper improves upon best known guarantees for
exact reconstruction of a sparse signal f from a small universal
sample of Fourier measurements. The method for reconstruction
that has recently gained momentum in the Sparse Approximation
Theory is to relax this highly non-convex problem to a convex
problem, and then solve it as a linear program. We show that
there exists a set of frequencies Ω such that one can exactly re-
construct every r-sparse signal f of length n from its frequen-
cies in Ω, using the convex relaxation, and Ω has size k(r, n) =
O(r log(n) · log2(r) log(r log n)) = O(r log4 n). A random set Ω sat-
isfies this with high probability. This estimate is optimal within
the log log n and log3 r factors. We also give a relatively short
argument for a similar problem with k(r, n) . r[12 + 8 log(n/r)]
Gaussian measurements. We use methods of geometric functional
analysis and probability theory in Banach spaces, which makes our
arguments quite short.

1. Introduction

During the last two years, the Sparse Approximation Theory bene-
fited from a rapid development of methods based on the Linear Pro-
gramming. The idea was to relax a sparse recovery problem to a convex
optimization problem. The convex problem can be further be rendered
as a linear program, and analyzed with all available methods of Linear
Programming.

Convex relaxation of sparse recovery problems can be traced back
in its rudimentary form to mid-seventies; references to its early history
can be found in [31]. With the development of fast methods of Linear
Programming in the eighties, the idea of convex relaxation became truly
promising. It was put forward most enthusiastically and successfully
by Donoho and his collaborators since the late eighties, starting from
the seminal paper [17] (see Theorem 8 attributed there to Logan, and
Theorem 9). There is extensive work being carried out, both in theory
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and in practice, based on the convex relaxation [9, 16, 18, 19, 15, 21,
29, 30, 31, 12, 10, 11, 14, 3, 2, 5, 6, 27, 4, 7, 23].

To have theoretical guarantees for the convex relaxation method,
one needs to show that the sparse approximation problem is equiva-
lent to its convex relaxation. Proving this presents a mathematical
challenge. Known theoretical guarantees work only for random mea-
surements (e.g. random Gaussian and Fourier measurements).

In this paper, we improve upon the best known theoretical guaran-
tees for universal random Fourier (and non-harmonic Fourier) measure-
ments due to Candes and Tao [5]. Our argument is also substantially
simpler. In addition, we give a relatively short argument that yields
an asymptotically optimal estimate on the number of Gaussian mea-
surements, moreover with reasonable absolute constants. Our proofs
are based on methods of Geometric Functional Analysis, Such methods
were recently successfully used for related problems [27], [23].

In Section 2, we state the sparse reconstruction problem and describe
the convex relaxation method. A guarantee of its correctness is a gen-
eral restricted isometry condition on the measurement ensemble, due to
Candes and Tao ([6], see [4]). Under this condition, the reconstruction
problem with respect to these measurements is equivalent to its convex
relaxation. Section 3 then improves upon best known guarantees for
universal Fourier measurements, see Theorem 3.3. Section 4 deals with
Gaussian measurements, see Theorem 4.1.

2. The Sparse Reconstruction Problem and its Convex
Relaxation

We want to reconstruct an unknown signal f ∈ Cn from linear mea-
surements Φf ∈ Ck, where Φ is some known k × n matrix, called the
measurement matrix. In the interesting case k < n, the problem is
underdetermined, and we are interested in the sparsest solution. We
can state this as the optimization problem

minimize ‖f ∗‖0 subject to Φf ∗ = Φf, (1)

where ‖f‖0 = |suppf | is the number of nonzero coefficients of f . This
problem is highly non-convex. So we will consider its convex relaxation:

minimize ‖f ∗‖1 subject to Φf ∗ = Φf, (2)

where ‖f‖p denotes the `p norm throughout this paper, (
∑n

i=1 |fi|p)1/p.
Problem (2) can be classically reformulated as the linear program

minimize
n∑

i=1

ti subject to − t ≤ f ∗ ≤ t, Φf ∗ = Φf,

which can be efficiently solved using general or special methods of linear
programming. Then the main question is:
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Under what conditions on Φ are problems (1) and (2)
equivalent?

In this paper, we will be interested in the exact reconstruction, i.e.
we expect that the solutions to (1) and (2) are equal to each other
and to f . Results for approximate reconstruction can be derived as
consequences, see [5].

For exact reconstruction to be possible at all, one has to assume
that the signal f is r-sparse, that is supp(f) ≤ r, and that the number
of measurements k = k(r, n) has to be at least twice the sparsity r.
Our goal will be to find sufficient conditions (guarantees) for the exact
reconstruction. The number of measurements k(r, n) should be kept as
small as possible. Intuitively, the number of measurements should be
of the order of r, which is the ‘true’ dimension of f , rather than the
nominal dimension n.

Various results that appeared over the last two years demonstrate
that many natural measurement matrices Φ yield exact reconstruction,
with the number of measurements k(r, n) = O(r · loga n) for some
absolute constant a, see [3, 5, 6, 27]. In Sections 3, we improve best
known estimates on k for Fourier (and, more generally, nonharmonic
Fourier) matrices. In Section 4, we consider Gaussian random matrices.

A general sufficient condition for exact reconstruction is the restricted
isometry condition on Φ, due to Candes and Tao ([6], see [4]). It roughly
says that the matrix Φ acts as an almost isometry on all O(r)-sparse
vectors. Precisely, we define the restricted isometry constant δr to be
the smallest positive number such that the inequality

C(1− δr)‖x‖2
2 ≤ ‖ΦT x‖2

2 ≤ C(1 + δr)‖x‖2
2 (3)

holds for some number C > 0 and for all x and all subsets T ⊂
{1, . . . , n} of size |T | ≤ r, where ΦT denotes the k × |T | matrix that
consists of the columns of Φ indexed by T . The following theorem is
due to Candes and Tao ([6], see [4]).

Theorem 2.1 (Restricted Isometry Condition). Let Φ be a measure-
ment matrix whose restricted isometry constant satisfies

δ3r + 3δ4r ≤ 2. (4)

Let f be an r-sparse signal. Then the solution to the linear program
(2) is unique and is equal to f .

This theorem says that under the restricted isometry condition (4) on
the measurement matrix Φ, the reconstruction problem (1) is equivalent
to its convex relaxation (2) for all r-sparse functions f .

The restricted isometry condition (4) is usually difficult to check.
Indeed, the number of sets T involved in this condition is exponential
in r. As a result, no explicit construction of a measurement matrix is
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presently known that obeys the restricted isometry condition (4). All
known constructions of measurement matrices are randomized.

3. Reconstruction from Fourier measurements

Our goal will be to reconstruct an r-sparse signal f ∈ Cn from its
discrete Fourier transform evaluated at k = k(r, n) points. These points
will be chosen at random and uniformly in {0, . . . , n − 1}, forming a
set Ω.

The Discrete Fourier transform f̂ = Ψf is defined by the DFT matrix
Ψ with entries

Ψω,t =
1√
n

exp(−i2πωt/n), ω, t ∈ {0, . . . , n− 1}.

So, our measurement matrix Φ is the submatrix of Ψ consisting of
random rows (with indices in Ω). The restricted isometry (4) is thus a
condition on the random set Ω. We will thus often say that Ω, rather
than Φ, satisfies or does not satisfy the restricted isometry condition.
Let us read Theorem 2.1 in this light for Fourier ensemble:

Theorem 3.1 (Restricted Isometry Condition for Fourier measure-
ments). Assume that a set Ω ∈ {0, . . . , n − 1} satisfies the restricted
isometry condition (4). Let f be an r-sparse function in Cn. Then f
can be exactly reconstructed from the values of its Fourier transform
on Ω as a solution to the linear program

minimize ‖f ∗‖1 subject to f̂ ∗(ω) = f̂(ω), ω ∈ Ω.

We shall apply Theorem 3.1 to a random subset Ω. To this end we
define Ω by random selectors. Let δ1, . . . , δn be independent Bernoulli
random variables taking the value 1 with probability δ = k/n. Set

Ω = {j ∈ {1, . . . , n} | δj = 1}.
Since E|Ω| = k, we say that Ω is a set of average cardinality k. Bern-
stein’s inequality implies that |Ω| is close to k with high probability
(see, e.g. [1], Appendix A). In particular, ([1], Theorems A.1.12 and
A.1.13): for any ν > 0

P(|Ω| > (1 + ν)k) ≤
(

eν

(1 + ν)1+ν

)k

and

P(|Ω| < (1− ν)k) ≤ exp(−kν2/2).

Theorem 3.1 raises a major problem, which is still open:

Problem 3.2. What is the smallest k = k(r, n) such that a random
subset Ω ∈ {0, . . . , n−1} of average cardinality k satisfies the restricted
isometry condition (4) with high probability?
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The conjectured answer to Problem 3.2 is k(r, n) = O(r log n). In
a breakthrough paper [3], Candes, Romberg and Tao proved a weaker
(non-uniform) statement: for any given r-sparse function f in Cn, a
random set Ω of cardinality k = O(r log n) satisfies with high probabil-
ity that f can be reconstructed as in Theorem 3.1. However, this does
not guarantee that there exists one set of frequencies Ω which is good
for the reconstruction of all functions f as required in Theorem 3.1.

The best result on Problem 3.2 has been due to Candes and Tao [5]:

k(r, n) = O(r log6 n). (5)

More precisely, it is proved in [5] that for any τ > 1 and for all n
sufficiently big (depending on τ), a random subset Ω of cardinality

k ≥ Cτr log6 n

satisfies the restricted isometry condition (4) with probability at least
1− n−cτ .

The main result of this section improves upon the best known bound
(5), lowering the exponent of the logarithm. Our argument is also
substantially simpler than that of Candes and Tao [5].

Theorem 3.3 (Fourier measurements). For any t > 1 and any n, r >
2, a random subset Ω of average cardinality

k = (Ctr log n) log(Ctr log n) log2 r

satisfies the restricted isometry condition (4) with probability at least
1− 5e−ct.

Remarks. 1. If one is interested in any fixed probability of success
such as 0.99, then Theorem 3.3 yields a new best known bound on the
number of Fourier measurements in Problem 3.2:

k(r, n) = O(r log(n) log(r log n) log2 r) = O(r log4 n).

The dependence on of k(r, n) on n is thus optimal within the log log n
factor and the dependence on r is optimal within the log3 r factor.
So, our estimate is especially good really sparse functions (with small
values of r).

2. To compare Theorem 3.3 to the estimate (5) due to Candes
and Tao [5], if one is interested in polynomial probability of success
1− n−O(1), then (with t = O(log n)) the number of measurements is

k = O(r log2(n) log(r log n) log2 r) = O(r log5 n).

3. Our results hold for transforms more general than the discrete
Fourier transform. One can replace the DFT matrix Ψ by any orthog-
onal matrix with entries of magnitude O(1/

√
n). Theorems 3.1 and 3.3

hold for any such matrix.
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In the remainder of this section, we prove Theorem 3.3. For conve-
nience, we choose t = 1/ε2 for some ε ∈ (0, 1). Let Ω be a random
subset of {0, . . . , n} of size

k ≥ C
(r log n

ε2

)
log
(r log n

ε2

)
log2 r, (6)

where C is some absolute constant to be chosen later.
Recall that the measurement matrix Φ consists of the rows of Ψ

whose indices are in Ω. The restricted isometry constant δr is non-
decreasing in r. So the restricted isometry condition (4) would follow
from the bound

δ4r ≤
1

2
.

Replacing r by 4r in the condition (6) on k and adjusting the constant
C if necessary, the proof will be complete if we show that

P(δr >
1

2
) ≤ 5e−ct, (7)

where we look at δr = δr(Ω) as a random variable. Our argument con-
sists of two steps. First we will prove a bound on the expectation Eδr.
Then we will use a concentration inequality to bounds the deviation of
δr from its expectation.

Note that

δr = inf
C>0

sup
|T |≤r

∥∥∥idCT − C
∑
i∈Ω

yT
i ⊗ yT

i

∥∥∥.
Here and thereafter, for vectors x, y ∈ Cn the tensor x ⊗ y is defined
as the rank-one linear operator given by (x⊗ y)(z) = 〈x, z〉y, where 〈·〉
is the canonical inner product on Cn. The notation xT stands for the
restriction of a vector x on the coordinates in the set T . The operator
idCT in (8) is the identity on CT , and the norm is the operator norm
for operators on `T

2 .
The orthogonality of Ψ can be expressed as idCn =

∑n−1
i=0 yi⊗yi. We

shall re-normalize the vectors yi, letting xi =
√

n yi−1. Now we have
‖xi‖∞ = 1 for all i. The expectation of δr can now be estimated using
the following probabilistic statement, which we interpret as a law of
large numbers for random operators.

Theorem 3.4 (Uniform Operator Law of Large Numbers). Let x1, . . . , xn

be vectors in Cn with uniformly bounded entries: ‖xi‖∞ ≤ K for all
i. Assume that idCn = 1

n

∑n
i=1 xi ⊗ xi. Let Ω be a random subset of

{1, . . . , n} of average size k. Then

E sup
|T |≤r

∥∥∥idCT − 1

k

∑
i∈Ω

xT
i ⊗ xT

i

∥∥∥ ≤ ε (8)

provided k satisfies (6) (with constant C that may depend on K).
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Remark 3.5. It follows from Theorem 3.4 that

Eδr ≤ ε. (9)

Theorem 3.4 is proved by the techniques developed in Probability in
Banach spaces. The general roadmap is similar to [25], [26].

We first observe that

E
1

k

∑
i∈Ω

xT
i ⊗ xT

i =
1

n

n∑
i=1

xT
i ⊗ xT

i = idCn ,

so the random operator whose norm we estimate in (8) has mean zero.
Then a standard symmetrization technique (see [22] Lemma 6.3) im-
plies that the left-hand side of (8) does not exceed

2 E sup
|T |≤r

∥∥∥1

k

∑
i∈Ω

εi xT
i ⊗ xT

i

∥∥∥,
where (εi) are independent symmetric {−1, 1}-valued random vari-
ables; also (jointly) independent of Ω. Then the conclusion of Theorem
3.4 will be easily deduced from the following lemma.

Lemma 3.6. Let x1, . . . , xk, k ≤ n, be vectors in Cn with uniformly
bounded entries, ‖xi‖∞ ≤ K for all i. Then

E sup
|T |≤r

∥∥∥ k∑
i=1

εi xT
i ⊗ xT

i

∥∥∥ ≤ k1 sup
|T |≤r

∥∥∥ k∑
i=1

xT
i ⊗ xT

i

∥∥∥ 1
2

(10)

where k1 ≤ C1(K)
√

r log(r)
√

log n
√

log k.

Let us show how Lemma 3.6 implies Theorem 3.4. We first condition
on a choice of Ω and apply Lemma 3.6 for xi, i ∈ Ω. Then we take the
expectation with respect to Ω. Denote the left hand side of (8) by E.
Using Cauchy–Schwartz inequality, we obtain:

E ≤ C1(K)
√

r log(r)√
k

·
(
E log |Ω|

)1/2

·

(
E sup
|T |≤n

∥∥∥∥∥1

k

∑
i∈Ω

xT
i ⊗ xT

i

∥∥∥∥∥
) 1

2

.

By Jensen’s inequality, E log |Ω| ≤ log k, so

E ≤ k1√
k

(
E sup
|T |≤n

∥∥∥∥∥1

k

∑
i∈Ω

xT
i ⊗ xT

i

∥∥∥∥∥
) 1

2

≤ k1√
k
(E + 1)1/2,

where the last estimate follows from the triangle inequality. This im-
plies that

E ≤ 2k1√
k
,

provided that k1√
k
≤ 1/2. Theorem 3.4 now follows from our choice of

k made in (6).
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Now we prove Lemma 3.6. Throughout this argument, Bn
p and BT

p

denote the unit ball of the norm ‖·‖p on Cn. To this end, we first replace
Bernoulli r.v.’s εi by standard independent normal random variables
gi, using a comparison principle (inequality (4.8) in [22]). Then our
problem becomes to bound the Gaussian process, indexed by the union
of the unit Euclidean balls BT

2 in CT for all subsets I of {1, . . . , n} of
size at most r. We apply Dudley’s inequality (Theorem 11.17 in [22]),
which is a general upper bound on Gaussian processes. Let us denote
the left hand side of (8) by E1. We obtain:

E1 ≤ C3E sup
|T |≤r

∥∥∥ k∑
i=1

gi xT
i ⊗ xT

i

∥∥∥ = C3E sup
|T |≤r

x∈BT
2

∣∣∣ k∑
i=1

gi〈xi, x〉2
∣∣∣

≤ C4

∫ ∞

0

log1/2 N
(
∪|T |≤r BT

2 , δ, u
)

du,

where N(Z, δ, u) denotes the minimal number of balls of radius u in
metric δ centered in points of Z, needed to cover the set Z. The metric
δ in Dudley’s inequality is defined by the Gaussian process, and in our
case it is

δ(x, y) =
[ M∑

i=1

(
〈xi, x〉2 − 〈xi, y〉2

)2] 1
2

≤
[ k∑

i=1

(
〈xi, x〉+ 〈xi, y〉

)2] 1
2

max
i≤k

|〈xi, x− y〉|

≤ 2 max
|T |≤r

z∈BT
2

[ k∑
i=1

〈xi, z〉2
] 1

2
max
i≤k

|〈xi, x− y〉|

= 2R max
i≤k

|〈xi, x− y〉|,

where

R := sup
|T |≤r

∥∥∥ k∑
i=1

xT
i ⊗ xT

i

∥∥∥ 1
2
.

Hence

E1 ≤ C5R
√

r

∫ ∞

0

log1/2 N
( 1√

r
Dr,n

2 , ‖ · ‖X , u
)

du. (11)

Here

Dr,n
p =

⋃
|T |≤r

BT
p , ‖x‖X = max

i≤k
|〈xi, x〉|.

We will use containments

1√
r
Dr,n

2 ⊆ Dr,n
1 ⊆ KBX , Dr,n

1 ⊆ Bn
1 , (12)
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where BX denotes the unit ball of the norm ‖ · ‖X . The second con-
tainment follows from the uniform boundedness of (xi). We can thus
replace 1√

r
Dr,n

2 in (11) by Dr,n
1 . Comparing (11) to the right hand side

of (10) we see that, in order to complete the proof of Lemma 3.6, it
suffices to show that∫ K

0

log1/2 N
(
Dr,n

1 , ‖ · ‖X , u
)
du ≤ C6 log(r)

√
log n

√
log k, (13)

with C6 = C6(K). To this end, we will estimate the covering numbers
in this integral in two different ways. For big u, we will just use the
second containment in (12), which allows us to replace Dr,n

1 by Bn
1 .

Lemma 3.7. Let x1, . . . , xk, k ≤ n, be vectors as in Lemma 3.6. Then
for all u > 0 we have

N(Bn
1 , ‖ · ‖X , u) ≤ (2n)m,

where m = C7K
2 log(k)/u2.

Proof. The proof essentially follows the argument of Carl [8]. We
present a complete proof for readers convenience.

We use the empirical method of Maurey. Fix a vector y ∈ Bn
1 . Define

a random vector Z ∈ Rn that takes values (0, . . . , 0, sign(y(i)), 0, . . . , 0)
with probability |y(i)| each, i = 1, . . . , n (all entries of that vector
are zero except i-th). Here sign(z) = z/|z|, whenever z 6= 0, and 0
otherwise. Note that EZ = y. Let Z1, . . . , Zm be independent copies
of Z. Using symmetrization as before, we see that

E3 := E
∥∥∥y − 1

m

m∑
j=1

Zj

∥∥∥
X
≤ 2

m
E
∥∥∥ m∑

j=1

εjZj

∥∥∥
X

.

Now we condition on a choice of (Zj) and take the expectation with
respect to random signs (εj). Using comparison to Gaussian variables
as before, we obtain

E4 := E
∥∥∥ m∑

j=1

εjZj

∥∥∥
X
≤ C7E

∥∥∥ m∑
j=1

gjZj

∥∥∥
X

= C7E max
i≤k

∣∣∣ m∑
j=1

gj〈Zj, xi〉
∣∣∣.

For each i, γi :=
∑m

j=1 gj〈Zj, xi〉 is a Gaussian random variable with
zero mean and with variance

σi =
( m∑

j=1

|〈Zj, xi〉|2
)1/2 ≤ K

√
m,
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since |〈Zj, xi〉| ≤ ‖xi‖∞ ≤ K. Using a simple bound on the maximum
of Gaussian random variables (see (3.13) in [22]), we obtain

E4 ≤ C7E max
i≤k

|γi| ≤ C8

√
log k max

i≤k
σi ≤ C8

√
log kK

√
m.

Taking the expectation with respect to (Zj) we obtain

E3 ≤
2

m
E(E4) ≤

2C8K
√

log k√
m

.

With the choice of m made in the statement of the lemma, we conclude
that E3 ≤ u. We have shown that for every y ∈ Bn

1 , there exists a
z ∈ Cn of the form z = 1

m

∑m
j=1 Zj such that ‖y − z‖X ≤ u. Each Zj

takes 2n values, so z takes (2n)m values. Hence Bn
1 can be covered by

at (2n)m balls of norm ‖ · ‖X of radius u. A standard argument shows
that we can assume that these balls are centered in points of Bn

1 . This
completes the proof of Lemma 3.7.

For small u, we will use a simple volumetric estimate. The diameter
of Br

1 considered as a set in Cn is at most K with respect to the norm
‖ · ‖X (this was stated as the last containment in (12)). It follows that
N(Br

1, ‖ · ‖, u) ≤ (1 + 2K/u)r for all r > 0, see (5.7) in [24]. The set
Dr,n

1 consists of d(r, n) =
∑r

j=1

(
n
i

)
balls of form BT

1 , thus

N
(
Dr,n

1 , ‖ · ‖X , u
)
≤ d(n, r)(1 + 2K/u)r. (14)

Now we combine the estimate of the covering number

N(u) = log1/2 N
(
Dr,n

1 , ‖ · ‖X , u
)

of Lemma 3.6, and the volumetric estimate (14), to bound the integral
in (13). Using Stirling’s approximation, we see that d(r, n) ≤ (C9n/r)r.
Thus

N(u) ≤ C10

√
r
[√

log(n/r) +
√

log(1 + 2/u)
]

=: N1(u),

N(u) ≤ C10

u

√
log k

√
log n =: N2(u),

where C10 = C10(K). Then we bound the integral in (13) as∫ K

0

N(u) du ≤
∫ A

0

N1(u) du +

∫ K

A

N2(u) du

≤ C11A
√

r
[√

log(n/r) + log(1 + 2/A)
]

+ C11 log(1/A)
√

log k
√

log n,

where C11 = C11(K). Choosing A = 1/
√

r, we conclude that the
integral in (13) is at most√

log(n/r) + log r + log(r)
√

log k
√

log n.
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This proves (13), which completes the proof of Lemma 3.6 and thus of
Theorems 3.4 and 3.3.

Now that we proved the bound (9) on the expectation of δr , we
shall use a concentration inequality of Ledoux and Talagrand [22] to
conclude the concentration result (7).

The following result is a particular case of Theorem 6.17 [22] (used
along with the inequality (6.19) of [22] for s = Rl):

Theorem 3.8. Let Y1, . . . , Yn be independent symmetric random vari-
ables taking values in some Banach space. Assume that ‖Yj‖ ≤ R for
all j. Then for any integers l ≥ q, and any t > 0, the random variable

Y =
∥∥∥ n∑

j=1

Yj

∥∥∥
satisfies

P
(
Y ≥ 8qE(Y ) + 2Rl + t

)
≤
(C12

q

)l

+ 2 exp
(
− t2

256qE(Y )2

)
.

We can now prove a tail bound for the uniform operator law of large
numbers, Theorem 3.4:

Theorem 3.9 (Uniform Operator LLN: Tail Bound). Under the as-
sumptions of Theorem 3.4, the random variable

X = sup
|T |≤r

∥∥∥idCT − 1

k

∑
j∈Ω

xT
j ⊗ xT

j

∥∥∥
satisfies for any s > 1:

P
(
X > C13sε

)
≤ 3 exp

(
− c13sεk/r

)
+ 2 exp(−s2), (15)

where C13 is an absolute constant and c13 > 0 depends on K only.

Proof. Let Υ be the space of linear operators V : Cn → Cn equipped
with the norm

‖V ‖Υ = sup
|T |≤r

‖V T‖,

where V T = PT V PT is the operator whose matrix is the submatrix of
the matrix of V with rows and columns indexed in T . Let δ1, . . . , δn be
independent Bernoulli random variables taking value 1 with probability
δ = k/n. For j = 1, . . . , n define random variables

Xj =
1

n
idCn − 1

k
δjxj ⊗ xj.

Let Yj be the symmetrization of Xj:

Yj =
1

k
(δj − δ′j) · xj ⊗ xj,
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where δ′1, . . . , δ
′
n are independent copies of δ1, . . . , δn. Then

X =
∥∥∥ n∑

j=1

Xj

∥∥∥
Υ
, and we define Y =

∥∥∥ n∑
j=1

Yj

∥∥∥
Υ
.

We shall use standard symmetrization inequalities, which hold for any
pair of independent identically distributed random variables Z,Z ′ which
take values in some Banach space, and all u > 0:

E‖Z − EZ‖ ≤ E‖Z − Z ′‖ ≤ 2E‖Z − EZ‖,
P(‖Z‖ > 2EZ + u) ≤ 2P(‖Z − Z ′‖ > u).

These inequalities can be obtained by a simple application of Fubini
and the triangle inequalities, see e.g. (2.5) and (6.1) in [22]. In our
situation, the symmetrization inequalities give for all u > 0:

E(X) ≤ E(Y ) ≤ 2E(X), (16)

P(X > 2E(X) + u) ≤ 2P(Y > u). (17)

It thus remains to bound P(Y > u), and we shall do so using Theo-
rem 3.8. To estimate R = maxj ‖Yj‖Υ , note that

‖xj ⊗ xj‖Υ = sup{|〈xj, z〉|2 : z ∈ Cn, ‖z‖2 ≤ 1, |supp(z)| ≤ r},
and for such z we have by Hölder’s inequality that

|〈xj, z〉| ≤ ‖xj‖∞‖z‖1 ≤ ‖xj‖∞ ·
√

r‖z‖2 ≤ K
√

r.

Thus
‖xj ⊗ xj‖Υ ≤ K2r,

and

R = max
j
‖Yj‖Υ ≤ max

j

2

k
‖xj ⊗ xj‖Υ ≤ 2K2r/k. (18)

Now we can use Theorem 3.8. Due to the symmetrization inequalities
(16) and (17), we can replace X by Y in the conclusion of Theorem 3.8
with appropriate changes to the absolute constants. Recall also that,
due to Theorem 3.4, E(X) ≤ ε. We thus obtain

P
(
X > (2 + 16q)ε + 2Rl + t

)
≤
(C12

q

)l

+ 2 exp
(
− t2

512qε2

)
for all integers l ≤ q and all t > 0.

We will use this estimate for

q = [eC12] + 1, t =
√

512qsε, l = [t/R].

The condition l ≥ q is then satisfied because of estimate (18) on R
and by our choice of k (where we can adjust C = C(K)). So with this
choice, using (18) again, we conclude that

P
(
X > (2 + 16q + 3

√
512qs)ε

)
≤ exp

(
−
[√512qsεk

2K2r

])
+ 2 exp(−s2).

This yields the conclusion of Theorem 3.9.
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We can now conclude the proof of Theorem 3.3, for which we need
to show (7). We apply Theorem 3.9 with

s =
1

2C13ε
.

Then c13sεk/r > 1/ε2 by our choice of k. So the second term in (15)
dominates, and we conclude that

P(X >
1

2
) ≤ 5 exp(−c14/ε

2).

Since δr ≤ X and t = 1/ε2, this proves (7) and finishes the proof of
Theorem 3.3.

4. Reconstruction from Gaussian measurements

Our goal will be to reconstruct an r-sparse signal f ∈ Rn from k =
k(r, n) Gaussian measurements. These are given by Φf ∈ Rk, where
Φ is a k × n random matrix (“Gaussian matrix” in the sequel), whose
entries are independent N(0, 1) random variables. The reconstruction
will be achieved by solving the linear program (2).

The problem again is to find the smallest number of measurements
k(r, n) for which, with high probability, we have an exact reconstruciton
of every r-sparse signal f from its measurements Φf . It has recently
been shown in [6, 27, 4] that

k(r, n) = O(r log(n/r)), (19)

and this was extended in [23] to sub-gaussian measurements. Estimate
(19) is asymptotically optimal. However, the constant factor implicit
in (19) has not been known; previous proofs of (19) yield unreasonably
weak constants, which created a big gap between theoretical guarantees
and good practical performance of reconstruction (2) (see e.g. [4]).
Here we shall prove a first practically reasonable guarantee of the form
(19).

We shall now give a quite short argument, using methods of geomet-
ric functional analysis, which yields reasonable constants in k(r, n).

After the conference version of this paper [28] was presented, we
learned that Donoho and Tanner have been able to compute precise
asymptotic behavior of the constants in k(r, n) in their extensive work
[13].

Theorem 4.1 (Reconstruction from Gaussian measurements). Let 0 <
p < 1. Set

k(r, n, p) = 1+

(
18 log

2.5

1− p
+
√

r
[
12 + 8 log(n/r)

]
· α(r, n)

)2

, (20)
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where

α(r, n) = exp

(
log
(
1 + 2 log

(
en
r

))
4 log

(
en
r

) +
1

24r2 log
(

en
r

)) .

If k > k(r, n, p), then a k × n random Gaussian matrix Φ satisfies the
following with probability greater than p. Let f be an r-sparse signal in
Rn. Then f can be exactly reconstructed from the measurements Φf as
a unique solution to the linear program (2).

Remarks. 1. The expression α(r, n), however formidable, is nicely
bounded in the interesting range n/r > 2 and r ≥ 4:

α(n, r) < 1.245.

Also, α(r, n) decreases when n/r increases, and

α(r, n) → 1 when n/r →∞.

2. For large values of r, the term that contains p in (20) is negligible
compared to the square root term, so in this case

k(r, n, p) ≈ r
[
12 + 8 log(n/r)

]
α2(r, n).

Our proof of Theorem 4.1 is direct, we will not use the Restricted
Isometry Theorem 2.1. The first part of this argument follows a general
method of [23]. One interprets the exact reconstruction as the fact that
the (random) kernel of Φ misses the cone generated by the (shifted) ball
of `1. Then one embeds the cone in a universal set D, which is easier
to handle, and proves that the random subspace does not intersect
D. However, to obtain good constants as in (20), we will need to
(a) improve the constant of embedding into D from [23], and (b) use
Gordon’s Escape Through the Mesh Theorem [20], which is tight in
terms of constants. In Gordon’s theorem, one measures the size of a
set S in Rn by its Gaussian width

w(D) = E sup
x∈S

〈g, x〉,

where g is a random vector in Rn whose components are independent
N(0, 1) random variables (Gaussian vector). The following is Gordon’s
theorem [20].

Theorem 4.2 (Escape Through the Mesh (Gordon)). Let S be a subset
of the unit Euclidean sphere Sn−1 in Rn. Let Y be a random (n − k)-
dimensional subspace of Rn, distributed uniformly in the Grassmanian
with respect to the Haar measure. Assume that

w(S) >
√

k.
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Then Y ∩ S = ∅ with probability at least

1− 2.5 exp
(
−
(
k/
√

k + 1− w(S)
)2

/18
)
.

Remark 4.3. Corollary 3.4 is stated in [20] with coefficient 3.5 instead
of 2.5. However, the proof of Theorem 3.3 in [20] with K = {0} yields
the coefficient 2.5.

We will now prove Theorem 4.1. First note that the function f is
the unique solution of (2) if and only if 0 is the unique solution of the
problem

minimize ‖f − g∗‖1 subject to Φg∗ ∈ Ker(Φ) =: Y. (21)

Y is a (n − k)-dimensional subspace of Rn. Due to the rotation in-
variance of the Gaussian random vectors, Y is distributed uniformly in
the Grassmanian Gn−k,n of (n− k)-dimensional subspaces of Rn, with
respect to the Haar measure.

Now, 0 is the unique solution to (21) if and only if 0 is the unique
metric projection of f onto the subspace Y in the norm ‖ · ‖1. This in
turn is equivalent to the fact that 0 is the unique contact point between
the subspace Y and the ball of the norm ‖ · ‖1 centered at f :

(f + ‖f‖1B
n
1 ) ∩ Y = {0}. (22)

(Recall that Bn
p is the unit ball of the norm ‖ · ‖p.) Let Cf be the cone

in Rn generated by the set f + ‖f‖1B
n
1 (the cone of a set A ∈ Rn is

defined as {ta | a ∈ A, t ∈ R+}). Then the statement that (22) holds
for all r-sparse functions f is clearly equivalent to

Cf ∩ Y = {0} for all r-sparse functions f. (23)

We can represent the cone Cf as follows. Let

T+ = {i | f(i) > 0}, T− = {j | f(i) < 0}, T = T+ ∪ T−.

Then

Cf =
{

t ∈ Rn |
∑
i∈T−

t(i)−
∑
i∈T+

t(i) +
∑
i∈T c

|t(i)| ≤ 0
}

.

We will now bound the cone Cf by a universal set, which does not
depend on f .

Lemma 4.4. Consider the spherical part of the cone, Kf = Cf ∩Sn−1.
Then Kf ⊂ 2D, where

D = conv {x ∈ Sn−1 | |supp(x)| ≤ r}.
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Proof. Fix a point x ∈ Cf∩Sn−1. Denote by (x(1)∗, . . . , x(n)∗) the non-
decreasing rearrangement of the sequence (|x(1)|, . . . , |x(n)|). Since
|T | ≤ r, we have

r∑
j=1

x(j)∗ ≥
∑
i∈T

|x(i)| ≥
∑
i∈T c

|x(i)| ≥
n∑

j=r+1

x(j)∗

Combining this with
r∑

j=1

x(j)∗ ≤
√

r

we obtain that
n∑

j=r+1

x(j)∗ ≤
√

r.

Since x ∈ Sn−1, x(i)∗ ≤ 1/
√

r for any i > r. Assume for a moment that
the absolute values of the coordinates of x form a decreasing sequence.
Then the previous inequalities imply

(0, . . . , 0, x(r + 1), . . . , x(n)) ∈
√

rB
{r+1,...,n}
1 ∩ 1√

r
B{r+1,...,n}
∞ ,

so

x ∈ B
{1,...,r}
2 ×

(√
rB

{r+1,...,n}
1 ∩ 1√

r
B{r+1,...,n}
∞

)
.

For a general x ∈ Kf this means

x ∈
⋃
|E|=r

BE
2 ×

(√
rBEc

1 ∩ 1√
r
BEc

∞

)
:= W,

where the union is taken over all r-element subsets of {1, . . . , n}.
The maximum of ‖x‖D over x ∈ W is attained at the extreme points

of W , which have the form x = x′ + x′′, where x′ ∈ SE, and x′′ has
coordinates 0 and ±1/

√
r with r non-zero coordinates. Thus, for any

extreme point x of W ,

‖x‖D ≤ ‖x′‖D + ‖x′′‖D = ‖x′‖2 + ‖x′′‖2 ≤ 2.

The equality follows from the fact that both vectors x′ and x′′ are
r-sparse. This completes the proof of the lemma.

To use Gordon’s escape through the mesh theorem, we have to esti-
mate the Gaussian width of D.

Lemma 4.5.

w(D) ≤
√

r(3 + 2 log(n/r)) · α(r, n)
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where

α(r, n) = exp

(
log
(
1 + 2 log

(
en
r

))
4 log

(
en
r

) +
1

24r2 log
(

en
r

))

Proof. By definition,

w(D) = sup
|J |=r

(∑
i∈J

|g(i)|2
)1/2

.

Let p > 1 be a number to be chosen later. By Hölder’s inequality, we
have

w(D) ≤ E
( ∑
|J |=r

(∑
i∈J

|g(i)|2
)p/2)1/p

≤
(

n

r

)1/p(
E
( r∑

i=1

|g(i)|2
)p/2)1/p

≤
(en

r

)r/p(
2p/2 · Γ(p/2 + r/2)

Γ(r/2)

)1/p

.

By the Stirling’s formula,

2p/2 · Γ(p/2 + r/2)

Γ(r/2)
≤
(
1 +

p

r

) r−1
2

(
p + r

e

)p/2

· exp

(
1

12r

)
.

Therefore,

w(D) ≤
(en

r

)r/p
(

p + r

e

)1/2

·
(
1 +

p

r

) r−1
2p · exp

(
1

12pr

)
.

Now set p = 2r log( en
r
). Then

w(D) ≤ (p + r)1/2 ·
(
1 +

p

r

) r−1
2p · exp

(
1

12pr

)
=
√

r(3 + 2 log(n/r) · α(n, r),

where

α(r, n) = exp

(
log
(
1 + 2 log

(
en
r

))
4 log

(
en
r

) +
1

24r2 log
(

en
r

))
as claimed.

To deduce (23) we define S =
⋃

f Kf , where the union is over all

r-sparse functions f . Then (23) is equivalent to

S ∩ Y = ∅. (24)

Lemma 4.4 implies that S ⊆ 2D. Then by Lemma 4.5,

w(S) ≤ 2w(D).
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If k > k(r, n, p), where k(r, n, p) is chosen as in (20), then

1− 2.5 exp
(
−
(
k/
√

k + 1− 2w(D)
)2

/18
)

> p.

Then (24) follows Gordon’s Theorem 4.2. This completes the proof of
Theorem 4.1.

Acknowledgement. We thank Emmanuel Candes for important
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