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Abstract. The classical random matrix theory is mostly focused on asymptotic spectral
properties of random matrices as their dimensions grow to infinity. At the same time
many recent applications from convex geometry to functional analysis to information
theory operate with random matrices in fixed dimensions. This survey addresses the
non-asymptotic theory of extreme singular values of random matrices with independent
entries. We focus on recently developed geometric methods for estimating the hard edge
of random matrices (the smallest singular value).
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1. Asymptotic and non-asymptotic problems on ran-
dom matrices

Since its inception, random matrix theory has been mostly preoccupied with
asymptotic properties of random matrices as their dimensions grow to infinity.
A foundational example of this nature is Wigner’s semicircle law [96]. It applies to
a family of n× n symmetric matrices An whose entries on and above the diagonal
are independent standard normal random variables. In the limit as the dimension
n grows to infinity, the spectrum of the normalized matrices 1√

n
An is distributed

according to the semicircle law with density 1
2π

√
4− x2 supported on the interval

[−2, 2]. Precisely, if we denote by Sn(z) the number of eigenvalues of 1√
n
An that

are smaller than z, then for every z ∈ R one has

Sn(z)
n
→ 1

2π

∫ z

−∞
(4− x2)1/2+ dx almost surely as n→∞.

In a similar way, Marchenko-Pastur law [55] governs the limiting spectrum of
n×n Wishart matrices WN,n = A∗A, where A = AN,n is an N ×n random Gaus-
sian matrix whose entries are independent standard normal random variables. As
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the dimensions N,n grow to infinity while the aspect ratio n/N converges to a
non-random number y ∈ (0, 1], the spectrum of the normalized Wishart matri-
ces 1

NWN,n is distributed according to the Marchenko-Pastur law with density
1

2πxy

√
(b− x)(x− a) supported on [a, b] where a = (1−√y)2, b = (1 +

√
y)2. The

meaning of the convergence is similar to the one in Wigner’s semicircle law.
It is widely believed that phenomena typically observed in asymptotic random

matrix theory are universal, that is independent of the particular distribution of
the entries of random matrices. By analogy with classical probability, when we
work with independent standard normal random variables Zi, we know that their
normalized sum Sn = 1√

n

∑n
i=1 Zi is again a standard normal random variable.

This simple but useful fact becomes significantly more useful when we learn that
it is asymptotically universal. Indeed, The Central Limit Theorem states that if
instead of normal distribution Zi have general identical distribution with zero mean
and unit variance, the normalized sum Sn will still converge (in distribution) to the
standard normal random variable as n→∞. In random matrix theory, universality
has been established for many results. In particular, Wigner’s semicircle law and
Marchenko-Pastur law are known to be universal – like the Central Limit Theorem,
they hold for arbitrary distribution of entries with zero mean and unit variance
(see [60, 6] for semi-circle law and [95, 5] for Marchenko-Pastur law).

Asymptotic random matrix theory offers remarkably precise predictions as di-
mension grows to infinity. At the same time, sharpness at infinity is often coun-
terweighted by lack of understanding of what happens in finite dimensions. Let
us briefly return to the analogy with the Central Limit Theorem. One often needs
to estimate the sum of independent random variables Sn with fixed number of
terms n rather than in the limit n→∞. In this situation one may turn to Berry-
Esseen’s theorem which quantifies deviations of the distribution of Sn from that of
the standard normal random variable Z. In particular, if E|Z1|3 = M <∞ then

|P(Sn ≤ z)− P(Z ≤ z)| ≤ C

1 + |z|3
· M√

n
, z ∈ R, (1.1)

where C is an absolute constant [11, 23]. Notwithstanding the optimality of Berry-
Esseen inequality (1.1), one can still hope for something better than the polynomial
bound on the probability, especially in view of the super-exponential tail of the
limiting normal distribution: P(|Z| > z) . exp(−z2/2). Better estimates would
indeed emerge in the form of exponential deviation inequalities [61, 47], but this
would only happen when we drop explicit comparisons to the limiting distribution
and study the tails of Sn by themselves. In the simplest case, when Zi are i.i.d.
mean zero random variables bounded in absolute value by 1, one has

P(|Sn| > z) ≤ 2 exp(−cz2), z ≥ 0, (1.2)

where c is a positive absolute constant. Such exponential deviation inequalities,
which are extremely useful in a number of applications, are non-asymptotic results
whose asymptotic prototype is the Central Limit Theorem.

A similar non-asymptotic viewpoint can be adopted in random matrix theory.
One would then study spectral properties of random matrices of fixed dimensions.
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Non-asymptotic results on random matrices are in demand in a number of today’s
applications that operate in high but fixed dimensions. This usually happens in
statistics where one analyzes data sets with a large but fixed number of parameters,
in geometric functional analysis where one works with random operators on finite-
dimensional spaces (whose dimensions are large but fixed), in signal processing
where the signal is randomly sampled in many but fixed number of points, and in
various other areas of science and engineering.

This survey is mainly focused on the non-asymptotic theory of the extreme sin-
gular values of random matrices (equivalently, the extreme eigenvalues of sample
covariance matrices) where significant progress was made recently. In Section 2
we review estimates on the largest singular value (the soft edge). The more diffi-
cult problem of estimating the smallest singular value (the hard edge) is discussed
in Section 3, and its connection with the Littlewood-Offord problem in additive
combinatorics is the content of Section 4. In Section 5 we discuss several applica-
tions of non-asymptotic results to the circular law in asymptotic random matrix
theory, to restricted isometries in compressed sensing, and to Kashin’s subspaces
in geometric functional analysis.

This paper is by no means a comprehensive survey of the area but rather a
tutorial. Sketches of some arguments are included in order to give the reader
a flavor of non-asymptotic methods. To do this more effectively, we state most
theorems in simplified form (e.g. always over the field R); the reader will find
full statements in the original papers. Also, we had to completely omit several
important directions. These include random symmetric matrices which were the
subject of the recent survey by Ledoux [48] and random matrices with independent
columns, see in particular [1, 94]. The reader is also encouraged to look at the
comprehensive survey [19] on some geometric aspects of random matrix theory.

2. Extreme singular values

Geometric nature of extreme singular values The non-asymptotic view-
point in random matrix theory is largely motivated by geometric problems in high
dimensional Euclidean spaces. When we view an N × n matrix A as a linear op-
erator Rn → RN , we may want first of all to control its magnitude by placing
useful upper and lower bounds on A. Such bounds are conveniently provided by
the smallest and largest singular values of A denoted smin(A) and smax(A); recall
that the singular values are by definition the eigenvalues of |A| =

√
A∗A.

The geometric meaning of the extreme singular values can be clear by consid-
ering the best possible factors m and M in the two-sided inequality

m‖x‖2 ≤ ‖Ax‖2 ≤M‖x‖2 for all x ∈ Rn.

The largest m and the smallest M are precisely the extreme singular values smin(A)
and smax(A) respectively. They control the distortion of the Euclidean geometry
under the action of the linear transformation A; the distance between any two
points in Rn can increase by at most the factor smax(A) and decrease by at most
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the factor smax(A). The extreme singular values are clearly related to the oper-
ator norms of the linear operators A and A−1 acting between Euclidean spaces:
smax(A) = ‖A‖ and if A is invertible then smin(A) = 1/‖A−1‖.

Understanding the behavior of extreme singular values of random matrices is
needed in many applications. In numerical linear algebra, the condition number
κ(A) = smax(A)/smin(A) often serves as a measure of stability of matrix algo-
rithms. Geometric functional analysis employs probabilistic constructions of linear
operators as random matrices, and the success of these constructions often depends
on good bounds on the norms of these operators and their inverses. Applications of
different nature arise in statistics from the analysis of sample covariance matrices
A∗A, where the rows of A are formed by N independent samples of some unknown
distribution in Rn. Some other applications are discussed in Section 5.

Asymptotic behavior of extreme singular values We first turn to the
asymptotic theory for the extreme singular values of random matrices with in-
dependent entries (and with zero mean and unit variance for normalization pur-
poses). From Marchenko-Pastur law we know that most singular values of such
random N × n matrix A lie in the interval [

√
N −

√
n,
√
N +

√
n]. Under mild

additional assumptions, it is actually true that all singular values lie there, so that
asymptotically we have

smin(A) ∼
√
N −

√
n, smax(A) ∼

√
N +

√
n. (2.1)

This fact is universal and it holds for general distributions. This was established for
smax(A) by Geman [29] and Yin, Bai and Krishnaiah [97]. For smin(A), Silverstein
[71] proved this for Gaussian random matrices, and Bai and Yin [8] gave a unified
treatment of both extreme singular values for general distributions:

Theorem 2.1 (Convergence of extreme singular values, see [8]). Let A = AN,n
be an N ×n random matrix whose entries are independent copies of some random
variable with zero mean, unit variance, and finite fourth moment. Suppose that
the dimensions N and n grow to infinity while the aspect ratio n/N converges to
some number y ∈ (0, 1]. Then

1√
N
smin(A)→ 1−√y, 1√

N
smax(A)→ 1 +

√
y almost surely.

Moreover, without the fourth moment assumption the sequence 1√
N
smax(A) is al-

most surely unbounded [7].

The limiting distribution of the extreme singular values is known and universal.
It is given by the Tracy-Widom law whose cumulative distribution function is

F1(x) = exp
(
−
∫ ∞
x

[
u(s) + (s− x)u2(s)

]
ds
)
, (2.2)

where u(s) is the solution to the Painlevè II equation u′′ = 2u3 + su with the
asymptotic u(s) ∼ 1

2
√
πs1/4 exp(− 2

3s
3/2) as s → ∞. The occurrence of Tracy-

Widom law in random matrix theory and several other areas was the subject of
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an ICM 2002 talk of Tracy and Widom [91]. This law was initially discovered for
the largest eigenvalue of a Gaussian symmetric matrix [89, 90]. For the largest
singular values of random matrices with independent entries it was established by
Johansson [37] and Johnstone [39] in the Gaussian case, and by Soshnihikov [74]
for more general distributions. For the smallest singular value, the corresponding
result was recently obtained in a recent work Feldheim and Sodin [25] who gave a
unified treatment of both extreme singular values. These results are known under a
somewhat stronger subgaussian moment assumption on the entries aij of A, which
requires their distribution to decay as fast as the normal random variable:

Definition 2.2 (Subgaussian random variables). A random variable X is subgaus-
sian if there exists K > 0 called the subgaussian moment of X such that

P(|X| > t) ≤ 2e−t
2/K2

for t > 0.

Examples of subgaussian random variables include normal random variables,
±1-valued, and generally, all bounded random variables. The subgaussian assump-
tion is equivalent to the moment growth condition (E|X|p)1/p = O(

√
p) as p→∞.

Theorem 2.3 (Limiting distribution of extreme singular values, see [25]). Let
A = AN,n be an N × n random matrix whose entries are independent and identi-
cally distributed subgaussian random variables with zero mean and unit variance.
Suppose that the dimensions N and n grow to infinity while the aspect ratio n/N
stays uniformly bounded by some number y ∈ (0, 1). Then the normalized extreme
singular values

smin(A)2 − (
√
N −

√
n)2

(
√
N −

√
n)(1/

√
n− 1/

√
N)1/3

and
smax(A)2 − (

√
N +

√
n)2

(
√
N +

√
n)(1/

√
n+ 1/

√
N)1/3

converge in distribution to the Tracy-Widom law (2.2).

Non-asymptotic behavior of extreme singular values It is not entirely
clear to what extent the limiting behavior of the extreme singular values such
as asymptotics (2.1) manifests itself in fixed dimensions. Given the geometric
meaning of the extreme singular values, our interest generally lies in establishing
correct upper bounds on smax(A) and lower bounds on smin(A). We start with a
folklore observation which yields the correct bound smax(A) .

√
N +

√
n up to

an absolute constant factor. The proof is a basic instance of an ε-net argument, a
technique proved to be very useful in geometric functional analysis.

Proposition 2.4 (Largest singular value of subgaussian matrices: rough bound).
Let A be an N × n random matrix whose entries are independent mean zero sub-
gaussian random variables whose subgaussian moments are bounded by 1. Then

P
(
smax(A) > C(

√
N +

√
n) + t

)
≤ 2e−ct

2
, t ≥ 0.

Here and elsewhere in this paper, C,C1, c, c1 denote positive absolute constants.
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Proof (sketch). We will sketch the proof for N = n; the general case is similar. The
expression smax(A) = maxx,y∈Sn−1〈Ax, y〉 motivates us to first control the random
variables 〈Ax, y〉 individually for each pair of vectors x, y on the unit Euclidean
sphere Sn−1, and afterwards take the union bound over all such pairs. For fixed
x, y ∈ Sn−1 the expression 〈Ax, y〉 =

∑
i,j aijxjyi is a sum of independent random

variables, where aij denote the independent entries of A. If aij were standard nor-
mal random variables, the rotation invariance of the Gaussian distribution would
imply that 〈Ax, y〉 is again a standard normal random variable. This property
generalizes to subgaussian random variables. Indeed, using moment generating
functions one can show that a normalized sum of mean zero subgaussian random
variables is again a subgaussian random variable, although the subgaussian mo-
ment may increase by an absolute constant factor. Thus

P
(
〈Ax, y〉 > s

)
≤ 2e−cs

2
, s ≥ 0.

Obviously, we cannot finish the argument by taking the union bound over
infinite (even uncountable) number of pairs x, y on the sphere Sn−1. In order to
reduce the number of such pairs, we discretize Sn−1 by considering its ε-net Nε in
the Euclidean norm, which is a subset of the sphere that approximates every point
of the sphere up to error ε. An approximation argument yields

smax(A) = max
x,y∈Sn−1

〈Ax, y〉 ≤ (1− ε)−2 max
x,y∈Nε

〈Ax, y〉 for ε ∈ (0, 1).

To gain a control over the size of the net Nε, we construct it as a maximal ε-
separated subset of Sn−1; then the balls with centers in Nε and radii ε/2 form
a packing inside the centered ball of radius 1 + ε/2. A volume comparison gives
the useful bound on the cardinality of the net: |Nε| ≤ (1 + 2/ε)n. Choosing for
example ε = 1/2, we are well prepared to take the union bound:

P
(
smax(A) > 4s

)
≤ P

(
max
x,y∈Nε

〈Ax, y〉 > s
)
≤ |Nε| max

x,y∈Nε

P
(
〈Ax, y〉 > s

)
≤ 5n · 2e−cs

2
.

We complete the proof by choosing s = C
√
n+ t with appropriate constant C.

By integration, one can easily deduce from Proposition 2.4 the correct expec-
tation bound Esmax(A) ≤ C1(

√
N +

√
n). This latter bound actually holds under

much weaker moment assumptions. Similarly to Theorem 2.1, the weakest possi-
ble fourth moment assumption suffices here. R. Latala [46] obtained the following
general result for matrices with not identically distributed entries:

Theorem 2.5 (Largest singular value: fourth moment, non-iid entries [46]). Let A
be a random matrix whose entries aij are independent mean zero random variables
with finite fourth moment. Then

Esmax(A) ≤ C
[

max
i

(∑
j

Ea2
ij

)1/2 + max
j

(∑
i

Ea2
ij

)1/2 +
(∑
i,j

Ea4
ij

)1/4]
.

For random Gaussian matrices, a much sharper result than in Proposition 2.4
is due to Gordon [31, 32, 33]:
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Theorem 2.6 (Exteme singular values of Gaussian matrices, see [19]). Let A be
an N×n matrix whose entries are independent standard normal random variables.
Then √

N −
√
n ≤ Esmin(A) ≤ Esmax(A) ≤

√
N +

√
n.

This result is a consequence of the sharp comparison inequalities for Gaussian
processes due to Slepian and Gordon, see [31, 32, 33] and [49, Section 3.3].

Tracy-Widom fluctuations One can deduce from Theorem 2.6 a deviation
inequality for the extreme singular values. It follows formally by using the concen-
tration of measure in the Gauss space. Since the smin(A), smax(A) are 1-Lipschitz
functions of A considered as a vector in RNn, we have

P
(√
N−
√
n−t ≤ smin(A) ≤ smax(A) ≤

√
N+
√
n+t

)
≥ 1−2e−t

2/2, t ≥ 0, (2.3)

see [19]. For general random matrices with independent bounded entries, one can
use Talagrand’s concentration inequality for convex Lipschitz functions on the cube
[76, 77]. Namely, suppose the entries of A are independent, have mean zero, and
are uniformly bounded by 1. Since smax(A) is a convex function of A, Talagrand’s
concentration inequality implies

P
(
|smax(A)−Median(smax(A))| ≥ t

)
≤ 2e−t

2/2.

Although the precise value of the median is unknown, integration of the previous
inequality shows that |Esmax(A) − Median(smax(A))| ≤ C. The same deviation
inequality holds for symmetric random matrices.

Inequality (2.3) is optimal for large t because smax(A) is bounded below by
the magnitude of every entry of A which has the Gaussian tail. But for small
deviations, say for t < 1, inequality (2.3) is meaningless. Tracy-Widom law predicts
a different tail behavior for small deviations t. It must follow the tail decay of the
Tracy–Widom function F1, which is not subgaussian [3], [39]:

c exp(−Cτ3/2) ≤ 1− F1(τ) ≤ C exp(−C ′τ3/2) τ ≥ 0.

The concentration of this type for Hermitian complex and real Gaussian matri-
ces (Gaussian Unitary Ensemble and Gaussian Orthogonal Ensemble) was proved
by Ledoux [48] and Aubrun [3]. Recently, Feldheim and Sodin [25] introduced a
general approach, which allows to prove the asymptotic Tracy–Widom law and its
non-asymptotic counterpart at the same time. Moreover, their method is applica-
ble to random matrices with independent subgaussian entries both in symmetric
and non-symmetric case. In particular, for an N × n random matrix A with inde-
pendent subgaussian entries they proved that

p(τ) := P
(
smax(A) ≥

√
N +

√
n+ τ

√
N
)
≤ C exp(−cnτ3/2) τ ≥ 0. (2.4)

Bounds (2.3) and (2.4) show that the tail behavior of the maximal singular value is
essentially different for small and large deviations: p(τ) decays like exp(−cnτ3/2)
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for τ ≤ c(n/N)2 and like exp(−c1Nτ2) for larger τ . For square matrices the
meaning of this phenomenon is especially clear. Large deviations of smax(A)
are produced by bursts of single entries: both P(smax(A) ≥ Esmax(A) + t) and
P(|a1,1| ≥ Esmax(A) + t) are of the same order exp(−ct2) for t ≥ Esmax(A). In
contrast, for small deviations (for smaller t) the situation becomes truly multidi-
mensional, and Tracy-Widom type asymptotics appears.

The method of [25] also addresses the more difficult smallest singular value.
For an N × n random matrix A whose dimensions are not too close to each other
Feldheim and Sodin [25] proved the Tracy–Widom law for the smallest singular
value together with a non-asymptotic version of the bound smin(A) ∼

√
N −

√
n:

P
(
smin(A) ≤

√
N −

√
n− τ

√
N · N

N − n

)
≤ C

1−
√
n/N

exp(−c′nτ3/2). (2.5)

3. The smallest singular value

Qualitative invertibility problem In this section we focus on the behavior of
the smallest singular value of random N×n matrices with independent entries. The
smallest singular value – the hard edge of the spectrum – is generally more difficult
and less amenable to analysis by classical methods of random matrix theory than
the largest singular value, the “soft edge”. The difficulty especially manifests itself
for square matrices (N = n) or almost square matrices (N − n = o(n)). For
example, we were guided so far by the asymptotic prediction smin(A) ∼

√
N −
√
n,

which obviously becomes useless for square matrices.
A remarkable example is provided by n × n random Bernoulli matrices A,

whose entries are independent ±1 valued symmetric random variables. Even the
qualitative invertibility problem, which asks to estimate the probability that A is
invertible, is nontrivial in this situation. Komlós [44, 45] showed that A is invertible
asymptotically almost surely: pn := P(smin(A) = 0) → 0 as n → ∞. Later Kahn,
Komlos and Szemeredi [43] proved that the singularity probability satisfies pn ≤ cn
for some c ∈ (0, 1). The base c was gradually improved in [78, 81], with the latest
record of pn = (1/

√
2+o(1))n obtained in [12]. It is conjectured that the dominant

source of singularity of A is the presence of two rows or two columns that are equal
up to a sign, which would imply the best possible bound pn = (1/2 + o(1))n.

Quantitative invertibility problem The previous problem is only concerned
with whether the hard edge smin(A) is zero or not. This says nothing about the
quantitative invertibility problem of the typical size of smin(A). The latter question
has a long history. Von Neumann and his associates used random matrices as
test inputs in algorithms for numerical solution of systems of linear equations.
The accuracy of the matrix algorithms, and sometimes their running time as well,
depends on the condition number κ(A) = smax(A)/smin(A). Based on heuristic
and experimental evidence, von Neumann and Goldstine predicted that

smin(A) ∼ n−1/2, smax(A) ∼ n1/2 with high probability (3.1)
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which together yield κ(A) ∼ n, see [92, Section 7.8]. In Section 2 we saw several
results establishing the second part of (3.1), for the largest singular value.

Estimating the smallest singular value turned out to be more difficult. A more
precise form of the prediction smin(A) ∼ n−1/2 was repeated by Smale [73] and
proved by Edelman [20] and Szarek [79] for random Gaussian matrices A, those
with i.i.d. standard normal entries. For such matrices, the explicit formula for the
joint density of the eigenvalues λi of 1

nA
∗A is available:

pdf(λ1, . . . , λn) = Cn
∏

1≤i<j≤n

|λi − λj |
n∏
i=1

λ
−1/2
i exp

(
−

n∑
i=1

λi/2
)
.

Integrating out all the eigenvalues except the smallest one, one can in principle
compute its distribution. This approach leads to the following asymptotic result:

Theorem 3.1 (Smallest singular value of Gaussian matrices [20]). Let A = An be
an n × n random matrix whose entries are independent standard normal random
variables. Then for every fixed ε ≥ 0 one has

P
(
smin(A) ≤ εn−1/2

)
→ 1− exp(−ε− ε2/2) as n→∞.

The limiting probability behaves as 1− exp(−ε− ε2/2) ∼ ε for small ε. In fact,
the following non-asymptotic bound holds for all n:

P
(
smin(A) ≤ εn−1/2

)
≤ ε, ε ≥ 0. (3.2)

This follows from the analysis of Edelman [20]; Sankar, Spielman and Teng [68]
provided a different geometric proof of estimate (3.2) up to an absolute constant
factor and extended it to non-centered Gaussian distributions.

Smallest singular values of general random matrices These methods do
not work for general random matrices, especially those with discrete distributions,
where rotation invariance and the joint density of eigenvalues are not available.
The prediction that smin(A) ∼ n−1/2 has been open even for random Bernoulli
matrices. Spielman and Teng conjectured in their ICM 2002 talk [75] that estimate
(3.2) should hold for the random Bernoulli matrices up to an exponentially small
term that accounts for their singularity probability:

P
(
smin(A) ≤ εn−1/2

)
≤ ε+ cn, ε ≥ 0

where c ∈ (0, 1) is an absolute constant. The first polynomial bound on smin(A) for
general random matrices was obtained in [63]. Later Spielman-Teng’s conjecture
was proved in [65] up to a constant factor, and for general random matrices:

Theorem 3.2 (Smallest singular value of square random matrices [65]). Let A be
an n× n random matrix whose entries are independent and identically distributed
subgaussian random variables with zero mean and unit variance. Then

P
(
smin(A) ≤ εn−1/2

)
≤ Cε+ cn, ε ≥ 0

where C > 0 and c ∈ (0, 1) depend only on the subgaussian moment of the entries.
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This result addresses both qualitative and quantitative aspects of the invert-
ibility problem. Setting ε = 0 we see that A is invertible with probability at
least 1− cn. This generaizes the result of Kahn, Komlos and Szemeredi [43] from
Bernoulli to all subgaussian matrices. On the other hand, quantitatively, The-
orem 3.2 states that smin(A) & n−1/2 with high probability for general random
matrices. A corresponding non-asymptotic upper bound smin(A) . n−1/2 also
holds [66], so we have smin(A) ∼ n−1/2 as in von Neumann-Goldstine’s prediction.
Both these bounds, upper and lower, hold with high probability under the weaker
fourth moment assumption on the entries [65, 66].

This theory was extended to rectangular random matrices of arbitrary dimen-
sions N × n in [67]. As we know from Section 2, one expects that smin(A) ∼√
N −

√
n. But this would be incorrect for square matrices. To reconcile rectan-

gular and square matrices we make the following correction of our prediction:

smin(A) ∼
√
N −

√
n− 1 with high probability. (3.3)

For square matrices one would have the correct estimate smin(A) ∼
√
n−
√
n− 1 ∼

n−1/2. The following result extends Theorem 3.2 to rectangular matrices:

Theorem 3.3 (Smallest singular value of rectangular random matrices [65]). Let A
be an n×n random matrix whose entries are independent and identically distributed
subgaussian random variables with zero mean and unit variance. Then

P
(
smin(A) ≤ ε(

√
N −

√
n− 1)

)
≤ (Cε)N−n+1 + cN , ε ≥ 0

where C > 0 and c ∈ (0, 1) depend only on the subgaussian moment of the entries.

This result has been known for a long time for tall matrices, whose the aspect
ratio λ = n/N is bounded by a sufficiently small constant, see [10]. The optimal
bound smin(A) ≥ c

√
N can be proved in this case using an ε-net argument similar

to Proposition 2.4. This was extended in [53] to smin(A) ≥ cλ
√
N for all aspect

ratios λ < 1−c/ log n. The dependence of cλ on the aspect ratio λ was improved in
[2] for Bernoulli matrices and in [62] for general subgaussian matrices. Feldheim-
Sodin’s Theorem 2.3 gives precise Tracy-Widom fluctuations of smin(A) for tall
matrices, but becomes useless for almost square matrices (say for N < n+ n1/3).
Theorem 3.3 is an an optimal result (up to absolute constants) which covers matri-
ces with all aspect ratios from tall to square. Non-asymptotic estimate (3.3) was
extended to matrices whose entries have finite (4 + ε)-th moment in [93].

Universality of the smallest singular values The limiting distribution of
smin(A) turns out to be universal as dimension n→∞. We already saw a similar
universality phenomenon in Theorem 2.3 for genuinely rectangular matrices. For
square matrices, the corresponding result was proved by Tao and Vu [87]:

Theorem 3.4 (Smallest singular value of square matrices: universality [87]). Let A
be an n×n random matrix whose entries are independent and identically distributed
random variables with zero mean, unit variance, and finite K-th moment where K
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is a sufficiently large absolute constant. Let G be an n × n random matrix whose
entries are independent standard normal random variables. Then

P(
√
nsmin(G) ≤ t−n−c)−nc ≤ P(

√
nsmin(A) ≤ t) ≤ P(

√
nsmin(G) ≤ t+n−c)+nc

where c > 0 depends only on the K-th moment of the entries.

On a methodological level, this result may be compared in classical probability
theory to Berry-Esseen theorem (1.1) which establishes polynomial deviations from
the limiting distribution, while Theorems 3.2 and 3.3 bear a similarity with large
deviation results like (1.2) which give exponentially small tail probabilities.

Sparsity and invertibility: a geometric proof of Theorem 3.2 We will now
sketch the proof of Theorem 3.2 given in [65]. This argument is mostly based on
geometric ideas, and it may be useful beyond spectral analysis of random matrices.

Looking at smin(A) = minx∈Sn−1 ‖Ax‖2 we see that our goal is to bound below
‖Ax‖2 uniformly for all unit vectors x. We will do this separately for sparse
vectors and for spread vectors with two very different arguments. Choosing a small
absolute constant c0 > 0, we first consider the class of sparse vectors

Sparse := {x ∈ Sn−1 : | supp(x)| ≤ c0n}

Establishing invertibility of A on this class is relatively easy. Indeed, when we look
at ‖Ax‖2 for sparse vectors x of fixed support supp(x) = I of size |I| = c0n, we
are effectively dealing with the n× c0n submatrix AI that consists of the columns
of A indexed by I. The matrix AI is tall, so as we said below Theorem 3.3, its
smallest singular value can be estimated using the standard ε-net argument. This
gives smin(AI) ≥ cn1/2 with probability at least 1−2e−n. This allows us to further
take the union bound over

(
n
c0n

)
≤ en/2 choices of support I, and conclude that

with probability at least 1− 2e−n/2 we have invertibility on all sparse vectors:

min
x∈Sparse

‖Ax‖2 = min
|I|≤c0n

smin(AI) ≥ cn1/2. (3.4)

We thus obtained a much stronger bound than we need, n1/2 instead of n−1/2.
Establishing invertibility of A on non-sparse vectors is more difficult because

there are too many of them. For example, there are exponentially many vectors
on Sn−1 whose coordinates all equal ±n−1/2 and which have at least a constant
distance from each other. This gives us no hope to control such vectors using
ε-nets, as any nontrivial net must have cardinality at least 2n. So let us now focus
on this most difficult class of extremely non-sparse vectors

Spread := {x ∈ Sn−1 : |xi| ≥ c1n−1/2 for all i}.

Once we prove invertibility of A on these spread vectors, the argument can be
completed for all vectors in Sn−1 by an approximation argument. Loosely speaking,
if x is close to Sparse we can treat x as sparse, otherwise x must have at least cn
coordinates of magnitude |xi| = O(n−1/2), which allows us to treat x as spread.
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An obvious advantage of spread vectors is that we know the magnitude of all
their coefficients. This motivates the following geometric invertibility argument.
If A performs extremely poor so that smin(A) = 0, then one of the columns Xk of
A lies in the span Hk = span(Xi)i 6=k of the others. This simple observation can
be transformed into a quantitative argument. Suppose x = (x1, . . . , xn) ∈ Rn is a
spread vector. Then, for every k = 1, . . . , n, we have

‖Ax‖2 ≥ dist(Ax,Hk) = dist
( n∑
i=1

xiXi, Hk

)
= dist(xkXk, Hk)

= |xk| · dist(Xk, Hk) ≥ c1n−1/2 dist(Xk, Hk). (3.5)

Since the right hand side does not depend on x, we have proved that

min
x∈Spread

‖Ax‖2 ≥ c1n−1/2 dist(Xn, Hn). (3.6)

This reduces our task to the geometric problem of independent interest – es-
timate the distance between a random vector and an independent random hyper-
plane. The expectation estimate 1 ≤ E dist(Xn, Hn)2 = O(1) follows easily by
independence and moment assumptions. But we need a lower bound with high
probability, which is far from trivial. This will make a separate story connected
to the Littlewood-Offord theory of small ball probabilities, which we discuss in
Section 4. In particular we will prove in Corollary 4.4 the optimal estimate

P(dist(Xn, Hn) ≤ ε) ≤ Cε+ cn, ε ≥ 0, (3.7)

which is simple for the Gaussian distribution (by rotation invariance) and difficult
to prove e.g. for the Bernoulli distribution. Together with (3.6) this means that
we proved invertibility on all spread vectors:

P
(

min
x∈Spread

‖Ax‖2 ≤ εn−1/2
)
≤ Cε+ cn, ε ≥ 0.

This is exactly the type of probability bound claimed in Theorem 3.2. As we said,
we can finish the proof by combining with the (much better) invertibility on sparse
vectors in (3.4), and by an approximation argument.

4. Littlewood-Offord theory

Small ball probabilities and additive structure We encountered the fol-
lowing geometric problem in the previous section: estimate the distance between a
random vector X with independent coordinates and an independent random hyper-
plane H in Rn. We need a lower bound on this distance with high probability. Let
us condition on the hyperplane H and let a ∈ Rn denote its unit normal vector.
Writing in coordinates a = (a1, . . . , an) and X = (ξ1, . . . , ξn), we see that

dist(X,H) = 〈a,X〉 =
∣∣∣ n∑
i=1

aiξi
∣∣. (4.1)
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We need to understand the distribution of sums of independent random variables

S =
n∑
i=1

aiξi, ‖a‖2 = 1,

where a = (a1, . . . , an) ∈ Rn is a given coefficient vector, and ξ1, . . . , ξn are inde-
pendent identically distributed random variables with zero mean and unit variance.

Sums of independent random variables is a classical theme in probability theory.
The well-developed area of large deviation inequalities like (1.2) demonstrates that
S nicely concentrates around its mean. But our problem is opposite as we need to
show that S is not too concentrated around its mean 0, and perhaps more generally
around any real number. Several results in probability theory starting from the
works of Lévy [50], Kolmogorov [42] and Esséen [24] were concerned with the
spread of sums of independent random variables, which is quantified as follows:

Definition 4.1. The Lévy concentration function of a random variable S is

L(S, ε) = sup
v∈R

P(|S − v| ≤ ε), ε ≥ 0.

Lévy concentration function measures the small ball probability [51], the likeli-
hood that S enters a small interval. For continuous distributions one can show that
L(S, ε) . ε for all ε ≥ 0. For discrete distributions this may be false. Instead, a
new phenomenon arises for discrete distributions which is unseen in large deviation
theory: Lévy concentration function depends on the additive structure of the coef-
ficient vector a. This is best illustrated on the example where ξi are independent
Bernoulli random variables (±1 valued and symmetric). For sparse vectors like
a = 2−1/2(1, 1, 0, . . . , 0), Lévy concentration function can be large: L(S, 0) = 1/2.
For spread vectors, Berry-Esseen’s theorem (1.1) yields a better bound:

For a′ = n−1/2(1, 1, . . . , 1), L(S, ε) ≤ C(ε+ n−1/2). (4.2)

The threshold n−1/2 comes from many cancelations in the sums
∑
±1 which occur

because all coefficients ai are equal. For less structured a, fewer cancelations occur:

For a′′ = n−1/2
(
1 +

1
n
, 1 +

2
n
, . . . , 1 +

n

n

)
, L(S, 0) ∼ n−3/2. (4.3)

Studying the influence of additive structure of the coefficient vector a on the spread
of S =

∑
aiξi became known as the Littlewood-Offord problem. It was initially

developed by Littlewood and Offord [52], Erdös and Moser [21, 22], Sárkozy and
Szemerédi [69], Halasz [40], Frankl and Füredi [26]. For example, if all |ai| ≥ 1
then L(S, 1) ≤ Cn−1/2 [52, 21], which agrees with (4.2). Similarly, a general fact
behind (4.3) is that if |ai− aj | ≥ 1 for all i 6= j then L(S, 1) ≤ Cn−3/2 [22, 69, 40].

New results on Lévy concentration function Problems of invertibility of
random matrices motivated a recent revisiting of the Littlewood-Offord problem
by Tao and Vu [83, 84, 86, 88], the authors [65, 67], Friedland and Sodin [27].
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Additive structure of the coefficient vector a is related to the shortest arithmetic
progression into which it embeds. This length is conveniently expressed as the
least common denominator lcd(a) defined as the smallest θ > 0 such that θa ∈
Zn \ 0. Examples suggest that Lévy concentration function should be inversely
proportional to the least common denominator: lcd(a′) = n1/2 ∼ 1/L(S, 0) in
(4.2) and lcd(a′′) = n3/2 ∼ 1/L(S, 0) in (4.3). This is not a coincidence. But to
state a general result, we will need to consider a more stable version of the least
common denominator. Given an accuracy level α > 0, we define the essential least
common denominator

lcdα(a) := inf
{
θ > 0 : dist(θa,Zn) ≤ min(

1
10
‖θa‖2, α)

}
.

The requirement dist(θa,Zn) ≤ 1
10‖θa‖2 ensures approximation of θa by non-trivial

integer points, those in a non-trivial cone in the direction of a. The constant 1
10

is arbitrary and it can be replaced by any other constant in (0, 1). One typically
uses this concept for accuracy levels α = c

√
n with a small constant c such as

c = 1
10 . The inequality dist(θa,Zn) ≤ α yields that most of the coordinates of θa

are within a small constant distance from integers. For such α, in examples (4.2)
and (4.3) one has as before lcdα(a′) ∼ n1/2 and lcdα(a′′) ∼ n3/2. Here we state
and sketch a proof of a general Littlewood-Offord type result from [67].

Theorem 4.2 (Lévy concentration function via additive structure). Let ξ1, . . . , ξn
be independent identically distributed mean zero random variables, which are well
spread: p := L(ξk, 1) < 1. Then, for every coefficient vector a = (a1, . . . , an) ∈
Sn−1 and every accuracy level α > 0, the sum S =

∑n
i=1 aiξi satisfies

L(S, ε) ≤ Cε+ C/ lcdα(a) + Ce−cα
2
, ε ≥ 0, (4.4)

where C, c > 0 depend only on the spread p.

Proof. A classical Esseen’s concentration inequality [24] bounds the Lévy concen-
tration function of an arbitrary random variable Z by the L1 norm of its charac-
teristic function φZ(θ) = E exp(iθZ) as follows:

L(Z, 1) ≤ C
∫ 1

−1

|φZ(θ)| dθ. (4.5)

One can prove this inequality using Fourier inversion formula, see [80, Section 7.3].
We will show how to prove Theorem 4.2 for Bernoulli random variables ξi; the

general case requires an additional argument. Without loss of generality we can
assume that lcdα(a) ≥ 1

πε . Applying (4.5) for Z = S/ε, we obtain by independence
that

L(S, ε) ≤ C
∫ 1

−1

|φS(θ/ε)| dθ = C

∫ 1

−1

n∏
j=1

|φj(θ/ε)| dθ,

where φj(t) = E exp(iajξjt) = cos(ajt). The inequality |x| ≤ exp(− 1
2 (1 − x2))

which is valid for all x ∈ R implies that

|φj(t)| ≤ exp
(
− 1

2
sin2(ajt)

)
≤ exp

(
− 1

2
dist(

ajt

π
,Z)2

)
.
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Therefore

L(S, ε) ≤ C
∫ 1

−1

exp
(
− 1

2

n∑
j=1

dist
(ajθ
πε

,Z
)2)

dθ = C

∫ 1

−1

exp
(
− 1

2
f2(θ)

)
dθ (4.6)

where f(θ) = dist
(
θ
πεa,Z

n
)
. Since lcdα(a) ≥ 1

πε , the definition of the essential
least common denominator implies that for every θ ∈ [−1, 1] we have f(θ) ≥
min( θ

10πε‖a‖2, α). Since by assumption ‖a‖2 = 1, it follows that

exp
(
− 1

2
f2(θ)

)
≤ exp

(
− 1

2

( θ

10πε

)2)
+ exp(−α2/2).

Substituting this into (4.6) yields L(S, ε) ≤ C1(ε+ 2 exp(−α2/2)) as required.

Theorem 4.2 justifies our empirical observation that Lévy concentration func-
tion is proportional to the amount of structure in the coefficient vector, which is
measured by the (reciprocal of) its essential least common denominator. As we
said, this result is typically used for accuracy level α = c

√
n with some small

positive constant c. In this case, the term Ce−cα
2

in (4.4) is exponentially small
in n (thus negligible in applications), and the term Cε is optimal for continuous
distributions.

Theorem 4.2 performs best for totally unstructured coefficient vectors a, those
with exponentially large lcdα(a). Heuristically, this should be the case for random
vectors, as randomness should destroy any structure. While this is not true for
general vectors with independent coordinates (e.g. for equal coordinates with
random signs), it is true for normals of random hyperplanes:

Theorem 4.3 (Random vectors are unstructured [65]). Let Xi be random vectors
in Rn whose coordinates are independent and identically distributed subgaussian
random variables with zero mean and unit variance. Let a ∈ Rn denote a unit
normal vector of H = span(X1, . . . , Xn−1). Then, with probability at least 1−e−cn,

lcdα(a) ≥ ecn for α = c
√
n,

where c > 0 depends only on the subgaussian moment.

Therefore for random normals a, Theorem 4.2 yealds with high probability a
very strong bound on Lévy concentration function:

L(S, ε) ≤ Cε+ cn, ε ≥ 0. (4.7)

This brings us back to the distance problem considered in the beginning of this
section, which motivated our study of Lévy concentration function:

Corollary 4.4 (Distance between random vectors and hyperplanes [65]). Let Xi

be random vectors as in Theorem 4.3, and Hn = span(X1, . . . , Xn−1). Then

P
(

dist(Xn, Hn) ≤ ε
)
≤ Cε+ cn, ε ≥ 0,

where C, c > 0 depend only on the subgaussian moment.
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Proof. As was noticed in (4.1), we can write dist(Xn, Hn) as a sum of independent
random variables, and then bound it using (4.7).

Corollary 4.4 offers us exactly the missing piece (3.7) in our proof of the invert-
ibility Theorem 3.2. This completes our analysis of invertibility of square matrices.

Remark. These methods generalize to rectangular matrices [67, 93]. For example,
Corollary 4.4 can be extended to compute the distance between random vectors
and subspaces of arbitrary dimension [67]: for Hn = span(X1, . . . , Xn−d) we have
(E dist(Xn, Hn)2)1/2 =

√
d and

P
(

dist(Xn, Hn) ≤ ε
√
d
)
≤ (Cε)d + cn, ε ≥ 0.

5. Applications

The applications of non-asymptotic theory of random matrices are numerous, and
we cannot cover all of them in this note. Instead we concentrate on three different
results pertaining to the classical random matrix theory (Circular Law), signal
processing (compressed sensing), and geometric functional analysis and theoretical
computer science (short Khinchin’s inequality and Kashin’s subspaces).

Circular law Asymptotic theory of random matrices provides an important
source of heuristics for non-asymptotic results. We have seen an illustration of
this in the analysis of the extreme singular values. This interaction between the
asymptotic and non-asymptotic theories goes the other way as well, as good non-
asymptotic bounds are sometimes crucial in proving the limit laws. One remarkable
example of this is the circular law which we will discuss now.

Consider a family of n× n matrices A whose entries are independent copies of
a random variable X with mean zero and unit variance. Let µn be the empirical
measure of the eigenvalues of the matrix Bn = 1√

n
An, i.e. the Borel probability

measure on C such that µn(E) is the fraction of the eigenvalues of Bn contained
in E. A long-standing conjecture in random matrix theory, which is called the
circular law, suggested that the measures µn converge to the normalized Lebesgue
measure on the unit disc. The convergence here can be understood in the same
sense as in the Wigner’s semicircle law. The circular law was originally proved by
Mehta [56] for random matrices with standard normal entries. The argument used
the explicit formula for joint density of the eigenvalues, so it could not be extended
to other classes of random matrices. While the formulation of Wigner’s semicircle
law and the circular law look similar, the methods used to prove the former are
not applicable to the latter. The reason is that the spectrum of a general matrix,
unlike that of a Hermitian matrix, is unstable: a small change of the entries may
cause a significant change of the spectrum (see [6]). Girko [30] introduced a new
approach to the circular law based on considering the real part of the Stieltjes
transform of measures µn. For z = x+ iy the real Stieltjes transform is defined by
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the formula

Snr(z) = Re
( 1
n

Tr(Bn − zIn)−1
)

= − ∂

∂x

( 1
n

log |det(Bn − zI)|
)
.

Since |det(Bn − zI)|2 = det(Bn − zI)(Bn − zI)∗, this is the same as

Snr(z) = −1
2
∂

∂x

( 1
n

log |det(Bn − zI)(Bn − zI)∗|
)

= −1
2
∂

∂x

( 1
n

n∑
j=1

log s(n)
j (z)

)
,

where s(n)
1 (z) ≥ . . . ≥ s

(n)
n (z) ≥ 0 are the eigenvalues of the Hermitian matrix

(Bn − zI)(Bn − zI)∗, or in other words, the squares of the singular values of the
matrix Vn = Bn−zI. Girko’s argument reduces the proof of the circular law to the
convergence of real Stieltjes transforms, and thus to the behavior of the sum above.
The logarithmic function is unbounded at 0 and ∞. To control the behavior near
∞, one has to use the bound for the largest singular value of Vn, which is relatively
easy. The analysis of the behavior near 0 requires bounds on the smallest singular
value of Vn, and is therefore more difficult.

Girko’s approach was implemented by Bai [4], who proved the circular law for
random matrices whose entries have bounded sixth moment and bounded density.
The bounded density condition was sufficient to take care of the smallest singular
value problem. This result was the first manifestation of the universality of the
circular law. Still, it did not cover some important classes of random matrices, in
particular random Bernoulli matrices. The recent results on the smallest singular
value led to a significant progress on establishing the universality of the circular
law. A crucial step was done by Götze and Tikhomirov [34] who extended the
circular law to all subgaussian matrices using [63]. In fact, the results of [34]
actually extended it to all random entries with bounded fourth moment. This was
further extended to random variables having bounded moment 2 + ε in [35, 82].
Finally, in [85] Tao and Vu proved the Circular Law in full generality, with no
assumptions besides the unit variance. Their approach was based on the smallest
singular value bound from [82] and a novel replacement principle which allowed
them to treat the other singular values.

Compressed Sensing Non-asymptotic random matrix theory provides a right
context for the analysis of random measurements in the newly developed area of
compressed sensing, see the ICM 2006 talk of Candes [14]. Compressed sensing is
an area of information theory and signal processing which studies efficient tech-
niques to reconstruct a signal from a small number of measurements by utilizing
the prior knowledge that the signal is sparse [18].

Mathematically, one seeks to reconstruct an unknown signal x ∈ Rn from some
m linear measurements viewed as a vector Ax ∈ Rm, where A is some known m×n
matrix called the measurement matrix. In the interesting case m < n, the problem
is underdetermined and we are interested in the sparsest solution:

minimize ‖x∗‖0 subject to Ax∗ = Ax, (5.1)
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where ‖x‖0 = | supp(x)|. This optimization problem is highly non-convex and
computationally intractable. So one considers the following convex relaxation of
(5.1), which can be efficiently solved by convex programming methods:

minimize ‖x∗‖1 subject to Ax∗ = Ax, (5.2)

where ‖x‖1 =
∑n
i=1 |xi| denotes the `1 norm.

One would then need to find conditions when problems (5.1) and (5.2) are
equivalent. Candes and Tao [16] showed that this occurs when the measurement
matrix A is a restricted isometry. For an integer s ≤ n, the restricted isometry
constant δs(A) is the smallest number δ ≥ 0 which satisfies

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all x ∈ Rn, | supp(x)| ≤ s. (5.3)

Geometrically, the restricted isometry property guarantees that the geometry of
s-sparse vectors x is well preserved by the measurement matrix A. In turns out
that in this situation one can reconstruct x from Ax by the convex program (5.2):

Theorem 5.1 (Sparse reconstruction using convex programming [16]). Assume
δ2s ≤ c. Then the solution of (5.2) equals x whenever | supp(x)| ≤ s.

A proof with c =
√

2− 1 is given in [15]; the current record is c = 0.472 [13].
Restricted isometry property can be interpreted in terms of the extreme singular

values of submatrices of A. Indeed, (5.3) equivalently states that the inequality
√

1− δ ≤ smin(AI) ≤ smax(AI) ≤
√

1 + δ

holds for all m× s submatrices AI , those formed by the columns of A indexed by
sets I of size s. In light of Sections 2 and 3, it is not surprising that the best known
restricted isometry matrices are random matrices. It is actually an open problem
to construct deterministic restricted isometry matrices as in Theorem 5.2 below.

The following three types of random matrices are extensively used as measure-
ment matrices in compressed sensing: Gaussian, Bernoulli, and Fourier. Here we
summarize their restricted isometry properties, which have the common remark-
able feature: the required number of measurements m is roughly proportional to
the sparsity level s rather than the (possibly much larger) dimension n.

Theorem 5.2 (Random matrices are restricted isometries). Let m,n, s be positive
integers, ε, δ ∈ (0, 1), and let A be an m× n measurement matrix.

1. Suppose the entries of A are independent and identically distributed sub-
gaussian random variables with zero mean and unit variance. Assume that

m ≥ Cs log(2n/s)

where C depends only on ε, δ, and the subgaussian moment. Then with probability
at least 1− ε, the matrix Ā = 1√

m
A is a restricted isometry with δs(Ā) ≤ δ.

2. Let A be a random Fourier matrix obtained from the n× n discrete Fourier
transform matrix by choosing m rows independently and uniformly. Assume that

m ≥ Cs log4(2n). (5.4)
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where C depends only on ε and δ. Then with probability at least 1− ε, the matrix
Ā = 1√

n
A is a restricted isometry with δs(Ā) ≤ δ.

For random subgaussian matrices this result was proved in [9, 57] by an ε-net
argument, where one first checks the deviation inequality |‖Ax‖22 − 1| ≤ δ with
exponentially high probability for a fixed vector x as in (5.3), and afterwards lets
x run over some fine net. For random Fourier matrices the problem is harder. It
was first addressed in [17] with a little higher exponent than in (5.4); the exponent
4 was obtained in [64], and it is conjectured that the optimal exponent is 1.

Short Khinchin’s inequality and Kashin’s subspaces Let 1 ≤ p <∞. The
classical Khinchin’s inequality states that there exist constants Ap, Bp such that
for all x = (x1, . . . , xn) ∈ Rn

Ap‖x‖2 ≤
(

Ave
ε∈{−1,1}n

∣∣∣ n∑
j=1

εjxj

∣∣∣p)1/p

≤ Bp‖x‖2.

The average here is taken over all 2n possible choices of signs ε (it is the same as
the expectation with respect to independent Bernoulli random variables εj). Since
the mid-seventies, the question was around whether Khinchin’s inequality holds
for averages over some small sets of signs ε. A trivial lower bound follows by a
dimension argument: such a set must contain at least n points. Here we shall
discuss only the case p = 1, which is of considerable interest for computer science.
This problem can be stated more precisely as follows: as follows:

Given δ > 0, find α(δ), β(δ) > 0 and construct a set V ⊂ {−1, 1}n of
cardinality less than (1 + δ)n such that for all x = (x1, . . . , xn) ∈ Rn

α(δ)‖x‖2 ≤ Ave
ε∈V

∣∣∣ n∑
j=1

εjxj

∣∣∣ ≤ β(δ)‖x‖2. (5.5)

The first result in this direction belongs to Schechtman [70] who found an affir-
mative solution to this problem for δ greater than some absolute constant. He
considered a set V consisting of N = b(1 + δ)nc independent random ±1 vectors,
which can be written as an N × n random Bernoulli matrix A. In the matrix
language, the inequality above reads α(δ)‖x‖2 ≤ N−1‖Ax‖1 ≤ β(δ)‖x‖2 for all
x ∈ Rn. This means that one can take

α(δ) = N−1 inf
x∈Sn−1

‖Ax‖1, β(δ) = N−1 sup
x∈Sn−1

‖Ax‖1.

These expressions bear a similarity to the smallest and the largest singular values
of the matrix A. In fact, up to the coefficient N−1, β(δ) is the norm of A considered
as a linear operator from `n2 to `n1 , and α(δ) is the reciprocal of the norm of its
inverse. Schechtman’s theorem can now be derived using the ε-net argument.

The case of small δ is more delicate. For a random A, the bound for β(δ) ≤ C
can be obtained by the ε-net argument as before. However, an attempt to apply
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this argument for α(δ) runs into to the same problems as for the smallest singular
value. For any fixed δ > 0 the solution was first obtained first by Johnson and
Schechtman [38] who showed that there exists V satisfying (5.5) with α(δ) = c1/δ.
In [54] this was established for a random set V (or a random matrix A) with the
same bound on α(δ). Furthermore, the result remains valid even when δ depends
on n, as long as δ ≥ c/ log n. The proof uses the smallest singular value bound
from [53] in a crucial way. The bound on α(δ) has been further improved in [2],
also using the singular value approach. Finally, a theorem in [62] asserts that for
a random set V the inequalities (5.5) hold with high probability for

α(δ) = cδ2, β(δ) = C.

Moreover, the result holds for all δ > 0 and n, without any restrictions. The proof
combines the methods of [63] and a geometric argument based on the structure of
a section of the `n1 ball. The probability estimate of [62] can be further improved
if one replaces the small ball probability bound of [63] with that of [65].

The short Khinchin inequality shows also that the `1 and `2 norms are equiv-
alent on a random subspace E := ARn ⊂ RN . Indeed, if A is an N × n ran-
dom matrix, then with high probability every vector x ∈ Rn satisfies α(δ)‖x‖2 ≤
N−1‖Ax‖1 ≤ N−1/2‖Ax‖2 ≤ C‖x‖2. The second inequality here is Cauchy-
Schwartz, and the third one is the largest singular value bound. Thierefore

C−1α(δ)‖y‖2 ≤ N−1/2‖y‖1 ≤ ‖y‖2 for all y ∈ E. (5.6)

Subspaces E possessing property (5.6) are called Kashin’s subspaces. The classical
Dvoretzky theorem states that a high-dimensional Banach space has a subspace
which is close to Euclidean [59]. The dimension of such subspace depends on the
geometry of the ambient space. Milman proved that such subspaces always exist
in dimension c log n, where n is the dimension of the ambient space [58] (see also
[59]). For the space `n1 the situation is much better, and such subspaces exist in
dimension (1−δ)n for any constant δ > 0. This was first proved by Kashin [41] also
using a random matrix argument. Obviously, as δ → 0, the distance between the `1
and `2 norms on such subspace grows to ∞. The optimal bound for this distance
has been found by Garnaev and Gluskin [28] who used subspaces generated by
Gaussian random matrices.

Kashin’s subspaces turned out to be useful in theoretical computer science,
in particular in the nearest neighbor search [36] and in compressed sensing. At
present no deterministic construction is known of such subspaces of dimension n
proportional to N . The result of [62] shows that a b(1+δ)nc×n random Bernoulli
matrix defines a Kashin’s subspace with α(δ) = cδ2. A random Bernoulli matrix
is computationally easier to implement than a random Gaussian matrix, while the
distance between the norms is not much worse than in the optimal case. At the
same time, since the subspaces generated by a Bernoulli matrix are spanned by
random vertices of the discrete cube, they have relatively simple structure, which
is possible to analyze.
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[15] E. Candés, The restricted isometry property and its implications for compressed sens-
ing, C. R. Math. Acad. Sci. Paris 346 (2008), 589–592.

[16] E. Candés, T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory
51 (2005), 4203–4215.

[17] E. Candés, T. Tao, Near-optimal signal recovery from random projections: universal
encoding strategies? IEEE Trans. Inform. Theory 52 (2006), 5406–5425.

[18] E. Candés, M. B. Wakin, An Introduction To Compressive Sampling, IEEE Signal
Processing Magazine, V.21, March 2008.

[19] K. R. Davidson, S. J. Szarek, Local operator theory, random matrices and Banach
spaces. Handbook of the geometry of Banach spaces, Vol. I, 317–366, North-Holland,
Amsterdam, 2001.

[20] A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Ma-
trix Anal. Appl. 9 (1988), 543–560



22 M. Rudelson, R. Vershynin

[21] P. Erdös, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945),
898–902

[22] P. Erdös, Extremal problems in number theory, 1965 Proc. Sympos. Pure Math., Vol.
VIII, pp.181–189 AMS, Providence, R.I.

[23] C. G. Esseen, Fourier analysis of distribution functions. A mathematical study of the
laplace Gaussian law, Acta Math. 77 (1945), 1–125.

[24] C. G. Esseen, On the Kolmogorov-Rogozin inequality for the concentration function,
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 210–216.

[25] O. Feldheim, S. Sodin, A universality result for the smallest eigenvalues of certain
sample covariance matrices, Geometric and Functional Analysis, to appear
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