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1 Introduction

Let K be a convex body in Rn, and {TK | T ∈ SL(n)} be the family of
its positions. In [GM] it was shown that for many natural functionals of the
form

T 7→ f(TK), T ∈ SL(n),

the solution T0 of the problem

min{f(TK) | T ∈ SL(n)}

is isotropic with respect to an appropriate measure depending on f . The
purpose of this note is to provide applications of this point of view in the
case of the mean width functional T 7→ w(TK) under various constraints.

Recall that the width of K in the direction of u ∈ Sn−1 is defined by
w(K,u) = hK(u) + hK(−u), where hK(y) = maxx∈K〈x, y〉 is the support
function of K. The width function w(K, ·) is translation invariant, therefore
we may assume that o ∈ int(K). The mean width of K is given by

w(K) =
∫
Sn−1

w(K,u)σ(du) = 2
∫
Sn−1

hK(u)σ(du),

where σ is the rotationally invariant probability measure on the unit sphere
Sn−1.

We say that K has minimal mean width if w(TK) ≥ w(K) for every
T ∈ SL(n). The following isotropic characterization of the minimal mean
width position was proved in [GM]:

Fact. A convex body K in Rn has minimal mean width if and only if∫
Sn−1

hK(u)〈u, θ〉2σ(du) =
w(K)

2n

for every θ ∈ Sn−1. Moreover, if U ∈ SL(n) and UK has minimal mean
width, we must have U ∈ O(n). 2
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Our first result is an application of this fact to a “reverse Urysohn in-
equality” problem: The classical Urysohn inequality states that w(K) ≥
(|K|/ωn)1/n where ωn is the volume of the Euclidean unit ball Dn, with
equality if and only if K is a ball. A natural question is to ask for which
bodies K

an := max
|K|=1

min
T∈SL(n)

w(TK)

is attained, and what is the precise order of growth of an as n → ∞. Ex-
amples such as the regular simplex or the cross-polytope show that an ≥
c
√
n
√

log(n+ 1). On the other hand, it is known that every symmetric con-
vex body K in Rn has an image TK with |TK| = 1 for which

w(TK) ≤ c1
√
n log[d(XK , `

n
2 ) + 1],

where XK = (Rn, ‖ · ‖K) and d denotes the Banach-Mazur distance. This
statement follows from an inequality of Pisier [Pi], combined with work of
Lewis [L], Figiel and Tomczak-Jaegermann [FT]. John’s theorem [J] implies
that

min
T∈SL(n)

w(TK) ≤ c2
√
n log(n+ 1),

for every symmetric convex body K with |K| = 1, and a simple argument
based on the difference body and the Rogers-Shephard inequality [RS] shows
that the same holds true without the symmetry assumption. Therefore,

c
√
n
√

log(n+ 1) ≤ an ≤ c3
√
n log(n+ 1).

Here, we shall give a precise estimate for the minimal mean width of zonoids
(this is the class of symmetric convex bodies which can be approximated by
Minkowski sums of line segments in the Hausdorff sense):

Theorem A. Let Z be a zonoid in Rn with volume |Z| = 1. Then,

min
T∈SL(n)

w(TZ) ≤ w(Qn) =
2ωn−1

ωn
,

where Qn = [−1/2, 1/2]n.

For our second application, we consider the class of origin symmetric
convex bodies in Rn. Every symmetric body K induces a norm ‖x‖K =
min{λ ≥ 0 : x ∈ λK} on Rn, and we write XK for the normed space (Rn, ‖ ·
‖K). The polar body of K is defined by ‖x‖K◦ = maxy∈K |〈x, y〉| = hK(x),
and will be denoted by K◦. Whenever we write (1/a)|x| ≤ ‖x‖K ≤ b|x|, we
assume that a, b are the smallest positive numbers for which this inequality
holds true for every x ∈ Rn.

We consider the average

M(K) =
∫
Sn−1

‖x‖Kσ(dx)
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of the norm ‖·‖K on Sn−1, and define M∗(K) = M(K◦). Thus, M∗(K) is half
the mean width of K. We will say that K has minimal M if M(K) ≤M(TK)
for every T ∈ SL(n). Equivalently, if K◦ has minimal mean width.

Our purpose is to show that if K has minimal M , then the volume radius
of K is bounded by a function of b and M . Actually, it is of the order of b/M .
The precise formulation is as follows:

Theorem B. Let K be a symmetric convex body in Rn with minimal M ,
such that (1/a)|x| ≤ ‖x‖K ≤ b|x|, x ∈ Rn. Then,

b

M
≤
(

|K|
|(1/b)Dn|

)1/n

≤ c b
M

log
(

2b
M

)
,

where c > 0 is an absolute constant.

Our last result concerns optimization of the width functional under a
different condition. We say that an n-dimensional symmetric convex body K
is in the Gauss-John position if the minimum of the functional

E‖g‖TK

under the constraint TK ⊆ Dn is attained for T = I. That is, K◦ has
minimal mean width under the condition TK ⊆ Dn (it minimizes M under
the condition a(TK) ≤ 1).

We can consider this optimization problem only for positive self-adjoint
operators T . Since the norm of T should be bounded to guarantee that TK ⊆
Dn and the norm of T−1 should be bounded as well, there exists T for which
the minimum is attained. Denote by γ the standard Gaussian measure in Rn.
Then, we have the following decomposition.

Theorem C. Let K be in the Gauss-John position. Then there exist: m ≤
n(n+1)/2, contact points x1, . . . , xm ∈ ∂K∩Sn−1 and numbers c1, . . . , cm >
0 such that

∑m
i=1 ci = 1 and∫

Rn

(x⊗ x− I)‖x‖Kdγ(x) =
∫
Rn

‖x‖Kdγ(x) ·

(
m∑
i=1

cixi ⊗ xi

)
.

The Gauss-John position is not equivalent to the classical John position.
Examples show that, when K is in the Gauss-John position, the distance
between Dn and the John ellipsoid may be of order

√
n/ log n.

2 Reverse Urysohn Inequality for Zonoids

The proof of Theorem A will make use of a characterization of the minimal
surface position, which was given by Petty [Pe] (see also [GP]): Recall that
the area measure σK of a convex body K is defined on Sn−1 and corresponds
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to the usual surface measure on K via the Gauss map: For every Borel V ⊆
Sn−1, we have

σK(V ) = ν ({x ∈ bd(K) : the outer normal to K at x is in V }) ,

where ν is the (n − 1)-dimensional surface measure on K. If A(K) is the
surface area of K, we obviously have A(K) = σK(Sn−1). We say that K has
minimal surface area if A(K) ≤ A(TK) for every T ∈ SL(n). With these
definitions, we have:

2.1 Theorem. A convex body K in Rn has minimal surface area if and only
if ∫

Sn−1
〈u, θ〉2σK(du) =

A(K)
n

for every θ ∈ Sn−1. Moreover, if U ∈ SL(n) and UK has minimal surface
area, we must have U ∈ O(n). 2

Recall also the definition of the projection body ΠK of K: it is the sym-
metric convex body whose support function is defined by hΠK(θ) = |Pθ(K)|
where Pθ(K) is the orthogonal projection of K onto θ⊥, θ ∈ Sn−1. It is known
that Z is a zonoid in Rn if and only if there exists a convex body K in Rn

such that Z = ΠK. By the formula for the area of projections, this can be
written in the form

hZ(x) =
1
2

∫
Sn−1

|〈x, u〉|σK(du).

Then, the characterization of the minimal mean width position and Theorem
2.1 imply the following:

2.2 Lemma. Let Z = ΠK be a zonoid. Then, Z has minimal mean width
if and only if K has minimal surface area.

Proof. The proof (modulo the characterization of the minimal mean width
position) may be found in [Pe]: By Cauchy’s surface area formula,

A(K) =
nωn
ωn−1

∫
Sn−1

hZ(θ)σ(dθ).

If f2 is a spherical harmonic of degree 2, the Funk-Hecke formula shows that∫
Sn−1

f2(u)|〈u, τ〉|σ(du) = cnf2(τ)

for all u, τ ∈ Sn−1, where cn is a constant depending only on the dimension.
Therefore,∫

Sn−1
f2(u)hZ(u)σ(du) =

1
2

∫
Sn−1

∫
Sn−1

f2(u)|〈u, τ〉|σ(du)σK(dτ)

=
cn
2

∫
Sn−1

f2(τ)σK(dτ).
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Since u 7→ 〈u, θ〉2 is homogeneous of degree 2, this implies∫
Sn−1

hZ(u)〈u, θ〉2σ(du) =
cn
2

∫
Sn−1
〈u, θ〉2σK(du)

for every θ ∈ Sn−1. The characterizations of the minimal mean width and
the minimal surface area positions make it clear that Z has minimal mean
width if and only if K has minimal surface area. 2

Our next lemma is a well-known fact, proved by K. Ball [B]:

2.3 Lemma Let {uj}j≤m be unit vectors in Rn and {cj}j≤m be positive
numbers satisfying

I =
m∑
j=1

cjuj ⊗ uj .

If Z =
∑m
j=1 αj [−uj , uj ] for some αj > 0, then

|Z| ≥ 2n
m∏
j=1

(
αj
cj

)cj
. 2

We apply this result to the projection body of a convex body with minimal
surface area.

2.4 Lemma If K has minimal surface area, then

A(K) ≤ n|ΠK|1/n.

Proof. We may assume that K is a polytope with facets Fj and normals uj ,
j = 1, . . . ,m. Then, Theorem 2.1 is equivalent to the statement

I =
m∑
j=1

cjuj ⊗ uj

where cj = n|Fj |/A(K) (see [GP]). On the other hand,

ΠK =
A(K)

2n

m∑
j=1

cj [−uj , uj ].

We now apply Lemma 2.3 for Z = ΠK, with αj = A(K)
2n cj :

|ΠK| ≥ 2n
m∏
j=1

(
A(K)

2n

)n
. 2

Remark. In the previous argument, equality can hold only if (uj)j≤m is an
orthonormal basis of Rn (see [Ba]). This means that if K is a polytope then
equality in Lemma 2.3 can hold only if K is a cube.
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Proof of Theorem A. Let Z be a zonoid with minimal mean width and volume
|Z| = 1. By Lemma 2.2, Z is the projection body ΠK of some convex body
K with minimal surface area. We have

w(Z) = 2
∫
Sn−1

hZ(u)σ(du) = 2
∫
Sn−1

|Pu(K)|σ(du) =
2ωn−1

nωn
A(K).

By Lemma 2.4, the area of K is bounded by n|Z|1/n = n. We have equality
when K is a cube, and this corresponds to the case Z = Qn. Therefore,

w(Z) ≤ w(Qn) =
2ωn−1

ωn
. 2

Remark. Urysohn’s inequality and Theorem A show that if Z is a zonoid
with |Z| = 1, then

αn

√
2
πe

√
n ≤ min

T∈SL(n)
w(TZ) ≤ βn

√
2
π

√
n,

where αn, βn → 1 as n→∞.

3 Volume Ratio of Symmetric Convex Bodies with
Minimal M

For the proof of Theorem B we will need the following fact which was proved
in [GM]:

3.1 Theorem. Let K be a symmetric convex body in Rn with minimal M .
Then, for every λ ∈ (0, 1) there exists a [(1 − λ)n]-dimensional subspace E
of Rn such that

b

r(λ)
|x| ≤ ‖x‖K ≤ b|x| , x ∈ E, (3.1)

where r(λ) ≤ c b
Mλ1/2 log( 2b

Mλ ), and c > 0 is an absolute constant. 2

Actually, the proof of Theorem 3.1 shows that the statement holds true
for a random [(1−λ)n]-dimensional subspace E of Rn. One can assume that
for every k ≤ n − n

c log2 n
we have the result with probability greater than

1 − 1
n (this formulation is correct when n ≥ n0, where n0 ∈ N is absolute).

This assumption on the measure of subspaces satisfying (3.1) implies that
there is an increasing sequence of subspaces E1 ⊂ E2 ⊂ . . . ⊂ Ek0 , where
k0 = [n − n

c log2 n
] and dimEk = k, so that (3.1) holds for each Ek with

r = r(k/n).

We will also need the following
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3.2 Lemma. Let K be a symmetric convex body in Rn, such that (1/a)|x| ≤
‖x‖K ≤ b|x|. If E is a k-dimensional subspace of Rn, then

|K|
|Dn|

≤
(
Ca(

n

n− k
)1/2

)n−k |K ∩ E|
|Dk|

,

where C > 0 is an absolute constant.

Proof. Let E be a k-dimensional subspace of Rn. Replacing K by (1/a)K, we
may assume that a = 1, so K ⊂ Dn. Using Brunn’s theorem we see that

|K| =
∫
P
E⊥ (K)

|K ∩ (E + y)|dy ≤ |PE⊥(K)||K ∩ E|

≤ |K ∩ E||Dn−k|.

This shows that

|K|
|Dn|

≤ |Dk||Dn−k|
|Dn|

|K ∩ E|
|Dk|

≤
(
C

n

n− k

)(n−k)/2 |K ∩ E|
|Dk|

. 2

Proof of Theorem B. We first observe that

ab ≤ Cn log n.

Indeed, let e ∈ Sn−1 be such that ‖e‖K = b and let γ be a standard normal
variable. Then

cb = E‖γe‖ ≤ E‖g‖K .
Similarly,

ca ≤ E‖g‖K◦ .
Multiplying these inequalities, we obtain

ab ≤ CE‖g‖KE‖g‖K◦ ≤ Cn log n.

The last inequality follows from the fact that M is minimal for K, and Pisier’s
inequality [Pi].

Assume now that b = 1. Let t = [log n]. For s = 1, 2, . . . , t put ks =
[(1− 1/s)n] and let Es = Eks be a subspace from our flag. Then by Theorem
3.1 we have (1/as)|x| ≤ ‖x‖K ≤ |x| on Es, where

as ≤ r((n− ks)/n) ≤ c

M
s1/2 log

(
2s
M

)
≤ s · c

M
log
(

2
M

)
=: s · c(M).

Now, Lemma 3.2 shows that

|K|
|Dn|

≤
(
Ca
√
t
)n−kt |K ∩ Et|

|Dkt |
≤ (Cn log2 n)n/ logn |K ∩ Et|

|Dkt |

≤ Cn
|K ∩ Et|
|Dkt |
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and

|K ∩ Es+1|
|Dks+1 |

≤ (Cass)
ks+1−ks |K ∩ Es|

|Dks |

≤
(
Cc(M)s2

)ks+1−ks |K ∩ Es|
|Dks |

,

for all s = 1, 2, . . . , t. Since a1 ≤ c(M), we have |K ∩ E1|/|Dk1 | ≤ c(M)k1 .
Hence, multiplying the inequalities above, we get

|K|
|Dn|

≤ Cn(Cc(M))kt−k1c(M)k1

t∏
s=2

s2(ks+1−ks).

By the definition of ks,

t∏
s=2

s2(ks+1−ks) ≤ exp

(
cn ·

t∑
s=2

log s
s2

)
≤ ecn,

therefore (
|K|

|(1/b)Dn|

)1/n

≤ C1c(M).

The left hand side inequality is an immediate consequence of Hölder’s in-
equality: (

|K|
|(1/b)Dn|

)1/n

= b

(∫
Sn−1

‖x‖−nK σ(dx)
)1/n

≥ b

(∫
Sn−1

‖x‖K
)−1

=
b

M
. 2

4 Gauss-John Position

We prove Theorem C. Consider the following optimization problem:

F (T ) =
∫
Rn

‖T−1x‖Kdγ(x)→ min (4.1)

under the constraint

Hx(T ) = |Tx|2 − 1 ≤ 0 for x ∈ K.

Assume that the body K is in the Gauss-John position, namely the minimum
in (4.1) is attained for T = I. Let W be the set of the contact points of K:
W = ∂K ∩ ∂Sn−1. First we apply an argument of John [J] to show that we
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can consider only finitely many constraints. Since the paper [J] is not easily
available, we shall sketch the argument. Let T be a self-adjoint operator and
let Ts = I + sT . We shall prove that if

d

ds
Hx(Ts)|s=0 < 0

for every x ∈W , then
d

ds
F (Ts)|s=0 ≥ 0.

Indeed, assume that

a = sup
x∈W

d

ds
Hx(Ts)|s=0 < 0.

Let Wε be an ε-neighborhood of W : Wε = {x ∈ K|dist(x,W ) < ε}. There
exists an ε > 0 such that

d

ds
Hx(Ts)|s=0 <

a

2

for every x ∈ Wε. So, there exists s0 > 0 such that for any 0 < s < s0 and
any x ∈Wε

Hx(Ts) < Hx(I) ≤ 0.

On the other hand, if x ∈ K \Wε then

Hx(Ts) ≤ |Hx(Ts)−Hx(I)|+Hx(I).

Here,
|Hx(Ts)−Hx(I)| =

∣∣∣|Tsx|2 − |x|2∣∣∣ ≤ ‖T‖(1 + ‖T‖)s

and
sup

x∈K\Wε

Hx(I) = sup
x∈K\Wε

|x|2 − 1 < 0

since K \Wε is compact.
Thus for a sufficiently small s we have Hx(Ts) < 0 for all x ∈ K. So, since

I is the solution of the minimization problem (4.1),

d

ds
F (Ts)|s=0 ≥ 0.

Since d
dsHx(Ts)|s=0 = 〈∇Hx(I), T 〉 and d

dsF (Ts)|s=0 = 〈∇F (I), T 〉, this
means that the vector−∇F (I) cannot be separated from the set {∇Hx(I)|x ∈
W} by a hyperplane. By Carathéodory’s theorem, there exist M ≤ n(n+1)/2
contact points x1 . . . xM ∈W and numbers λ1 . . . λM > 0 such that

−∇F (I) =
M∑
i=1

λi∇Hxi(I) =
M∑
i=1

λixi ⊗ xi. (4.2)
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Now we have to calculate ∇F (I).
We have

F (T ) = (2π)−n/2
∫
Rn

‖T−1x‖Ke−|x|
2/2dx

= (2π)−n/2 detT ·
∫
Rn

‖x‖Ke−|Tx|
2/2dx,

so,

∇F (I) =
(

(2π)−n/2
∫
Rn

‖x‖Ke−|x|
2/2dx

)
I

−(2π)−n/2
∫
Rn

‖x‖Ke−|x|
2/2x⊗ xdx

=
∫
Rn

(I − x⊗ x) · ‖x‖Kdγ(x).

Combining it with (4.2) we obtain∫
Rn

(I − x⊗ x) · ‖x‖Kdγ(x) +
M∑
i=1

λixi ⊗ xi = 0.

Taking the trace, we get

Tr
(∫

Rn

(I − x⊗ x) · ‖x‖Kdγ(x)
)

= n

∫
Rn

‖x‖Kdγ(x)−
∫
Rn

|x|2 · ‖x‖Kdγ(x)

= n

∫ ∞
0

rne−n
2/2dr

∫
Sn−1
‖ω‖Kdm(ω)−

∫ ∞
0

rn+2e−n
2/2dr

∫
Sn−1
‖ω‖Kdm(ω)

= −
∫
Rn

‖x‖Kdγ(x).

Finally, putting λi = ci
∫
Rn
‖x‖Kdγ(x), we obtain the decomposition∫

Rn

(I − x⊗ x)‖x‖Kdγ(x) =
∫
Rn

‖x‖Kdγ(x)

(
M∑
i=1

cixi ⊗ xi

)
,

where
∑M
i=1 ci = 1. This completes the proof of Theorem C. 2

We proceed to compare Dn with the John ellipsoid in the Gauss-John
position:

Proposition. Let K be a symmetric convex body in Rn which is in the Gauss-
John position. Then,

(i) (2/π)1/2n−1Dn ⊂ K ⊂ Dn;
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(ii) It may happen that c
√

logn
n Dn is not contained in K.

Proof. (i) Let T0 be an operator which puts K into the maximal volume
position. Then minF (T ) ≤ F (T0) ≤ n. From the other side, if there exists
y ∈ Sn−1 such that ‖y‖K◦ < (2/π)1/2n−1 then∫

Rn

‖x‖Kdγ(x) ≥
∫
Rn

|〈x, y/‖y‖K◦〉|dγ(x) ≥ (2/π)1/2 · 1/‖y‖K◦ > n.

(ii) Let K = Bn−1
1 + [−en, en]. Let T be a positive self-adjoint operator

such that TK is in the Gauss-John position. We first prove that T is a
diagonal operator. Let G ⊂ O(n) be the group generated by the operators
Ui = I−2ei⊗ei, i = 1, . . . , n and let m be the uniform measure on G. Notice
that UiK = K for every i. Then,∫

Rn

‖x‖TKdγ(x) =
∫
G

∫
Rn

‖Ux‖TU(K)dγ(x)dm(U)

≥
∫
Rn

∥∥∥∥(∫
G

U−1T−1U dm(U)
)
x

∥∥∥∥dγ(x).

Put
W =

∫
G

U−1T−1Udm(U) = diag(T−1).

We claim that
W ≥

(
diag(T )

)−1
.

Indeed, since for any i

〈ei,diag(T−1)ei〉 = 〈ei, (T−1)ei〉

and
〈ei,

(
diag(T )

)−1
ei〉 = 〈ei, T ei〉−1,

the claim follows from the fact that for any θ ∈ Sn−1

〈θ, T−1θ〉 · 〈θ, Tθ〉 ≥ 1.

Let S = diag(T ). Since W ≥ S−1, we have

F (T ) =
∫
Rn

‖x‖TKdγ(x) ≥
∫
Rn

‖Wx‖Kdγ(x) ≥
∫
Rn

‖S−1x‖Kdγ(x) = F (S).

[Notice that since TK ⊂ Dn,

SK =
(∫

G

U−1TU dm(U)
)

(K) ⊂ Dn,

so the restrictions of the optimization problem (4.1) are satisfied.]
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Let now G′ ⊂ O(n) be the group generated by the operators Uij = I −
ei ⊗ ei − ej ⊗ ej + ei ⊗ ej + ej ⊗ ei for i, j = 1, . . . , n − 1, i 6= j. Arguing
the same way we can show that there exist a, b > 0 such that F (S) ≥ F (T0),
where

T0 = a

(
n−1∑
i=1

ei ⊗ ei

)
+ ben ⊗ en .

Since the vertices of T0K are contact points,

a2 + b2 = 1.

We have

‖x‖T0K = max

(
a−1

n−1∑
i=1

|xi|, b−1|xn|

)
.

Denote ‖x‖1 =
∑n−1
i=1 |xi| and let t = t(x) = (b/a) · ‖x‖1. Then,

ψ(b) =
∫
Rn

‖x‖T0Kdγ(x)

=
∫
Rn−1

(
1√
2π

∫ t

−t
a−1‖x‖1e−x

2
n/2dxn+

2√
2π

∫ ∞
t

b−1xne
−x2

n/2dxn

)
dγ(x)

=
∫
Rn−1

(
2
a
‖x‖1Φ(t) +

2√
2π
b−1e−t

2/2

)
dγ(x),

where Φ(t) = (1/
√

2π)
∫ t

0
e−u

2/2du. We have to show that b ≤ c
√

logn
n . We

may assume that b ≥ c/n. Putting a = (1− b2)1/2 and differentiating, we get
after some calculations

d

db
ψ(b) =

∫
Rn−1

(
2a−3b‖x‖1Φ(t)− 2√

2π
b−2e−t

2/2

)
dγ(x) .

Since b ≥ c/n and ‖x‖1 ≥ Cn with probability at least 1/2, we have Φ(t) > c
with probability 1/2, for some absolute constant c > 0. So,

d

db
ψ(b) ≥ c̄− Cb−2 exp(−cn2b2),

which is positive when b ≥ c
√

log n/n. 2

Remark. The dual problem

f(T ) =
∫
Rn

sup
y∈TK

〈x, y〉dγ(x)→ max

under the constraint

hx(T ) = |Tx|2 − 1 ≤ 0 for x ∈ K

is very different. The examples suggest that the matrix T for which the
maximum is attained may be singular.
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