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Abstract

We find a sharp combinatorial bound for the metric entropy of sets in Rn

and general classes of functions. This solves two basic combinatorial conjec-
tures on the empirical processes. 1. A class of functions satisfies the uniform
Central Limit Theorem if the square root of its combinatorial dimension is in-
tegrable. 2. The uniform entropy is equivalent to the combinatorial dimension
under minimal regularity. Our method also constructs a nicely bounded coor-
dinate section of a symmetric convex body in Rn. In the operator theory, this
essentially proves for all normed spaces the restricted invertibility principle of
Bourgain and Tzafriri.

1 Introduction

This paper develops a sharp combinatorial method for estimating metric entropy
of sets in Rn and, equivalently, of function classes on a probability space. A need
in such estimates occurs naturally in a number of problems of analysis (functional,
harmonic and approximation theory), probability, combinatorics, convex and dis-
crete geometry, statistical learning theory, etc. Our entropy method, which evolved
from the work of S.Mendelson and the second author [MV 03], is motivated by sev-
eral problems in the empirical processes, asymptotic convex geometry and operator
theory.

Throughout the paper, F is a class of real valued functions on some domain Ω.
It is a central problem of the theory of empirical processes to determine whether the
classical limit theorems hold uniformly over F . Let µ be a probability distribution
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on Ω andX1, X2, . . . ∈ Ω be independent samples distributed according to a common
law µ. The problem is to determine whether the sequence of real valued random
variables (f(Xi)) obeys the central limit theorem uniformly over all f ∈ F and
over all underlying probability distributions µ, i.e. whether the random variable
1√
n

∑n
i=1(f(Xi)− f(X1)) converges to a Gaussian random variable uniformly. With

the right definition of the convergence, if that happens, F is a uniform Donsker
class. The precise definition can be found in [LT] and [Du 99].

The pioneering work of Vapnik and Chervonenkis [VC 68, VC 71, VC 81] demon-
strated that the validity of the uniform limit theorems on F is connected with the
combinatorial structure of F , which is quantified by what we call the combinatorial
dimension of F .

For a class F and t ≥ 0, a subset σ of Ω is called t-shattered by a class F if there
exists a level function h on σ such that, given any partition σ = σ− ∪ σ+, one can
find a function f ∈ F with f(x) ≤ h(x) if x ∈ σ− and f(x) ≥ h(x) + t if x ∈ σ+.
The combinatorial dimension of F , denoted by v(F, t), is the maximal cardinality
of a set t-shattered by F . Simply speaking, v(F, t) is the maximal size of a set on
which F oscillates in all possible ±t/2 ways around some level h.

For {0, 1}-valued function classes (classes of sets), the combinatorial dimension
coincides with the classical Vapnik-Chernovenkis dimension; see [M 02] for a nice
introduction to this important concept. For the integer-valued classes the notion
of the combinatorial dimension goes back to 1982-83, when Pajor used it for ori-
gin symmetric classes in view of applications to the local theory of Banach spaces
[Pa 82]. He proved early versions of Sauer-Shelah Lemma for sets A ⊂ {0, . . . , p}n
(see [Pa 82], [Pa 85, Lemma 4.9]). Pollard defined a similar dimension in his 1984
book on stochastic processes [Po]. Haussler also discussed this concept in his 1989
work in learning theory ([Ha], see [HL] and the references therein).

A set A ⊂ Rn can be considered as a class of functions {1, . . . n} → R. For
convex and origin symmetric sets A ⊂ Rn, the combinatorial dimension v(A, t) is
easily seen to coincide with the maximal rank of the coordinate projection PA of A
that contains the centered coordinate cube of size t. In view of this straightforward
connection to convex geometry and thus to the local theory of Banach spaces, the
combinatorial dimension was a central quantity in several papers of Pajor ([Pa 82],
see Chapter IV of [Pa 85]). Connections of v(F, t) to Gaussian processes and further
applications to Banach space theory were established in the far reaching 1992 paper
of M.Talagrand ([T 92], see also [T 03]). The quantity v(F, t) was formally defined
in 1994 by Kearns and Schapire for general classes F in their paper in learning
theory [KS].

Connections between the combinatorial dimension (and its variants) with the
limit theorems of probability theory have been the major theme of many papers.

2



For a comprehensive account of what was known about these profound connections
by 1999, we refer the reader to the book of Dudley [Du 99].

Dudley proved that a class F of {0, 1}-valued functions is a uniform Donsker class
if and only if its combinatorial (Vapnik-Chernovenkis) dimension v(F, 1) is finite.
This is one of the main results on the empirical processes for {0, 1} classes. The
problem for general classes turned out to be much harder [T 02], [MV 03]. In the
present paper we prove an optimal integral description of uniform Donsker classes
in terms of the combinatorial dimension.

Theorem 1.1 Let F be a uniformly bounded class of functions. Then∫ ∞

0

√
v(F, t) dt <∞ ⇒ F is uniform Donsker ⇒ v(F, t) = O(t−2).

This trivially contains Dudley’s theorem on the {0, 1} classes. M.Talagrand
proved Theorem 1.1 with an extra factor of logM (1/t) in the integrand and asked
about the optimal value of the absolute constant exponent M [T 92], [T 02]. Ta-
lagrand’s proof was based on a very involved iteration argument. In [MV 03],
S.Mendelson and the second author introduced a new combinatorial idea. Their
approach led to a much clearer proof, which allowed to reduce the exponent to
M = 1/2. Theorem 1.1 removes the logarithmic factor completely, thus the optimal
exponent is M = 0. Our argument significantly relies on the ideas originated in
[MV 03] and also uses a new iteration method. The second implication of Theorem
1.1, which makes sense for t→ 0, is well-known ([Du 99] 10.1).

Theorem 1.1 reduces to estimating metric entropy of F by the combinatorial
dimension of F . For t > 0, the Koltchinskii-Pollard entropy of F is

D(F, t) = log sup
(
n | ∃f1, . . . , fn ∈ F ∀i < j

∫
(fi − fj)2dµ ≥ t2

)
where the supremum is by n and over all probability measures µ supported by the
finite subsets of Ω. It is easily seen that D(F, t) dominates the combinatorial dimen-
sion: D(F, t) & v(F, 2t). Theorem 1.1 should then be compared to the fundamental
description valid for all uniformly bounded classes:∫ ∞

0

√
D(F, t) dt <∞ ⇒ F is uniform Donsker ⇒ D(F, t) = O(t−2). (1.1)

The left part of (1.1) is a strengthening of Pollard’s central limit theorem and is due
to Gine and Zinn (see [GZ], [Du 99] 10.3, 10.1). The right part is an observation
due to Dudley ([Du 99] 10.1).

An advantage of the combinatorial description in Theorem 1.1 over the entropic
description in (1.1) is that the combinatorial dimension is much easier to bound

3



than the Koltchinskii-Pollard entropy (see [AB]). Large sets on which F oscillates
in all ±t/2 ways are so sound structures that their existence can be hopefully easily
detected or eliminated, which leads to an estimate on the combinatorial dimension.
In contrast to this, bounding Koltchinskii-Pollard entropy involves eliminating all
large separated configurations f1, . . . , fn with respect to all probability measures µ;
this can be a hard problem even on the plane (for a two-point domain Ω).

The nontrivial part of Theorem 1.1 follows from (1.1) and the central result of
this paper:

Theorem 1.2 For every class F ,∫ ∞

0

√
D(F, t) dt �

∫ ∞

0

√
v(F, t) dt.

The equivalence � is up to an absolute constant factor C, thus a � b iff a/C ≤ b ≤
Ca.

Looking at Theorem 1.2 one naturally asks whether the Koltchinskii-Pollard
entropy is pointwise equivalent to the combinatorial dimension. M. Talagrand indeed
proved this for uniformly bounded classes under minimal regularity and up to a
logarithmic factor. For the moment, we consider a simpler version of this regularity
assumption: there exists an a > 1 such that

v(F, at) ≤ 1
2

v(F, t) for all t > 0. (1.2)

In 1992, M. Talagrand proved essentially under (1.2) that for 0 < t < 1/2

c v(F, 2t) ≤ D(F, t) ≤ C v(F, ct) logM (1/t) (1.3)

[T 92], see [T 87], [T 02]. Here c > 0 is an absolute constant and M depends only on
a. The question on the value of the exponent M has been open. S. Mendelson and
the second author proved (1.3) without the minimal regularity assumption (1.2) and
with M = 1, which is an optimal exponent in that case. The present paper proves
that with the minimal regularity assumption, the exponent reduces to M = 0, thus
completely removing both the boundedness assumption and the logarithmic factor
from Talagrand’s inequality (1.3). As far as we know, this unexpected fact was not
even conjectured.

Theorem 1.3 Let F be a class which satisfies the minimal regularity assumption
(1.2). Then for all t > 0

c v(F, 2t) ≤ D(F, t) ≤ C v(F, ct),

where c > 0 is an absolute constant and C depends only on a in (1.2).
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Therefore, in presence of minimal regularity, the Koltchinski-Pollard entropy and
the combinatorial dimension are equivalent. Rephrasing M.Talagrand’s comments
from [T 02] on his inequality (1.3), Theorem 1.3 is of the type “concentration of
pathology”. Suppose we know that D(F, t) is large. This simply means that F
contains many well separated functions, but we know very little about what kind of
pattern they form. The content of Theorem 1.3 is that it is possible to construct
a large set σ on which not only many functions in F are well separated from each
other, but on which they oscillate in all possible ±ct ways. We now have a very
precise structure that witnesses that F is large. This result is exactly in the line of
Talagrand’s celebrated characterization of Glivenko-Cantelli classes [T 87], [T 96].

Theorem 1.3 remains true if one replaces the L2 norm in the definition of the
Koltchinski-Pollard entropy by the Lp norm for 1 ≤ p < ∞. The extremal case
p = ∞ is important and more difficult. The L∞ entropy is naturally

D∞(F, t) = log sup
(
n | ∃f1, . . . , fn ∈ F ∀i < j sup

ω
|(fi − fj)(ω)| ≥ t

)
.

Assume that F is uniformly bounded (in absolute value) by 1. Even then D∞(F, t)
can not be bounded by a function of t and v(F, ct): to see this, it is enough to take
for F the collection of the indicator functions of the intervals [2−k−1, 2−k], k ∈ N,
in Ω = [0, 1]. However, if Ω is finite, it is an open question how the L∞ entropy
depends on the size of Ω. N.Alon et al. [ABCH] proved that if |Ω| = n then
D∞(F, t) = O(log2 n) for fixed t and v(F, ct). They asked whether the exponent
2 can be reduced. We answer this by reducing 2 to any number larger than the
minimal possible value 1. For every ε ∈ (0, 1),

D∞(F, t) ≤ Cv log(n/vt) · logε(n/v), where v = v(F, cεt) (1.4)

and where C, c > 0 are absolute constants. One can look at this estimate as a
continuous asymptotic version of Sauer-Shelah Lemma. The dependence on t is
optimal, but conjecturally the factor logε(n/v) can be removed.

The combinatorial method of this paper applies to the study of coordinate sec-
tions of a symmetric convex body K in Rn. The average size of K is commonly
measured by the so-called M-estimate, which is MK =

∫
Sn−1 ‖x‖K dσ(x), where σ

is the normalized Lebesgue measure on the unit Euclidean sphere Sn−1 and ‖ · ‖K is
Minkowski functional of K. Passing from the average on the sphere to the Gaussian
average on Rn, Dudley’s entropy integral connects the M-estimate to the integral of
the metric entropy of K; then Theorem 1.2 replaces the entropy by the combinato-
rial dimension of K. The latter has a remarkable geometric representation, which
leads to the following result. For 1 ≤ p ≤ ∞ denote by Bn

p the unit ball of the space
`np :

Bn
p = {x ∈ Rn : |x1|p + · · ·+ |xn|p ≤ 1}.
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If MK is large (and thus K is small “in average”) then there exists a coordinate
section of K contained in the normalized octahedron D =

√
nBn

1 . Note that the MD

is bounded by an absolute constant. In the rest of the paper, C,C ′, C1, c, c
′, c1, . . .

will denote positive absolute constants whose values may change from line to line.

Theorem 1.4 Let K be a symmetric convex body containing the unit Euclidean ball
Bn

2 , and let M = cMK log−3/2(2/MK). Then there exists a subset σ of {1, . . . , n} of
size |σ| ≥M2n, and such that

M (K ∩ Rσ) ⊆
√
|σ|Bσ

1 . (1.5)

Recall that the classical Dvoretzky theorem in the form of Milman guarantees, for
M = MK , the existence of a subspace E of dimension dimE ≥ cM2n and such that

c1B
n
2 ∩ E ⊆M(K ∩ E) ⊆ c2B

n
2 ∩ E. (1.6)

To compare the second inclusion of (1.6) to (1.5), recall that by Kashin’s theorem
([K 77], [K 85], see [Pi] 6) there exists a subspace E in Rσ of dimension at least
|σ|/2 such that the section

√
|σ|Bσ

1 ∩ E is equivalent to Bn
2 ∩ E.

A reformulation of Theorem 1.4 in the operator language generalizes the re-
stricted invertibility principle of Bourgain and Tzafriri [BT 87] to all normed spaces.
Consider a linear operator T : ln2 → X acting from the Hilbert space into arbitrary
Banach space X. The “average” largeness of such an operator is measured by its
`-norm, defined as `(T )2 = E‖Tg‖2, where g = (g1, . . . , gn) and gi are normalized
independent Gaussian random variables. We prove that if `(T ) is large then T is
well invertible on some large coordinate subspace. For simplicity, we state this here
for spaces of type 2 (see [LT] 9.2), which includes for example all the Lp spaces and
their subspaces for 2 ≤ p <∞. For general spaces, see Section 7.

Theorem 1.5 (General Restricted Invertibility) Let T : ln2 → X be a lin-
ear operator with `(T )2 ≥ n, where X is a normed space of type 2. Let α =
c log−3/2(2‖T‖). Then there exists a subset σ of {1, . . . , n} of size |σ| ≥ α2n/‖T‖2

and such that
‖Tx‖ ≥ αβX‖x‖ for all x ∈ Rσ

where c > 0 is an absolute constant and βX > 0 depends on the type 2 constant of
X only.

Bourgain and Tzafriri essentially proved this restricted invertibility principle for
X = ln2 (and without the logarithmic factor), in which case `(T ) equals the Hilbert-
Schmidt norm of T .
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The heart of our method is a result of combinatorial geometric flavor. We com-
pare the covering number of a convex body K by a given convex body D to the
number of the integer cells contained in K and its projections. This will be ex-
plained in detail in Section 2. All main results of this paper are then deduced from
this principle. The basic covering result of this type and its proof occupies Section 3.
First applications to covering K by ellipsoids and cubes appear in Section 4. Esti-
mate (1.4) is also proved there. Since the proofs of Theorems 1.2 and 1.3 do not use
these results, Section 4 may be skipped by a reader interested only in probabilistic
applications. Section 5 deals with covering by balls of a general Lorentz space; the
combinatorial dimension controls such coverings. From this we deduce in Section 6
our main results, Theorems 1.2 and 1.3. Theorem 1.2 shows in particular that in the
classical Dudley’s entropy integral, the entropy can be replaced by the combinatorial
dimension. This yields a new powerful bound on Gaussian processes (see Theorem
6.5 below), which is a quantitative version of Theorem 1.1. This method is used in
Section 7 to prove Theorem 1.4 on the coordinate sections of convex bodies. Theo-
rem 1.4 is equivalently expressed in the operator language as a general principle of
restricted invertibility, which implies Theorem 1.5.

ACKNOWLEDGEMENTS. The authors thank Michel Talagrand for helpful dis-
cussions.

This project started when both authors visited the Pacific Institute of Mathe-
matical Sciences. We would like to thank PIMS for its hospitality. A significant
part of the work was done when the second author was PIMS Postdoctoral Fel-
low at the University of Alberta. He thanks this institution and especially Nicole
Tomczak-Jaegermann for support and encouragement.

2 The Method

Let K and D be convex bodies in Rn. We are interested in the covering number
N(K,D), the minimal number of translates of D needed to cover K. More pre-
cisely, N(K,D) is the minimal number N for which there exist points x1, x2, . . . xN
satisfying

K ⊆
N⋃
j=1

(xj +D).

Computing the covering number is a very difficult problem even in the plane [CFG].
Our main idea is to relate the covering number to the cell content of K, which we
define as the number of the integer cells contained in all coordinate projections of
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K:
Σ(K) =

∑
P

number of integer cells contained in PK. (2.1)

The sum is over all 2n coordinate projections in Rn, i.e. over the orthogonal pro-
jections P onto Rσ with σ ⊆ {1, . . . , n}. The integer cells are the unit cubes with
integer vertices, i.e. the sets of the form a+ [0, 1]σ, where a ∈ Zσ. For convenience,
we include the empty set in the counting and assign value 1 to the corresponding
summand.

Let D be an integer cell. To compare N(K,D) to Σ(K) on a simple example,
take K to be an integer box, i.e. the product of n intervals with integer endpoints
and lengths ai ≥ 0, i = 1, . . . , n. Then N(K,D) =

∏n
1 max(ai, 1) and Σ(K) =∏n

1 (ai + 1). Thus
2−nΣ(K) ≤ N(K,D) ≤ Σ(K).

The lower bound being trivially true for any convex body K, an upper bound of
this type is in general difficult to prove. This motivates the following conjecture.

Conjecture 2.1 (Covering Conjecture) Let K be a convex body in Rn and D
be an integer cell. Then

N(K,D) ≤ Σ(CK)C . (2.2)

Our main result is that the Covering Conjecture holds for a body D slightly
larger that an integer cell, namely for

D =
{
x ∈ Rn :

1
n

n∑
1

exp exp |x(i)| ≤ 3
}
. (2.3)

Note that the body 5D contains an integer cell and the body (5 log log n)−1D is
contained in an integer cell.

Theorem 2.2 Let K be a convex body in Rn and D be the body (2.3). Then

N(K,D) ≤ Σ(CK)C .

As a useful consequence, the Covering Conjecture holds for D being an ellipsoid.
This will follow by a standard factorization technique for the absolutely summing
operators.

Corollary 2.3 Let K be a convex body in Rn and D be an ellipsoid in Rn that
contains an integer cell. Then

N(K,D) ≤ Σ(CK)2.
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As for the Covering Conjecture itself, it holds under the assumption that the
covering number is exponentially large in n. More precisely, let a > 0 and D be an
integer cell. For any ε > 0 and any K ⊂ Rn satisfying N(K,D) ≥ exp(an), one has

N(K,D) ≤ Σ(Cε−1K)M , where M ≤ 4 logε(1 + 1/a). (2.4)

This result also follows from Theorem 2.2.
The usefulness of Theorem 2.2 is understood through a relation between the cell

content and the combinatorial dimension. Let F be a class of real valued functions
on a finite set Ω, which we identify with {1, . . . , n}. Then we can look at F as a
subset of Rn via the map f 7→ (f(i))ni=1. For simplicity assume that F is a convex
set; the general case will not be much more difficult. It is then easy to check that
the combinatorial dimension v := v(F, 1) equals exactly the maximal rank of a
coordinate projection P in Rn such that PF contains a translate of the unit cube
P [0, 1]n. Then in the sum (2.1) for the lattice content Σ(F ), the summands with
rankP > v vanish. The number of nonzero summands is then at most

∑v
k=0

(
n
k

)
.

Every summand is clearly bounded by vol(PF ), a quantity which can be easily
estimated if the class F is a priori well bounded. So Σ(F ) is essentially bounded
by
∑v

k=0

(
n
k

)
, and is thus controlled by the combinatorial dimension v. This way,

Theorem 2.2 or one of its consequences can be used to bound the entropy of F by
its combinatorial dimension. Say, (2.4) implies (1.4) in this way.

In some cases, n can be removed from the bound on the entropy, thus giving
an estimate independent of the size of the domain Ω. Arguably the most general
situation when this happens is when F is bounded in some norm and the entropy is
computed with respect to a weaker norm. The entropy of the class F with respect
to a norm of a general function space X on Ω is

D(F,X, t) = log sup
(
n | ∃f1, . . . , fn ∈ F ∀i < j ‖fi − fj‖X ≥ t

)
. (2.5)

Koltchinskii-Pollard entropy is then D(F, t) = supµD(F,L2(µ), t), where the supre-
mum is over all probability measures supported by finite sets. With the geometric
representation as above,

D(F,X, t) = logNpack

(
F,
t

2
Ball(X)

)
(2.6)

where Ball(X) denotes the unit ball of X and Npack(A,B) is the packing number,
which is the maximal number of disjoint translates of a set B ⊆ Rn by vectors from a
set A ⊆ Rn. The packing and the covering numbers are easily seen to be equivalent,

Npack(A,B) ≤ N(A,B) ≤ Npack(A,
1
2
B). (2.7)
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To estimate D(F,X, t), we have to be able to quantitatively compare the norms
in the function space X an in another function space Y where F is known to be
bounded. We shall consider Lorentz spaces, for which such a comparison is especially
transparent. The Lorentz space Λφ = Λφ(Ω, µ) is determined by its generating
function φ(t), which is a real convex function on [0,∞), with φ(0) = 0, and increasing
to infinity. Then Λφ is the space of functions f on Ω such that there exists a λ > 0
for which

µ{|f/λ| ≥ t} ≤ 1
φ(t)

for all t > 0. (2.8)

The norm of f in Λφ is the infimum of λ > 0 satisfying (2.8). Given two Lorentz
spaces Λφ and Λψ, we look at their comparison function

(φ|ψ)(t) = sup{φ(s) | φ(s) ≥ ψ(ts)}.

Under the normalization assumption φ(1) = ψ(1) = 1 and a mild regularity
assumption on φ we prove the following. If a class F is 1-bounded in Λψ then for
all 0 < t < 1/2

D(F,Λφ, t) ≤ C v(F, ct) · log(φ|ψ)(t/2). (2.9)

An important point here is that the entropy is independent of the size of the domain
Ω. To prove (2.9), we first perform a probabilistic selection, which reduces the size
of Ω, and then apply Theorem 2.2, in which we replace D by a larger set Ball(Λφ).

Of particular interest are the generating functions φ(t) = tp and ψ(t) = tq with
1 ≤ p < q ≤ ∞. They define the weak Lp and Lq spaces respectively. Their
comparison function is (φ|ψ)(t) = tpq/(p−q). Then passing to usual Lp spaces (which
is not difficult) one obtains from (2.9) the following. If F is 1-bounded in Lq(µ) then
for all 0 < t < 1/2

D(F,Lp(µ), t) ≤ Cp,q v(F, cp,qt) · log(1/t), (2.10)

where Cp,q and cp,q > 0 depend only on p and q.
First estimates of type (2.10) go back to the influential works of Vapnik and

Chervonenkis. In the main combinatorial lemma of [VC 81], the volume of uni-
formly bounded convex class was estimated via a quantity somewhat weaker than
the combinatorial dimension. Since we always have N(K,D) ≥ vol(K)/vol(D), the
Vapnik-Chervonenkis bound is an asymptotically weaker form of (2.10) for p = 2
(say) and q = ∞. Talagrand [T 87, T 02] proved (2.10) for p = 2, q = ∞ up to a
factor of logM (1/t) in the right side and under minimal regularity (essentially under
(1.2)). Based on the method of N.Alon et al. from [ABCH], Bartlett and Long [BL]
proved (2.10) for p = 1, q = ∞ with an additional factor of log(|Ω|/vt) in the right
side, where v = v(F, ct). The ratio |Ω|/v was removed from this factor by Bartlett,

10



Kulkarni and Posner [BKP], thus yielding (2.10) with log2(1/t) for p = 1, q = ∞.
The optimal estimate (2.10) for all p and for q = ∞ was proved by Mendelson and
the second author as the main result of [MV 03]. The present paper proves (2.10)
for all p and q.

Finally, Theorems 1.2 and 1.3 are proved by iterating (2.10) with 2p = q → ∞
to get rid of both the logarithmic factor and any boundedness assumptions.

3 Covering by the Tower

Fix a probability space (Ω, µ). As most of our problems have a discrete nature, they
essentially reduce by approximation to Ω finite and µ the uniform measure. The
core difficulties arise already in this finite setting, although it took some time to
fully realize this (see [T 96]). This way we shall totally ignore measurability issues.

Tower Our main covering result works for a body in Rn which is log log n apart
from the unit cube, while for the cube itself it remains an open problem. This body
is the unit ball of the Lorentz space with generating function of the order ee

t
. For

an extra flexibility, we shall allow a parameter α ≥ 2, generally a large number. The
Lorentz space generated by the function

θ(t) = θα(t) = eα
t−α, t ≥ 1

is called space the tower space and its unit ball is called the tower. Since θ(1) = 1, it
does not matter how we define θ(t) for 0 < t < 1 as long as θ(0) = 0 and θ is convex;
say, θ(t) = t will work. The definition of the tower space originates in the separation
argument, Lemma 3.3. The proof of the main results of this paper, Theorems 1.2
and 1.3 uses an iteration procedure, which involves covering by towers with different
α at each step.

In the discrete setting, we look at Ω being {1, . . . , n} with the uniform probability
measure µ on Ω. The tower space can be realized on Rn by identifying a function on
Ω with a point in Rn via the map f 7→ (fi)ni=1. The tower is then a convex symmetric
body in Rn, and we denote it by Towerα. This body is equivalently described by
(2.3),

c1(α)D ⊆ Towerα ⊆ c2(α)D

where positive c1(α) and c2(α) depend only on α.

Coordinate convexity We stated our results for convex bodies but not neces-
sarily convex function classes. Convexity indeed plays very little role in our work
and is replaced by a much weaker notion of coordinate convexity. This notion was
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originally motivated by problems of calculus of variations, partial differential equa-
tions and probability. The interested reader may consult the paper [M 01] and the
bibliography cited there as an introduction to the subject.

One can obtain a general convex body in Rn by cutting off half-spaces. Similarly,
a general coordinate convex body in Rn is obtained by cutting off octants, that is
translates of the subsets of Rn consisting of points with fixed and nonzero signs of
the coordinates. The coordinate convex hull of a set K in Rn, denoted by cconv(K),
is the minimal coordinate convex set containing K. In other words, cconv(K) is
what remains in Rn after removal all octants disjoint from K. Clearly, every convex
set is coordinate convex; the converse is not true, as shows the example of a cross
{(x, y) | x = 0 or y = 0} in R2.

Example of a coordinate convex body in R2

Covering by the tower Let A be a nonempty set in Rn. In contrast to what
happens in classical convexity, a coordinate projection of a coordinate convex set
is not necessarily coordinate convex (a pair of generic points in the plane is an
example). Define the cell content of A as

Σ(A) =
∑
P

number of integer cells in cconv(PA)

where the sum is over all 2n coordinate projections in Rn, including one 0-dimensional
projection, for which the summand is set to be 1. In many applications A will be a
convex body, in which case cconv(PA) = PA. The following is the main result of
this section.

Theorem 3.1 For every set F in Rn and α ≥ 2,

N(F,Towerα) ≤ Σ(CF )α

where C is an absolute constant.
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It is plausible that the Towerα can be replaced by the unit cube, with α replaced by
an absolute constant in the right hand side; this is a slightly stronger version of the
Covering Conjecture for coordinate convex sets.

The proof of Theorem 3.1, which is a development upon [MV 03], occupies next
few subsections.

Separation on one coordinate Fix a set F in Rn which contains more than one
point. Using (2.7), we can find a finite subset A′ ⊂ F of cardinality N(F,Towerα)
such that no pair of points from A′ lies in a common translate of 1

2Towerα. Denote
A = 2A′. Then

∀x, y ∈ A, x 6= y : ‖x− y‖Towerα ≥ 1.

Thus for a fixed pair x 6= y there exists a t > 0 such that µ{|x − y| > t} ≥ 1
θ(t) .

Since θ(t) < 1 for t < 1, we necessarily have t ≥ 1, hence

∃t > 0 : µ{|x− y| > t} ≥ 1
θ̃α(t)

where
θ̃α(t) = eα

t−α, t ≥ 0.

By Chebychev’s inequality,

Ei θ̃α(|x(i)− y(i)|) ≥ 1,

where Ei is the expectation according to the uniform distribution of the coordinate
i in {1, . . . , n}. Let x and y be random points drawn from A independently and
according to the uniform distribution on A. Then x 6= y with probability 1−|A|−1 ≥
1
2 , and taking the expectation with respect to x and y, we obtain

Ex,y Ei θ̃α(|x(i)− y(i)|) ≥ 1
2
.

Changing the order of the expectation, we find a realization of the random coordinate
i for which

Ex,y θ̃α(|x(i)− y(i)|) ≥ 1
2
. (3.1)

Fix this realization.
Recall that a median of a real valued random variable ξ is a number M satisfying

P(ξ ≤ M) ≥ 1/2 and P(ξ ≥ M) ≥ 1/2. Unlike the expectation, the median may
be not uniquely defined. We can replace y(i) in (3.1) by a median of x(i) using the
following standard observation.

13



Lemma 3.2 Let φ be a convex and nondecreasing function on [0,∞). Let X and
Y be identically distributed random variables. Then

inf
a

Eφ(|X − a|) ≤ Eφ(|X − Y |) ≤ inf
a

Eφ(2|X − a|).

Proof. The first inequality follows from Jensen’s inequality with a = EX = EY .
For the second one, the assumptions on φ imply through the triangle and Jensen’s
inequalities that for every a

φ(|X − Y |) ≤ φ(|X − a|+ |Y − a|) ≤ 1
2
φ(2|X − a|) +

1
2
φ(2|Y − a|).

Taking the expectations on both sides completes the proof.

Denote by M a median of x(i) over x ∈ A. We conclude that

Ex θ̃α(2|x(i)−M |) ≥ 1
2
. (3.2)

Lemma 3.3 (Separation Lemma) Let X be a random variable with median M .
Assume that for every real a

P{X ≤ a}1/α + P{X > a+ 1}1/α ≤ 1.

Then
E θ̃α(c|X −M |) < 1

2
.

In particular, the conclusion implies that the tower norm of the random variable
X −M is bounded by an absolute constant.

Proof. One can assume that M = 0. With the notation p(a) = P{X > a}, the
assumption of the lemma implies that for every a

(1− p(a)) + (p(a+ 1))1/α ≤ (1− p(a))1/α + (p(a+ 1))1/α ≤ 1,

hence
p(a+ 1) ≤ p(a)1/α, a ∈ R.

Applying this estimate successively and using p(0) = 1 − P(x ≤ 0) ≤ 1
2 , we obtain

p(k) ≤ 2−α
k
, k ∈ N. Then for every real number a ≥ 2

p(a) ≤ p([a]) ≤ 2−α
[a] ≤ 2−α

a−1 ≤ 2−α
a/2
.
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Repeating this argument for −X, we conclude that

P{|X| > a} ≤ 21−αa/2 , a ≥ 2.

Then
P{eαc|X|

> s} ≤ 21−(log s)1/2c ≤ 2s−α
1−2c

, s ≥ eα
2c
.

Integrating by parts and using this tail estimate, we have

E θ̃α(c|X|) = e−αEeα
c|X| ≤ e−α

[
eα

2c
+
∫ ∞

eα2c
2s−α

1−2c
ds
]

= e−α+α2c
+ 2(α1−2c − 1)−1e−2α+α2c

=: h(α, c).

For a fixed c ≤ 1/4, the function h(α, c) decreases as a function of α on [2,∞), and
h(2, 0) = e−1+2e−3 ≈ 0.47 < 1

2 . Hence for a suitable choice of the absolute constant
c > 0,

h(α, c) ≤ h(2, c) <
1
2

because α ≥ 2. This completes the proof.

Applying the Separation Lemma to the random variable 2
cx(i) together with

(3.2), we find an a ∈ R so that

µ{x(i) ≤ a}1/α + µ{x(i) > a+ c}1/α > 1,

where µ is the uniform measure on A. Equivalently, for the subsets A− and A+ of
A defined as

A− = {x : x(i) ≤ a}, A+ = {x : x(i) > a+ c} (3.3)

we have
|A−|1/α + |A+|1/α > |A|1/α. (3.4)

Here |A| denotes the cardinality of the set A.

Separating tree This and the next step are versions of corresponding steps of
[MV 03], where they were written in terms of function classes. Continuing the
process of separation for each A− and A+, we construct a separating tree of subsets
of A.

A tree of nonempty subsets of a set A is a finite collection T of subsets of A such
that every two elements in T are either disjoint or one contains the other. A son of
an element B ∈ T is a maximal (with respect to inclusion) proper subset of B which
belongs to T . An element of with no sons is called a leaf, an element which is not a
son of any other element is called a root.
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Definition 3.4 Let A be a class of functions on Ω and t > 0. A t-separating tree
T of A is a tree of subsets of A whose only root is A and such that every element
B ∈ T which is not a leaf has exactly two sons B+ and B− and, for some coordinate
i ∈ Ω,

f(i) ≥ g(i) + t for all f ∈ B+, g ∈ B−.

If |A−| > 1, we can repeat the separation on one coordinate for A− (note that
this coordinate may be different from i). The same applies to A+. Continuing this
process of separation until all the resulting sets are singletons, we arrive at

Lemma 3.5 Let A ⊂ Rn be a finite set whose points are 1-separated in Towerα-
norm. Then there exists a c-separating tree of A with at least |A|1/α leaves.

This separating tree improves in a sense the set A which was already separated. Of
course, the leaves in this tree are c-separated in the L∞-norm, but the tree also shows
some pattern in the coordinates on which they are separated. This will be used in
the next section where we further improve the separation of A by constructing in it
many copies of a discrete cube (on different subsets of coordinates).

However note that the assumption on A, that it is separated in the tower norm,
is stronger than being separated in the L∞-norm.

Proof. We proceed by induction on the cardinality of A. The claim is trivially
true for singletons. Assume that |A| > 1 and that the claim holds for all sets of
cardinality smaller than |A|. By the separation procedure described above, we can
find two subsets A− and A+ satisfying (3.3) and (3.4). The strict inequality in
(3.4) implies that the cardinalities of both sets is strictly smaller than |A|. By the
induction hypothesis, both A− and A+ have c-separating trees T− and T+ with at
least |A−|1/α and |A+|1/α leaves respectively.

Now glue the trees T− and T+ into one tree T of subsets of A by declaring A the
root of T and A− and A+ the sons of A. By (3.3), f(i) ≥ g(i) + c for all f ∈ A+,
g ∈ A−. Therefore T is a c-separating tree of A. The number of leaves in T is the sum
of the number of leaves of T− and T+, which is at least |A−|1/α + |A+|1/α > |A|1/α
by (3.4). This proves the lemma.

Coordinate convexity and counting cells Recall that |A| = N(F,Towerα). We
shall prove the following fact which, together with Lemma 3.5, finishes the proof.

Lemma 3.6 Let A be a set in Rn, and T be a 2-separating tree of A. Then

Number of leaves in T ≤ Σ(A).
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The value 2 is exact here. For example, the open cube A = (−1, 1)n has Σ(A) =
1, because A contains no integer cells. However, for every ε > 0 one easily constructs
a (2− ε)-separating tree of A with 2n leaves.

We ask what it means for a cell to be contained in the coordinate convex hull
of a set. A cell C in Rn defines 2n octants in a natural way. Let θ ∈ {−1, 1}n be a
choice of signs. A closed octant with the vertex z ∈ Rn is the set

Oθ(z) = {x = (x1, . . . xn) ∈ Rn | (xi − zi) · θi ≥ 0 for i = 1, . . . n}.

The octants generated by a cell are those who have only one common point with it
(a vertex).

Lemma 3.7 Let A be a set in Rn and C be a cell of Zn. Then C ⊂ cconv(A) if and
only if A intersects all the octants generated by C.

The proof is straightforward and we omit it.

Proof of Lemma 3.6. It will suffice to prove that

if A− and A+ are the sons of A, then Σ(A−) + Σ(A+) ≤ Σ(A). (3.5)

Indeed, assuming that (3.5) one can complete the proof by induction on the car-
dinality of A as follows. The lemma is trivially true for singletons. Assume that
|A| > 1 and that the lemma holds for all sets of cardinality smaller than |A|. Let
A− and A+ be the sons of A. Define T− to be the colection of sets from T that
belong to A−; then T− is a separating tree of A−. Do similarly for T+. Since both
A− and A+ have cardinalities smaller than |A|, the induction hypothesis applies to
them. Hence by (3.5) we have

Σ(A) ≥ Σ(A−) + Σ(A+) ≥ (number of leaves in T−) + (number of leaves in T+)
= number of leaves in T .

This proves the lemma, so the only remaining thing is to prove (3.5).
In the proof of (3.5), when it creates no confusion, we will denote by Σ(A) not

only the cardinality, but also the set of all pairs (P, C) for which C ⊂ cconv(PA).
For this to be consistent, we introduce a 0-dimensional cell ∅, and always assume
that the 0-dimensional projection along with the empty cell are in Σ(A) provided A
is nonempty.

Clearly, Σ(A−) ∪ Σ(A+) ⊆ Σ(A). To complete the proof, it will be enough to
construct an injective mapping Φ from Σ(A−)∩Σ(A+) into Σ(A)\(Σ(A−)∪Σ(A+)).
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We will do this by gluing identical cells from Σ(A−) ∩Σ(A−) into a larger cell; this
idea goes back to [ABCH].

Fix a pair (P, C) ∈ Σ(A−) ∩ Σ(A+). Without loss of generality, we may assume
that A− and A+ are 2-separated on the first coordinate. Then there exists an integer
a such that

x(1) ≤ a for x ∈ A−, x(1) ≥ a+ 1 for x ∈ A+. (3.6)

The coordinate projection P must annihilate the first coordinate, otherwise (3.6)
would imply that the sets PA− and PA+ are disjoint, which would contradict to
our assumption that their coordinate convex hulls both contain the cell C.

Trivial case: rankP = 0. In this case, let P ′ be the coordinate projection that
annihilates all the coordinates except the first. Since both A− and A+ are nonempty,
P ′A contains points for which x(1) ≤ a and x(1) ≥ a+1. Hence cconv(P ′A) contains
the one-dimensional cell C′ = [a, a + 1]. So, we can define the action of Φ on the
trivial pair as Φ : (P, ∅) 7→ (P ′, C′).

Nontrivial case: rankP > 0. Without loss of generality we may assume that
P retains the coordinates {2, 3, . . . , k} with some 2 ≤ k ≤ n, and annihilates the
others. Let P ′ be the coordinate projection onto Rk, so C′ = [a, a + 1] × C is a cell
in Rk. We claim that (P ′, C′) ∈ Σ(A). By the assumption, the cell C lies in both
cconv(PA−) and cconv(PA+) . In light of Lemma 3.7, PA− and PA+ each intersect
all the octants generated by C, and we need to show that PA′ intersects any octant
O′ generated by C′. This octant must be of the form either O′ = {x ∈ Rk : x(1) ≤
a, Px ∈ O} or O′ = {x ∈ Rk : x(1) ≥ a + 1, Px ∈ O}, where O is some octant
generated by the cell C. Assume the second option holds. Pick a point z ∈ A+ such
that Pz ∈ PA+ ∩ O. Then P ′z(1) = z(1) ≥ a + 1, so P ′z ∈ P ′A+ ∩ O′. A similar
argument (with A−) works if O is of the first form. This proves the claim, and we
again define the action of Φ as Φ : (P, C) 7→ (P ′, C′).

�
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rC CC′

a a + 1

A− A+

Nontrivial case: Gluing two copies of C into a larger cell C′

To check that the range of Φ is disjoint from both Σ(A−) and Σ(A+), assume
that the pair (P ′, C′) constructed above is in Σ(A−). This means that C′ lies in
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cconv(QA−) for some coordinate projection Q. This projection must retain the
first coordinate because the cell C′ is non-degenerating on the first coordinate by
its construction. Therefore, since x(1) ≤ a for all x ∈ A−, the same must hold for
all x ∈ Q(A−), and hence also for all x ∈ cconv(QA−). On the other hand, there
clearly exist points in C′ with x(1) = a+1 > a. Hence C′ can not lie in cconv(QA−).
A similar argument works for A+. Therefore the range of Φ is as claimed.

Finally, Φ is trivially injective because the map C 7→ C′ is injective.

Theorem 3.1 follows from Lemma 3.5 and Lemma 3.6.

Remark. The proof does not use the fact that the probability measure on Ω =
{1, . . . , n}, underlying the tower space, is uniform. In fact, Theorem 3.1 holds for
any probability measure on {1, . . . , n}. This will help us in next section.

4 Covering by Ellipsoids and Cubes

The Covering Conjecture holds if we cover by ellipsoids containing the unit cube
rather by the unit cube itself. This nontrivial fact is a consequence of Theorem 3.1.

Theorem 4.1 Let A be a set in Rn and D be an ellipsoid containing the cube [0, 1]n.
Then

N(A,D) ≤ Σ(CA)2

where C is an absolute constant.

This result will be used in Section 7 to find nice sections of convex bodies.

Proof. Translating the ellipsoid D, we can assume that 2D contains the cube
[−1, 1]n, which is the unit ball of the space ln∞. Call X the normed space (Rn, ‖·‖2D).
Then X is isometric to ln2 . Let T : ln∞ → X be the formal identity map and
S : X → ln2 be an isometry. Finally, define u = ST : ln∞ → ln2 and note that ‖u‖ ≤ 1.
Recall that every linear operator u : ln∞ → ln2 is 2-summing and its 2-summing norm
π2(u) satisfies π2(u) ≤

√
π/2 ‖u‖, see [TJ] Corollary 10.10. Thus π2(u) ≤

√
π/2.

By Pietsch’s factorization theorem (see [TJ] Theorem 9.3) there exists a probability
measure µ on Ω = {1, . . . , n} such that for all x ∈ Rn

‖ux‖ ≤
√
π/2 ‖x‖L2(Ω,µ).

Since ‖ux‖ = ‖S−1ux‖X = ‖Tx‖X = ‖x‖X , we have

1√
π/2

‖x‖X ≤ ‖x‖L2(Ω,µ). (4.1)
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On the other hand, the norm of the Lorentz space generated by θ2(t) = e2
t−2 clearly

dominates the L2 norm: for every x ∈ Rn,

‖x‖L2(Ω,µ) ≤ C‖x‖Λθ2 (Ω,µ) (4.2)

where C is an absolute constant. Denoting by Tower2(µ) the unit ball of the norm
in the right hand side of (4.2), we conclude from (4.1) and (4.2) that

Tower2(µ) ⊆ C ′D

where C ′ is an absolute constant. Then by Theorem 3.1 and the remark after its
proof,

N(A,D) ≤ N(C ′A,Tower2(µ)) ≤ Σ(C ′′A)2

where C ′′ is an absolute constant.

Next theorem is a partial positive solution to the Covering Conjecture itself. We
prove the conjecture with a mildly growing exponent.

Theorem 4.2 Let A be a set in Rn and ε > 0. Then for the integer cell Q = [0, 1]n

N(A,Q) ≤ Σ(Cε−1A)M

with M = 4 logε(e+ n/ logN(A,Q)), and where C is an absolute constant.

In particular, this proves the Covering Conjecture in case when the covering
number is exponential in n: if N(A,Q) ≥ exp(λn), λ < 1/2, then M ≤ C logε(1/λ).

For the proof of the theorem, we first cover A by towers, and then towers by
cubes. Formally,

N(A,Q) ≤ N(A, εTowerα) N(εTowerα, Q)

= N(ε−1A,Towerα) N(Towerα, ε−1Q). (4.3)

Lemma 4.3 For every t ≥ 4,

N(Towerα, tQ) ≤ exp(Ce−
1
4
αt/2n)

where C is an absolute constant.
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Proof. We count the integer points in the tower. For x ∈ Rn, define a point
x′ ∈ Zn by x′(i) = sign(x(i))[x(i)]. Every point x ∈ Towerα is covered by the cube
x′ + [−1, 1]n, so

N = N(Towerα, tQ) = N(2t−1Towerα, 2Q) ≤ |{x′ ∈ Zn | x ∈ 2t−1Towerα}|
≤ |2t−1Towerα ∩ Zn|.

For every x ∈ 2t−1Towerα ∩ Zn,

|{i : |x(i)| = j}| ≤ e−α
tj/2+αn =: kj , j ∈ N.

Let J be the largest number j such that kj ≥ 1. Then

N ≤
J∏
j=1

(
n

kj

)
2kj ,

as for every j there are at most
(
n
kj

)
ways to choose the the level set {i : |x(i)| = j},

and at most 2kj ways to choose signs of x(i).
Let βj = kj/n. Since α ≥ 2 and t ≥ 2, βj < 1/4. Then

(
n
kj

)
≤
(
e/βj

)βjn ≤
exp(Cβ1/2

j n). Hence

N ≤ exp
(
C1

J∑
j=1

β
1/2
j n

)
≤ exp(C2β

1/2
1 n) ≤ exp(C2e

− 1
4
αt/2n).

This completes the proof.

Proof of Theorem 4.2. We can assume that 0 < ε < c where c > 0 is any
absolute constant. We estimate the second factor in (4.3) by Lemma 4.3. With
α = M/2,

N(Towerα, ε−1Q) ≤ exp
[
C
(
e+

n

logN(A,Q)

)−21/2ε/4
n
]

≤ exp
[
Ce−21/2ε/4+1

( n

logN(A,Q)

)−1
n
]

≤ N(A,Q)1/2.

Then (4.3) and Theorem 3.1 imply that

N(A,Q) ≤ N(ε−1A,TowerM/2)2 ≤ Σ(cε−1A)M .

The proof is complete.
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Theorem 4.2 applies to a combinatorial problem studied by N.Alon et al. [ABCH].

Theorem 4.4 Let F be a class of functions on an n-point set Ω with the uniform
probability measure µ. Assume F is 1-bounded in L1(Ω, µ). Then for 0 < ε < 1 and
for 0 < t < 1/2

D∞(F, t) ≤ Cv log(n/vt) · logε(2n/v) (4.4)

where v = v(F, cεt).

N.Alon et al. [ABCH] proved under a somewhat stronger assumption (F is
1-bounded in L∞) that

D∞(F, t) ≤ Cv log(n/vt) · log(n/t2), where v = v(F, ct). (4.5)

Thus D∞(F, t) = O(log2 n). It was asked in [ABCH] whether the exponent 2 can be
reduced to some constant between 1 and 2. Theorem 4.4 answers this in positive.
It remains open whether the exponent can be made 1. A partial case of Theorem
4.4, for ε = 2 and for uniformly bounded classes, was proved in [MV 02].

It is important that, unlike in (4.5), the size of the domain n appears in (4.4)
always in the ratio n/v. Assume, for example, that one knows a priori that the
entropy is large: for some constant 0 < a < 1/2

D∞(F, t) ≥ an.

Then by (4.4) we have an ≤ Cv log(n/vt) · logε(2n/v). Dividing by n and solving
for n/v, we get

n/v ≤ C

a

[
log
(1
t

)
logε

(1
a

log
1
t

)
+ log1+ε

(1
a

)]
and putting this back into (4.4) we obtain

D∞(F, t) ≤ Cv log
( 1
at

)
· logε

(1
a

log
1
t

)
.

We see that n, the size of the domain Ω, disappeared from the entropy estimate.
Such domain-free bounds, to which we shall return in the next section, are possible
only because n enters into the entropy estimate (4.4) in the ratio n/v.

To prove Theorem 4.4, we identify the n-point domain Ω with {1, . . . , n} and
realize the class of functions F as a subset of Rn via the map f 7→ (f(i))ni=1. The
geometric meaning of the combinatorial dimension of F is then the following.
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Definition 4.5 The combinatorial dimension v(A) of a set A in Rn is the maximal
rank of a coordinate projection P in Rn so that cconv(PA) contains an integer cell.

This agrees with the classical Vapnik-Chernovenkis definition for sets A ⊆ {0, 1}n,
for which v(A) is defined as the maximal rank of a coordinate projection P such
that PA = P ({0, 1}n).

Lemma 4.6 v(F, 1) = v(F ), where F is treated as a function class in the left hand
side and as a subset of Rn in the right hand side.

Proof. By the definition, v(F, 1) is the maximal cardinality of a subset σ of
{1, . . . , n} which is 1-shattered by F . Being 1-shattered means that there exists
a point h ∈ Rn such that for every partition σ = σ− ∪ σ+ one can find a pont
f ∈ F with f(i) ≤ h(i) if i ∈ σ− and f(i) ≥ h(i) + 1 if i ∈ σ+. This means exactly
that PσF intersects each octant generated by the cell C = h + [0, 1]σ, where Pσ
denotes the coordinate projection in Rn onto Rσ. By Lemma 3.7 this means that
C ⊂ cconv(PF ). Hence v(F, 1) = v(F ).

For a further use, we will prove Theorem 4.4 under a weaker assumption, namely
that F is 1-bounded in Lp(µ) for some 0 < p < ∞. When F is realized as a set in
Rn, this assumption means that F is a subset of the unit ball of Lnp , which is

Ball(Lnp ) =
{
x ∈ Rn :

n∑
1

|x(i)|p ≤ n
}
.

We will apply to F the covering Theorem 4.2 and then estimate Σ(F ) as follows.

Lemma 4.7 Let A be a subset of a ·Ball(Lnp ) for some a ≥ 1 and 0 < p ≤ ∞. Then

Σ(A) ≤
(C1(p)an

v

)C2(p)v

where v = v(A), C1(p) = C(1 + 1√
p) and C2(p) = 1 + 1

p .

Proof. We look at

Σ(A) =
∑
P

number of integer cells in cconv(PA)

and notice that by Lemma 4.6, rankP ≤ v(A) = v for all P in this sum. Since the
number of integer cells in a set is always bounded by its volume,

Σ(A) ≤
∑

rankP≤v
vol(cconv(PA)) ≤

∑
rankP≤v

vol
(
P (a · Ball(Lnp ))

)
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where the volumes are considered in the corresponding subspaces P (Rn). By the
symmetry of Lnp , the summands with the same rankP in the last sum are equal.
Then the sum equals

1 +
v∑
k=1

(
n

k

)
ak volk

(
Pk(Ball(Lnp ))

)
(4.6)

where Pk denotes the coordinate projection in Rn onto Rk. Note that Pk(Ball(Lnp )) =
(n/k)1/p Ball(Lkp) and recall that vol(Ball(Lkp)) ≤ C1(p)k, see [Pi] (1.18). Then the
volumes in (4.6) are bounded by (n/k)k/pC1(p)k ≤ (C1(p)n/k)C2(p)k. The binomial
coefficients in (4.6) are estimated via Stirling’s formula as

(
n
k

)
≤ (en/k)k. Then (4.6)

is bounded by

1 +
v∑
k=1

(en
k

)k
ak
(n
k

)k/p
C1(p)k ≤

(C · C1(p)an
v

)C2(p)v
.

This completes the proof.

Proof of Theorem 4.4. Viewing F as a set in Rn, we notice from (2.6) and (2.7)
that

D∞(F, t) ≤ logN(F, 2tQ) ≤ D∞(F, t/2) (4.7)

where Q = [0, 1]n. Therefore it is enough to estimate N = N(F, 2tQ). We apply
successively the covering Theorem 4.2 and Lemma 4.7 with p = 1:

N = N
( 1
2t
F,Q

)
≤ Σ

(C
εt
F
)M

≤
(Cn
εtv

)CMv
(4.8)

where v = v( cεtF ) = v(F, εtc ) and M = 4 logε(e + n/ logN). Define the number
a > 0 by N = exp(an). Then M = 4 logε(e+ 1

a) and taking logarithms in (4.8) we
have an ≤ CMv log(Cnεvt ). Dividing by Mn, we obtain

a

logε(e+ 1
a)
≤ Cv

n
log
(Cn
εvt

)
.

This implies

a ≤ Cv

n
log
(Cn
εvt

)
logε

(Cn
v

/
log
(Cn
εvt

))
≤ Cv

n
log
(Cn
εvt

)
logε

(Cn
v

)
and multiplying by n we obtain

logN ≤ Cv log(Cn/vεt) · logε(Cn/v). (4.9)
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It remains to remove ε from the denominator by a routine argument.
Consider the function

φ(ε) = logε(Cn/v), where v = v(ε) as before.

As ε decreases to zero, v(ε) increases, thus φ(ε) decreases to 1. Define ε0 so that
φ(ε0) = e.

Case 1. Assume that ε ≥ ε0. Then φ(ε) ≥ e, thus ε ≥ 1/ log log(Cn/v), so
Cn/vεt ≤ (Cn/vt)2. Using this in (4.9) we obtain

logN ≤ Cv log(Cn/vt) · logε(Cn/v). (4.10)

Case 2. Let ε < ε0. Then φ(ε) ≤ e, so by (4.9),

logN ≤ Cv(ε0) log(Cn/v(ε0)ε0t) · e. (4.11)

As in case 1, we have Cn/v(ε0)ε0t ≤ (Cn/v(ε0)t)2. Using this in (4.11), we obtain

logN ≤ C ′v(ε0) log(Cn/v(ε0)t) ≤ C ′v log(Cn/vt),

because v(ε0) ≤ v(ε) = v. In particular, we have (4.10) also in this case. In view of
(4.7), this completes the proof.

5 Covering by balls of Lorentz spaces

So far we imposed no assumptions on the set A ⊂ Rn which we covered. If A
happens to be bounded in some norm ‖ · ‖, a new phenomenon occurs. The covering
numbers of A by balls in any norm slightly weaker than ‖ · ‖ become independent of
the dimension n; the parameter that essentially controls them is the combinatorial
dimension of A.

This phenomenon is best expressed in the functional setting for Lorentz norms
(2.8), because they are especially easy to compare. Given two generating functions
φ and ψ, we look at their comparison function

(φ|ψ)(t) = sup{φ(s) | φ(s) ≥ ψ(ts)}.

Fix a probability space (Ω, µ). The comparison function helps us measure to what
extent the norm in Λφ = Λφ(Ω, µ) is weaker than the norm in Λψ = Λψ(Ω, µ).

Just for the normalization, we assume that

φ(1) = ψ(1) = 1. (5.1)

Let 2 ≤ α <∞. We rule out the extremal case by assuming that

φ(s) ≤ eα
t−α for t ≥ 1. (5.2)
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Theorem 5.1 Let φ and ψ be generating functions satisfying (5.1) and (5.2). Let
F be a class of functions 1-bounded in Λψ. Then for 0 < t < 1/2

D(F,Λφ, t) ≤ Cα v(F, ct) · log(φ|ψ)(t/2)

Remarks. 1. No nontrivial estimate is possible when φ = ψ. Indeed, even in the
simplest case when Ω is finite and µ is uniform, let us take F to be the collection of
the functions fω = δω/‖δω‖Λφ , ω ∈ Ω, where δω is the function that takes value 1 at
ω and 0 elsewhere. Clearly, F is 1-bounded in Λφ and has combinatorial dimension
d(F, t) = 1 for any 0 < t < 1. However, ‖fω − fω′‖Λφ ≥ 1 for ω 6= ω′. Hence
D(F,Λφ, 1/2) = log |F | = log |Ω|. This can be arbitrarily large.

2. To see the sharpness of Theorem 5.1, notice that for some probability measure
µ on Ω,

D(F,Λφ, t) ≥ c v(F,Ct).

A simple argument can be found in [T 02] Proposition 1.4.

In the extremal case of Theorem 5.1, when F is 1-bounded in L∞, the comparison
function becomes just φ(t), which gives

Corollary 5.2 Let φ be a generating function satisfying (5.2) and such that φ(1) =
1. Let F be a class of functions 1-bounded in L∞. Then for 0 < t < 1/2

D(F,Λφ, t) ≤ Cα v(F, ct) · log φ(t/2).

We use Theorem 5.1 for classical Lorentz spaces Lp,∞ = Lp,∞(Ω, µ) generated
by φ(t) = tp.

Corollary 5.3 Let 1 ≤ p < q ≤ ∞. Let F be a class of functions 1-bounded in
Lq,∞. Then for 0 < t < 1/2

D(F,Lp,∞, t) ≤ Cp,q v(F, ct) · log(1/t)

where

Cp,q = C

(
p2q

q − p

)
.

Proof. We apply Theorem 5.1 to the functions φ(t) = tp and ψ(t) = tq. In this
case the comparison function becomes (φ|ψ)(t) = tpq/(p−q). To complete the proof,
notice that (5.2) holds with α = p.
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Our main interest is in the Lp spaces, for which we obtain

Corollary 5.4 Let 1 ≤ p < q ≤ ∞. Let F be a class of functions 1-bounded in Lq.
Then for 0 < t < 1/2

D(F,Lp, t) ≤ Cp,q v(F, cp,qt) · log(1/cp,qt) (5.3)

where

Cp,q = C

(
p2q

q − p

)
, cp,q = cmin

(
1,
(
q − p

p

)1/p
)
.

In the next section, this estimate will be applied in an important partial case, when
p is a nontrivial proportion of q. In that case, say if p ≤ 0.99q, inequality (5.3) reads

D(F,Lp, t) ≤ Cp2 v(F, ct) · log(1/t). (5.4)

The history of estimates obtained prior to Corollary 5.4 and (5.4) is outlined in
Section 2 after (2.10).

Proof. Since F is 1-bounded in Lq, it is also 1-bounded in Lq,∞. Let p′ be so that
p < p′ < q. Fix an f ∈ Lp′,∞ with ‖f‖p′,∞ ≤ 1. Then

‖f‖pp ≤
∫
{ω: |f(ω)|≤1}

|f(ω)|pdµ+
∫ ∞

1
ptp−1µ{ω : |f(ω)| ≥ t}dt

≤ 1 + p

∫ ∞

1
tp−1−p′dt ≤ p′

p′ − p
.

Taking the p-th root we conclude that if f, g are t-separated in Lp, then they are
(bp,p′t)-separated in Lp′,∞, where

bp,p′ =
(
p′ − p

p′

)1/p

.

Thus D(F,Lp, t) ≤ D(F,Lp′,∞, bp,p′t). Then the application of Corollary 5.3 with p′

and q gives
D(F,Lp, t) ≤ Bp′,q v(F, bp,p′t) · log(1/bp,p′t)

with

Bp′,q = C

(
p′2q

q − p

)
.

If we choose p′ = min(2p, p+q2 ) then a direct check shows that

Bp′,q ≤ C

(
12p2q

q − p

)
, bp,p′ ≥ min

(
1
2
,

(
q − p

4p

)1/p
)
.

This completes the proof.
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To prove Theorem 5.1, we first reduce the size of the domain Ω (which can be
assumed finite) by means of a probabilistic selection and then apply the covering
Theorem 3.1.

In the probabilistic selection, we use a standard independent model. Given a
finite set I and a parameter 0 < δ < 1, we consider selectors δi, i ∈ I, which are
independent {0, 1}-valued random variables with Eδi = δ. Then the set J = {i ∈ I :
δi = 1} is a random subset of I and its average cardinality is s = δ|I|. We call J a
random set of expected cardinality s.

Lemma 5.5 Let 0 < ε ≤ 1. For t ≥ εδm,

P
{∣∣∣ m∑

i=1

(δi − δ)
∣∣∣ > t

}
≤ 2 exp(−cεt)

where c > 0 is an absolute constant.

Proof. This follows from Prokhorov-Bennett inequality. Let (Xi) be a finite se-
quence of real valued independent mean zero random variables such that ‖Xi‖∞ ≤ a
for every i. If b2 =

∑
i EX2

i , then for all t > 0

p := P
{∑

i

Xi > t
}
≤ exp

[
t/a− (t/a+ b2/a2) log(1 + at/b2)

]
(5.5)

which is less than exp(−t2/4b2) if t ≤ b2/2a (see e.g. [LT] 6.3).
We apply Prokhorov-Bennett inequality for Xi = δi−δ and with a = 1, b2 = δm.

Consider two cases:
1) εδm ≤ t ≤ 8δm. Since in that case t/16 ≤ b2/2a, we have

p ≤ P
{∑

i

Xi > t/16
}
≤ exp(−t2/64δm) ≤ exp(−εt/64)

because t ≥ εδm.
2) t > 8δm. Then log(1 + at/b2) = log(1 + t/δm) > 2, hence

p ≤ exp
[
− (t/a)

(
log(1 + at/b2)− 1

)]
< exp(−t).

Thus for all t > εδm we have p ≤ exp(−cεt). Repeating the argument for −Xi,
we conclude the proof.

Lemma 5.6 There exist absolute constants C, c > 0 for which the following holds.
Let γ > 0 and let Q be a system of subsets of {1, . . . , n} such that

|S| ≥ γn for all S ∈ Q.

28



If σ is a random subset of {1, . . . , n} of expected cardinality k satisfying |Q| ≤
0.001 · exp(cγk), then with probability at least 0.99 we have

|S ∩ σ|
|σ|

≥ 0.99
|S|
n

for all S ∈ Q.

Proof. Let 0 < δ < 1/2 and set δ1, . . . , δn to be {0, 1}-valued independent random
variables with Eδi = δ for all i. Let δ = k/n; consider the random set σ = {i : δi =
1}. For any set S ⊂ {1, . . . , n}, |S ∩ σ| =

∑
i∈S δi. By Lemma 5.5 applied to a sum

over S instead of {1, . . . ,m} and with t = 0.001δ|Q|, there is an absolute constant
c0 > 0 such that

P{|S ∩ σ| < 0.999δ|S|} ≤ 2 exp(−c0δ|S|).

Since for every S ∈ Q, |S| ≥ γn, then

P
{
|S ∩ σ| < 0.999

k

n
· |S|

}
≤ 2 exp(−c0γk).

Therefore

P
{
∀S ∈ Q, |S ∩ σ| ≥ 0.999

k

n
· |S|

}
≥ 1− 2|Q| exp(−c0γk) ≥ 0.998

provided c ≤ c0/2. Also, |σ| ≤ 1.001k with probability at least 0.999 since k can be
assumed sufficiently large. This completes the proof.

Given a finite set I, we will now work with Lorentz spaces Λφ(I) = Λφ(I, µ),
where µ is the uniform measure on I. The following two lemmas reduce the size
of I while keeping both the boundedness of the class F in the Λψ-norm and the
separation of F in the Λφ-norm.

Lemma 5.7 Let ψ be a generating function. Let f be a function on a finite set I
such that

‖f‖Λψ(I) ≤ 1.

If σ is a random subset of I of expected cardinality k > C, then with probability at
least 0.9 we have

‖f‖Λψ(σ) ≤ C.

Proof. Let a > 2 be a parameter to be chosen later and let δ, δj be as in the proof
of Lemma 5.6. For s ∈ Z define the set

Is = {j ∈ I : |f(j)| > 2s}.
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Since ‖f‖Λψ(I) ≤ 1, we have

|Is| ≤
n

ψ(2s)
. (5.6)

Define also the event As as

As =
{
|Is ∩ σ| >

aδn

ψ(2s)

}
.

We want to bound the probability that at least one As occurs. Let r be the maximal
number such that δ|Ir| ≥ 0.01. Then

P{∀j ∈ Ir+1 δj = 0} = (1− δ)|Ir+1| ≥ e−δ|Ir+1| ≥ e−0.01 > 0.99.

If As occurs for some s > r then Is ∩ σ is nonempty, hence the larger set Ir+1 ∩ σ is
nonempty, which happens with probability at most 0.01. Thus

P
( ⋃
s>r

As

)
≤ 0.01. (5.7)

To bound P(As) with s ≤ r, we will apply Lemma 5.5 with m = |Is| and t = aδn
2ψ(2s) .

Note that
P(As) = P

{∑
j∈Is

(δj − δ) >
aδn

ψ(2s)
− δm

}
.

By (5.6), we have aδn
ψ(2s) − δm ≥ t ≥ δm. Then Lemma 5.5 gives

P(As) ≤ exp
(
− caδn

ψ(2s)

)
.

By the convexity of ψ,

ψ(wx) ≥ wψ(x) for all x ≥ 0 and w ≥ 1. (5.8)

Thus ψ(2s) ≤ 2s−rψ(2r). Then using (5.6) and the fact that δ|Ir| ≥ 0.01, we obtain

P(As) ≤ exp
(
− 2r−s

caδn

ψ(2r)

)
≤ exp(−2r−scaδ|Ir|) ≤ exp(−0.01ca2r−s).

So if a is taken large enough then
∑r

s=−∞ P(As) ≤ 0.01. Combining this with (5.7),
we conclude that

P
( ⋃
s∈Z

As

)
≤ 0.02.

In addition, by Lemma 5.5 we have P{|σ| < 1
2δn} ≤ 0.02 since k can be assumed

large enough.
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Now suppose that |σ| ≥ 1
2δn and that none of the events As occur, which happens

with probability at least 1− 0.02− 0.02 = 0.96. Fix any t > 0 and find an integer s
so that 2s ≤ t < 2s+1. By the definitions of As, Is and by (5.8),

|{i ∈ σ : |f(i)| > t}| ≤ |Is ∩ σ| ≤
aδn

ψ(2s)
≤ 2a|σ|
ψ(2s)

≤ 2a|σ|
ψ(t/2)

≤ |σ|
ψ(t/4a)

.

This means that ‖f‖Λψ(σ) ≤ 4a.

Lemma 5.8 Let φ, ψ be Lorentz functions. Let F be a class of functions on a finite
set I, which is 1-bounded in the Λψ(I) norm. Assume that

‖x‖Λφ(I) ≥ t for all x ∈ F . (5.9)

If σ is a random subset of I of expected cardinality k satisfying |F | ≤ 0.001 exp
(

ck
(φ|ψ)(t)

)
,

then with probability at least 0.99 we have

‖x‖Λφ(σ) ≥ 0.99‖x‖Λφ(I) for all x ∈ F .

This lemma will be applied to the difference set A−A of a t-net A of the class F in
the theorem.

Proof. We can assume that I = {1, . . . , n}. Fix an x ∈ F . Since |x|/‖x‖Λφ(I) = 1,
there exists an s = s(x) > 0 such that

µ
{ |x|
‖x‖Λφ(I)

> s
}
≥ 1
φ(s)

. (5.10)

On the other hand, since ‖x‖Λφ(I) ≥ t and ‖x‖Λψ(I) ≤ 1, the measure in (5.10) is
majorized by

µ{|x| > ts} ≤ 1
ψ(ts)

.

Hence φ(s) ≥ ψ(ts) and therefore

φ(s) ≤ (φ|ψ)(t). (5.11)

Now consider the family of subsets of I defined as

S(x) =
{
i :

|x(i)|
‖x‖Λφ(I)

> s(x)
}
, x ∈ F.
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By (5.10) and (5.11), for every x ∈ F

|S(x)| ≥ n

φ(s(x))
≥ n

(φ|ψ)(t)
.

Let µσ denote the uniform probability measure on σ. Lemma 5.6 implies that
whenever |F | ≤ 0.001 exp

(
ck

(φ|ψ)(t)

)
, a random subset σ of I of average cardinality k

satisfies with probability at least 0.99 that

µσ

{ |x|
‖x‖Λφ(I)

> s(x)
}

=
|S(x) ∩ σ|

|σ|
≥ 0.99

|S(x)|
n

≥ 0.99
1

φ(s(x))
≥ 1
φ(s(x)/0.99)

for all x ∈ F .

Hence
‖x‖Λφ(σ) ≥ 0.99‖x‖Λφ(I) for all x ∈ F .

The proof is complete.

Proof of Theorem 5.1. We may assume that Ω is finite. By splitting the atoms
of Ω (by replacing an atom ω by, say, two atoms ω1 and ω2, each carrying measure
1
2µ(ω) and by defining f(ω1) = f(ω2) = f(ω) for f ∈ F ), we can make the measure µ
almost uniform without changing neither the covering numbers nor the combinatorial
dimension of F . So, we can assume that µ is the uniform measure on Ω.

Let A be a t-separated subset of F (which means that ‖f − g‖Λφ(Ω) ≥ t for all
f 6= g in F ) of size

log |A| = D(F,Λφ(Ω), t).

The difference set 1
2(A − A) \ {0} = {1

2(f − g) : f 6= g; f, g ∈ A} satisfies the
assumptions of Lemma 5.8 with t/2 in (5.9). Then for k defined by

|A|2 = 0.001 exp
( ck

(φ|ψ)(t/2)

)
, (5.12)

a random subset σ of Ω of average cardinality k satisfies with probability at least
0.99 that∥∥1

2
(f − g)

∥∥
Λφ(σ)

≥ 0.99
∥∥1
2
(f − g)

∥∥
Λφ(Ω)

≥ 0.99
t

2
≥ t

3
for all f 6= g in A.

This means that
A is

t

3
-separated in Λφ(σ) (5.13)
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and in particular

D(F,Λφ(σ), t/3) ≥ log |A| = D(F,Λφ(Ω), t).

The advantage of the left hand side is that the size of σ is controlled via (5.12).
We need also to keep A well bounded in Λψ(σ). Denote by Eσ the average over

the random set σ, that is over the selectors δi. By Lemma 5.7

E |{f ∈ A : ‖f‖Λψ(σ) ≤ C}| =
∑
f∈A

P(‖f‖Λψ(σ) ≤ C) ≥ 0.9|A|.

Therefore with probability at least 0.8,

at least a half of the functions in A have norm ‖f‖Lψ(σ) ≤ C. (5.14)

Since k/2 ≤ |σ| ≤ 2k holds with probability at least 0.9, there exists a realization
of σ that satisfies simultaneously this property, (5.13) and (5.14). Let B be the set
consisting of 6

t f , where f are the functions satisfying (5.14).
Summarizing, there exist a subset σ of Ω and a set B such that

• B is a subset of 6
tA,

• B is (C/t)-bounded in Lψ(σ),

• B is 2-separated in Λφ(σ),

• |B| ≥ |A|/2 ≥ c′ exp
( c|σ|

2(φ|ψ)(t/2)

)
.

We can clearly assume that σ = {1, . . . , n} and realize the space Λnφ = Λφ({1, . . . , n})
as Rn equipped with the Lorentz norm Λφ. Applying the covering Theorem 3.1, we
get

N(B,Towerα) ≤ Σ(B)α. (5.15)

Since B is 2-separated in Λnφ and by (5.2) the norm in this space is bounded by the
Towerα norm, the set B is also 2-separated in the Towerα norm. Hence

N(B,Towerα) = |B|. (5.16)

The right hand side of (5.15) can be estimated through Lemma 4.7. By (5.1) and
convexity, ψ(t) ≥ t for t ≥ 1. Thus C‖f‖Lψ ≥ ‖f‖L1/2

for all functions f . Hence

B ⊆ (C/t) Ball(Lnψ) ⊆ (C ′/t) Ball(Ln1/2).
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Hence by (5.15), (5.16) and Lemma 4.7,

|B| ≤
(Cn
tv

)3v
, where v = v(B) = v(B, 1) ≤ v(A, t/6). (5.17)

We also have a lower bound |B| ≥ c′ exp(an) with a = c/2
(φ|ψ)(t/2) . Taking logarithms

of the upper and the lower bounds, we obtain an/v ≤ C log(Cn/tv), from which it
follows that

n

v
≤ C

a
log
(C
ta

)
.

Plugging this back into (5.17), we obtain

|B| ≤
[(C
ta

)
log
(C
ta

)]Cv
≤
(C
ta

)C1v
.

Note that
(φ|ψ)(t) ≥ 1/t for 0 < t < 1.

Indeed, φ(1
t ) ≥ 1 = ψ(t · 1

t ) which implies (φ|ψ)(t) ≥ φ(1
t ) ≥

1
t .

Therefore t ≥ (2/c)a and finally

|B| ≤ a−Cv ≤ (φ|ψ)(t/2)Cv.

On the other hand, by the construction

log |B| ≥ log
(1
2
|A|
)
≥ cD(F,Λφ(Ω), t).

This completes the proof.

6 Random processes and the uniform entropy

Here we prove our main results, Theorems 1.2 and 1.3, which compare the uni-
form entropy D(F, t) to the combinatorial dimension v(F, t). One direction of this
comparison is easy: for every class of functions F and every t > 0,

D(F, t) ≥ c v(F, 2t) (6.1)

where c > 0 is an absolute constant, see [T 02].
The reverse inequality is not true in general even for {0, 1} classes. Let, for

example, F be the collection of n characteristic functions 1{i} of the singletons
i ∈ {1, . . . , n}. Then for 0 < t < n−1/2 we have D(F, t) = log n while v(F, t) = 1.

Nevertheless, we are able to show that the reverse to (6.1) holds: 1) under a
minimal regularity of F , and 2) always after taking integrals on both sides.
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Integral equivalence The following is a general form of Theorem 1.2.

Theorem 6.1 For every class F and for any b ≥ 0,∫ ∞

b

√
D(F, t) dt ≤ C

∫ ∞

cb

√
v(F, t) dt. (6.2)

The proof of Theorem 6.1 is based on the following

Lemma 6.2 Let a > 2 and let F be a function class. Then for all t > 0:

D(F, t) ≤ C log a
∞∑
j=0

4jv(F, cajt). (6.3)

Proof. The proof of the Lemma uses an iteration argument. It relies on the fact
valid for arbitrary sets K, D and L in Rn:

N(K,D) ≤ N(K,L) sup
z∈Rn

N((K + z) ∩ L,D). (6.4)

To check this, first cover K by translates of L and then cover the intersection of K
with each translate by appropriate translates of D.

It will be easier to work with the “covering” analog of D(F, t), so we define a
covering version of D(F,X, t) in (2.5) as

D′(F,X, t) = log sup
(
n | ∃f1, . . . , fn ∈ X ∀f ∈ F ∃i ‖f − fi‖X ≤ t

)
.

By (2.7),
D(F,X, 2t) ≤ D′(F,X, t) ≤ D(F,X, t). (6.5)

We can clearly assume the domain Ω to be finite. Fix the underlying probability
µ on Ω and t > 0. For j = 1, 2, . . . define

tj = aj−1t and Xj = L2j (Ω, µ).

We estimate D(F,L2(Ω, µ), t) by (6.4):

D′(F,X1, t1) ≤ D′(F,X2, t2) + sup
h
D′((F + h) ∩ t2Ball(X2), X1, t1

)
where the supremum is over all functions h on the (finite) domain Ω. Iterating this
inequality, we obtain

D′(F,X1, t1) ≤
∞∑
j=1

sup
h
D′(Fj(h), Xj , tj) (6.6)
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where Fj(h) = (F +h)∩ tj+1Ball(Xj+1). Obviously, the class Fj(h) is tj+1-bounded
in Xj+1. Then applying (5.4) to the class t−1

j+1Fj(h) with p = 2j and q = 2j+1, we
obtain

D′(Fj(h), Xj , tj) ≤ C4jv(Fj(h), ctj) · log(tj+1/tj) ≤ C4jv(F, ctj) · log a

because apparently v(Fj(h), s) ≤ v(F, s) for every s. To complete the proof we
substitute the previous inequality into (6.6) and use (6.5).

Proof of Theorem 6.1. Applying Lemma 6.2 and Jensen’s inequality, we have
for a = 3:∫ ∞

b

√
D(F, t) dt ≤ C

√
log a

∞∑
j=0

2j
∫ ∞

b

√
v(F, cajt) dt

= C
√

log a
∞∑
j=0

(2/a)j
∫ ∞

cajb

√
v(F, u) du ≤ C

∫ ∞

cb

√
v(F, u) du.

Remark. The square roots in (6.2) can of course be replaced by any other equal
positive powers. The present form of (6.2) was chosen to match Dudley’s entropy
integral, see Theorem 6.5 below.

Theorem 1.1 follows from Theorem 6.1 as explained in the introduction. The
gap between the sufficient and the necessary conditions in Theorem 1.1 is known
to be needed in general (at least in the description of universal Donsker classes, see
[Du 99] Propositions 10.1.8 and 10.1.14).

Pointwise equivalence A similar argument, which we give now, completes the
proof of the other main result of the paper, Theorem 1.3. Although (6.1) can not be
reversed in general, a remarkable fact is that it can be reversed if the combinatorial
dimension is polynomial in t.

Theorem 6.3 Let F be a class of functions and t > 0. Assume that there exist
positive numbers v and α ≤ 1 such that

v(F, tx) ≤ vx−α for all x ≥ 1. (6.7)

Then
D(F,Ct) ≤ (C/α) v.
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Proof. Applying Lemma 6.2 with a = 51/α and estimating the combinatorial di-
mension via (6.7), we have

v(F, t/c) ≤ C log a
∞∑
j=0

4jva−αj ≤ (C/α) v.

This completes the proof.

The following is a general form of Theorem 1.3. It improves upon Talagrand’s
inequality proved in [T 87], see [T 02].

Corollary 6.4 Let F be a class of functions and t > 0. Assume that there exists a
decreasing function v(t) and a number a > 2 such that

v(F, s) ≤ v(s) and v(as) ≤ 1
2

v(s) for all s ≥ t. (6.8)

Then
D(F,Ct) ≤ C log a · v(t).

Proof. Applying (6.8) recursively, we have v(ajt) ≤ 1
2j
v(t) for all j = 0, 1, 2, . . ..

Let x ≥ 1 and choose j so that aj ≤ x ≤ aj+1. Then

2−j ≥ x
− log 2

log a ≥ 2−j−1,

so,
v(F, tx) ≤ v(tx) ≤ v(taj) ≤ Cv(t) · 2−j ≤ 2C v(t) · x−

log 2
log a .

The conclusion follows by Theorem 6.3.

A combinatorial bound on Gaussian processes A quantitative version of
Theorem 1.1 is the following bound on Gaussian processes indexed by F in terms of
the combinatorial dimension of F .

Let F be a class of functions on an n-point set I. The standard Gaussian process
indexed by f ∈ F is

Xf =
∑
i∈I

gif(i)

where (gi) are independent N(0, 1) random variables. The problem is to bound
the supremum of the process (Xf ) normalized by the standard deviation as in the
Central Limit Theorem:

E(F ) = n−1/2 E sup
f∈F

Xf .
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Theorem 6.5 For every class F ,

E(F ) ≤ C

∫ ∞

0

√
v(F, t) dt (6.9)

where C is an absolute constant. Moreover, 0 can be replaced by cn−1/2E(F ), where
c > 0 is an absolute constant.

Proof. By Dudley’s entropy integral inequality,

E(F ) ≤ C

∫ ∞

n−1/2E(F )

√
D(F,L2(µ), t) dt (6.10)

where µ is the uniform probability measure on I, see [MV 03]. Then the proof is
completed by Theorem 6.1.

In 1992, M. Talagrand proved Theorem 6.5 for uniformly bounded convex classes
and up to an additional factor of logM (1/t) in the integrand; this was a main result
of [T 92]. The absolute constant M was reduced to 1/2 in [MV 03]. Theorem 6.5 is
optimal. We emphasize its important meaning:

In the classical Dudley’s entropy integral, the entropy can be replaced by
the combinatorial dimension.

Optimality of the bound on Gaussian processes We conclude this section
by showing the sharpness of Theorem 6.5. For every n one easily finds a class
F for which the inequality in (6.9) can be reversed – this is true e.g. for F =
{−1, 1}I . More importantly, the integral in (6.9) can not be improved in general
to the (Sudakov-type) supremum sup t

√
v(F, t). This is so even if we replace the

Gaussian process Xf by the Rademacher process

Yf =
∑
i∈I

εif(i)

where (εi) are independent symmetric ±1 valued random variables. The average
supremum of such process,

Erad (F ) = n−1/2 E sup
f∈F

Yf ,

is well known to be majorized by that of the Gaussian process: Erad (F ) ≤ CE(F )
(see [LT] Lemma 4.5).
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Proposition 6.6 For every n, there exists a class F of functions on {1, . . . , n}
uniformly bounded by 1 and such that

Erad (F ) ≥ c1

∫ ∞

0

√
v(F, t) dt ≥ c log n · sup

t>0
t
√

v(F, t). (6.11)

Our example will be constructed as sums of random vertices of the discrete cube
with quickly decreasing weights.

We shall bound Erad (F ) from below via a Sudakov type minoration for Rademacher
processes. Let D = Ball(Ln2 ) =

√
nBn

2 . Proposition 4.13 of [LT] with ε = 1
2n states

the following:

Fact 6.7 If A is a subset of Rn and

sup
x∈A

‖x‖∞ ≤ c1

√
n

Erad (A)
, (6.12)

then √
logN

(
A,

1
2
D
)
≤ CErad (A). (6.13)

The entropy in (6.13) will be estimated in a standard way:

Fact 6.8 There exists an absolute constant α such that the following holds. Let A
be a set of N ≤ eαn random vertices of the discrete cube {−1, 1}n, i.e. A consists
of N independent copies of a random vector (ε1, . . . , εn). Then with probability at
least 1/2,

N(A,
1
2
D) ≥

√
N.

Proof. Obviously, we can assume that N ≥ 2. Assume that the event

N(A,
1
2
D) ≤

√
N (6.14)

occurs. Then there exists a translate D′
x = 1

2D + x of 1
2D which contains at least

N/N(A, 1
2D) ≥

√
N points from A. Set A′ = A ∩D′

x. By dividing the set A′ into
pairs in an arbitrary way, we can find a set P of M ≥

√
N−1
2 pairs (x, y) ∈ A′ × A′,

x 6= y, so that each point from A belongs to at most one pair in P. Since A′ lies in
a single translate of 1

2D, we have

‖x− y‖Ln2 ≤ 1 for all (x, y) ∈ P. (6.15)

Thus if (6.14) occurs, then (6.15) occurs for some M -element set P ⊂ A×A.
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Let now P be a fixed set of M disjoint pairs of elements of A. Then

P(event (6.15) occurs) = (P(‖x− y‖Ln2 ≤ 1))M (6.16)

where x and y are independent random vertices of the discrete cube. Here we used
the fact that the pairs in P are disjoint from each other and, consequently, are jointly
independent. The probability in (6.16) is easily estimated using Prokhorov-Bennett
inequality (5.5):

P(‖x− y‖Ln2 ≤ 1) = P
( n∑
i=1

|ε1i − ε2i|2 ≤ n
)
≤ e−c1n

where (ε1i) and (ε2i) are independent copies of the random vector (εi).
To estimate the probability that the event (6.14) occurs, note that there is less

than
(
N2

M

)
ways to choose P. Therefore

p := P
(
N(A,

1
2
D) ≤

√
N
)
≤
(
N2

M

)
(e−c1n)M ≤

(eN2

M
e−c1n

)M
≤
(
Ne−c2n

)3M/2
.

Since N ≥ 2, we have M ≥ 1. If α ≤ c2/2, we conclude that p ≤ exp(− c2n
2 ·3M/2) <

1/2. This completes the proof.

Corollary 6.9 There exists an absolute constant α such that the following holds.
Let A be a set of N ≤ eαn random vertices of the discrete cube. Then with probability
at least 1/2,

c
√

logN ≤ Erad (A) ≤ C
√

logN.

Proof. Since A ⊂ {−1, 1}n ⊂
√
nBn

2 , we have

Erad (A) ≤ CE(A) ≤ C1

√
logN, (6.17)

see [LT] (3.13). To prove the reverse inequality, assume that N ≤ eβn for β =
min(α, (c1/C1)2), where c′, c1 and C1 are the absolute constants from Fact 6.8, (6.12)
and (6.17) respectively. Then (6.17) implies that (6.12) is satisfied. Hence by Facts
6.7 and 6.8, with probability at least 1/2 we have

Erad (A) ≥ (1/C)

√
logN(A,

1
2
D) ≥ (c/

√
2)
√

logN.

This completes the proof.
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Proof of Proposition 6.6. Fix a positive integer n. Let k1 be the maximal
integer so that 24k1 ≤ eαn, where α is an absolute constant from Corollary 6.9.
For each 1 ≤ k ≤ k1 define a set Fk in Rn as follows. Let N(k) = 24k and let
Ak = {xk1, . . . , xkN(k)} be a family of points in the discrete cube {−1, 1}n in Rn

satisfying Corollary 6.9. Set

Fk = 2−k ·Ak and put F =
k1∑
k=1

Fk

where the sum is the Minkowski sum: A+B = {a+ b : a ∈ A, b ∈ B}. Then F is
a uniformly bounded class of functions on {1, . . . , n}.

By Corollary 6.9 we have

Er(F ) =
k1∑
k=1

Er(Fk) ≥ c

k1∑
k=1

2−k
√

logN(k) ≥ ck1 ≥ c1 log n. (6.18)

To estimate the combinatorial dimension of F , fix a t = 2−k with 0 ≤ k ≤ k1. Then

v(F, t) ≤ v
( k+1∑
l=1

Fl,
t

2

)
,

because the diameter of
∑k1

l=k+2 Fl in the L∞ norm is at most t/2. Obviously, by
definition of the combinatorial dimension, for any finite set F we have v(F, t) ≤
log2 |F |, so

v(F, t) ≤ log2

∣∣∣ k+1∑
l=1

Fl

∣∣∣ = k+1∑
l=1

log2 |Fl| =
k+1∑
l=1

4l ≤ C4k. (6.19)

This shows that t
√

v(F, t) ≤ C1 for all t ≥ 2−k1 . Since 2−k1 ≤ 2/
√
n and clearly

t
√

v(F, t) ≤ t
√
n ≤ 2 for all t ≤ 2/

√
n, we conclude that

sup
t>0

t
√

v(F, t) ≤ C1. (6.20)

Also, since F is uniformly bounded by 1, we have v(F, t) = 0 for all t > 1.
Moreover, for all f, g ∈ F and all i ∈ {1, . . . , n}, we have |f(i) − g(i)| ≥ 2−k1
whenever f(i) 6= g(i). Hence, v(F, t) = v(F, t1) for all t ≤ t1 = 2−k1 . Thus,∫ ∞

0

√
v(F, t) dt ≤ C

k1∑
k=0

2−k
√

v(F, 2−k) ≤ Ck1 ≤ C log n.

This, (6.18) and Theorem 6.5 imply that the leftmost and the middle quantities in
(6.11) are both equivalent to log n up to an absolute constant factor. Together with
(6.20), this completes the proof.

41



7 Sections of convex bodies

First applications of entropy inequalities involving the combinatorial dimension to
geometric functional analysis are due to M. Talargand [T 92]. Using his entropy
inequality (which (6.9) strengthens) he proved that for Banach spaces infratype p
implies type p (1 < p < 2). He also proved the classical Elton Theorem with
asymptotics that fell short from optimal, improving earlier estimates by J.Elton [E]
and A.Pajor [Pa 85]; the optimal asymptotics were found in [MV 03] using (2.10).

Here we will use new covering results to find nice coordinate sections of a general
convex body (for simplicity, we will assume that the body is symmetric with respect
to the origin). Our main result is related to three classical results in geometric
functional analysis – Dvoretzky’s Theorem in the form of V. Milman (see [MS]
4.2), Bourgain-Tzafriri’s Principle of the Restricted Invertibility [BT 87] and Elton’s
Theorem ([E], see also [Pa 85], [T 92], [MV 03]).

By Bn
p we denote the unit ball of lnp , that is the set of all x ∈ Rn such that∑n

1 |x(i)|p ≤ 1. Let K be a convex body symmetric with respect to the origin. Its
average size is measured by MK =

∫
Sn−1 ‖x‖K dσ(x), where σ is the normalized

Lebesgue measure on the sphere Sn−1 and ‖x‖K denotes the Minkowski functional
of K (the seminorm whose unit ball is K).

Theorem 7.1 (Dvoretzky’s Theorem, see [MS]) Let K be a symmetric convex
body in Rn containing Bn

2 . Then there exists a subspace E in Rn of dimension
k ≥ cM2

Kn and such that

c(Bn
2 ∩ E) ⊆MK(K ∩ E) ⊆ C(Bn

2 ∩ E). (7.1)

Moreover, a random subspace E taken uniformly in the Grassmanian Gn,k satisfies
(7.1) with probability at least 1− e−ck.

Next theorem, the Principle of the Restricted Invertibility due to J. Bourgain
and L. Tzafriri, is the first and probably the most used result from the extensive
paper [BT 87]. By (ei) we denote the canonical basis of Rn.

Theorem 7.2 (J. Bourgain and L. Tzafriri [BT 87]) Let T : ln2 → ln2 be a lin-
ear operator with ‖Tei‖ ≥ 1 for all i. Then there exists a subset σ of {1, . . . , n} of
size |σ| ≥ cn/‖T‖2 and such that

‖Tx‖ ≥ c‖x‖ for all x ∈ Rσ.

Denote by (εn) Rademacher random variables, i.e. sequence of independent
symmetric ±1 valued random variables.
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Theorem 7.3 (J. Elton [E]) Let x1, . . . , xn be vectors in a real Banach space, sat-
isfying

∀i ‖xi‖ ≤ 1 and E
∥∥∥ n∑
i=1

εixi

∥∥∥ ≥ δn

for some number δ > 0. Then there exists a subset σ ⊂ {1, . . . , n} of cardinality
|σ| ≥ c1(δ)n such that ∥∥∥∑

i∈σ
aixi

∥∥∥ ≥ c2(δ)
∑
i∈σ

|ai|

for all real numbers (ai).

The best possible asymptotics is known: c1(δ) � δ2 and c2(δ) � δ [MV 03].
Now we state our main result. By (gi) we denote a sequence of independent

normalized Gaussian random variables.

Theorem 7.4 Let x1, . . . , xn be vectors in a real Banach space, satisfying∥∥∥ n∑
i=1

aixi

∥∥∥ ≤ √
n
( n∑
i=1

|ai|2
)1/2

and E
∥∥∥ n∑
i=1

gixi

∥∥∥ ≥ δn (7.2)

for all real numbers (ai) and for some number δ > 0. Then there exist two numbers
s > 0 and cδ ≤ t ≤ 1 connected by the inequality st ≥ cδ/ log3/2(2/δ) and a subset
σ of {1, . . . , n} of size |σ| ≥ s2n such that∥∥∥∑

i∈σ
aixi

∥∥∥ ≥ ct
∑
i∈σ

|ai| (7.3)

for all real numbers (ai).

The first assumption in (7.2) is satisfied in particular if ‖xi‖ ≤ 1 ∀i. Also, since
t ≤ 1, we always have s ≥ cδ/ log3/2(2/δ). This instantly recovers Elton’s Theorem.

Next, Theorem 7.4 essentially extends the Bourgan-Tzafriri principle of restricted
invertibility to operators T : ln2 → X acting into arbitrary Banach space X. The
average size of T is measured by its `-norm defined as `(T )2 = E‖Tg‖2, where
g = (g1, . . . , gn). If X is a Hilbert space, then `(T ) equals the Hilbert-Schmidt norm
of T .

Corollary 7.5 (General Principle of the Restricted Invertibility) Let T : ln2 →
X be a linear operator with `(T ) ≥

√
n, where X is a Banach space. Let α =

c log−3/2(2‖T‖). Then there exists a subset σ of {1, . . . , n} of size |σ| ≥ cα2n/‖T‖2

and such that
‖Tx‖ ≥ α|σ|−1/2‖x‖lσ1 for all x ∈ Rσ.
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If X is a Hilbert space, the condition `(T ) ≥
√
n is satisfied, for example, if

‖xi‖ ≥ 1 for all i. In that case |σ|−1/2‖x‖lσ1 in the conclusion can be improved to
|x‖ = ‖x‖ln2 via the Grothendieck factorization (we will do this below). This recovers
the Bourgain-Tzarfiri Theorem up to the logarithmic factor α.

Proof of Corollary 7.5. We apply Theorem 7.4 to the vectors xi =
√
n

‖T‖ Tei,
i = 1, . . . , n. Then for any a1, . . . an∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥ =
√
n

‖T‖
·

∥∥∥∥∥T (
n∑
i=1

aiei)

∥∥∥∥∥ ≤ √
n · ‖(a1, . . . an)‖`n2 .

Since by Kahane’s inequality `(T ) ≤ C E‖Tg‖, the second assumption in (7.2) holds
with δ = c/‖T‖. Hence there exist numbers c/‖T‖ ≤ t ≤ 1 and s satisfying

st ≥ cδ/ log3/2(2/δ)

and a subset σ of {1, . . . , n} of size |σ| ≥ s2n so that we have (multiplying both
sides by |σ|−1/2)

C
√
n/|σ|
‖T‖

∥∥∥∑
i∈σ

aiTei

∥∥∥ ≥ ct|σ|−1/2
∑
i∈σ

|ai| for all real numbers (ai).

Since t ≤ 1, we have s ≥ cδ/ log3/2(2/δ) ≥ α/‖T‖ and consequently |σ| ≥ α2n/‖T‖2

as required. As |σ| ≥ s2n, we have s ≤
√
|σ|/n, hence√

n/|σ|
‖T‖

≤ 1
‖T‖s

= δ/s ≤ c−1t log3/2(2/δ) = t/α.

Hence ∥∥∥∑
i∈σ

aiTei

∥∥∥ ≥ α|σ|−1/2
∑
i∈σ

|ai| for all real numbers (ai)

as required.

To get the actual invertibility of T : ln2 → X one can use the Grothendieck
factorization. Remarkably, this step works not only for X being a Hilbert space but
for a much larger class of spaces, namely for those of type 2.

Definition 7.6 A Banach space X has type 2 if there exists a constant M such
that the inequality

E
∥∥∥∑ εixi

∥∥∥ ≤M
(∑

‖xi‖2
)1/2

holds for all finite sequences of vectors (xi) in X. The minimal possible constant M
is called the type 2 constant of X and is denoted by T2(X).
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An important example of spaces that have type 2 are all Lp-spaces (2 ≤ p <∞)
and their subspaces.

Lemma 7.7 (Grothendieck Factorization, see e.g. [LT] 15.4) Let S : E →
Rm be a linear mapping, where E is a Banach space of type 2. Then there exists a
subset η of {1, . . . , n} of size |η| ≥ m/2 and such that

‖PηS‖E→lm2
≤ C T2(X)m−1/2‖S‖E→lm1

where Pη is the coordinate projection in Rm onto Rη.

Applying this lemma to the inverse of T on its range, we obtain

Corollary 7.8 (Restricted Invertibility under type 2) Let T : ln2 → X be a
linear operator with `(T ) ≥

√
n, where X is a Banach space of type 2. Let α =

c log−3/2(2‖T‖). Then there exists a subset σ of {1, . . . , n} of size |σ| ≥ α2n/‖T‖2

and such that
‖Tx‖ ≥ αT2(X)−1‖x‖ for all x ∈ Rσ.

For X = ln2 this recovers the Bourgain-Tzafriri Theorem up to the logarithmic factor
α.

Proof. By Corollary 7.5, the operator T is invertible on the subspace E = T (Rσ)
of X, and its inverse S = T−1 : E → Rσ has norm ‖S‖E→lσ1

≤ α−1|σ|1/2. By the
Grothendieck factorization, we find a subset η ⊂ σ of size |η| ≥ 1

2 |σ| and such that

‖PηS‖E→lη2
≤ Cα−1T2(X).

This means that ‖Tx‖X ≥ cα T2(X)−1‖x‖ln2 for all x ∈ η.

Finally, the general Principle of the Restricted Invertibility rewritten in geometric
terms gives a result related to Dvoretzky’s Theorem.

Corollary 7.9 Let K be a symmetric convex body in Rn containing Bn
2 . Let M =

MK log−3/2(2/MK). Then there exists a subset σ of {1, . . . , n} of size |σ| ≥ cM2n
and such that

cM(K ∩ Rσ) ⊂
√
|σ|Bσ

1 . (7.4)

Here Bσ
1 denotes the unit ball of lσ1 .

Proof. We apply the general Principle of Restricted Invertibility in the space X =
(Rn, ‖ · ‖K). We have `(id : ln2 → X) =

√
nMK (see [TJ] (12.7)) and ‖id : ln2 →

X‖ ≤ 1 because K contains Bn
2 . Hence for the operator T = c(MK)−1id : ln2 → X

we have `(T ) ≥
√
n and ‖T‖ ≤ C/MK . The application of Corollary 7.5 completes

the proof.
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A link to Dvoretzky Theorem is provided by a result of Kashin [K 77] (see also
[S]) that the cross-polytope

√
kBk

1 has a Euclidean section of proportional dimension.
Precisely, there exists a subspace E in Rk of dimension at least k/2 and such that

(Bk
2 ∩ E) ⊆ (

√
kBk

1 ∩ E) ⊆ C(Bk
2 ∩ E).

Actually, a random subspace E taken uniformly in the Grassmanian satisfies this
with probability at least 1− e−ck.

Taking such random section of both sides of (7.4) we get M(K∩E) ⊆ C(Bn
2 ∩E),

which recovers the second inclusion in Dvoretzky’s Theorem up to a logarithmic fac-
tor. The novelty of (7.4) is that the section is coordinate. This might be important
for future applications.

Remark. Corollary 7.9 may fail for any set of size |σ| � M2n, even though it
must hold for some larger set. Indeed, for K = a

√
nBn

1 with some large parameter
a we have M ∼ a−1 log−3/2 a. Any set σ for which Corollary 7.9 holds satisfies√
|σ|Bσ

1 ⊇ ca−1(log−3/2 a)(a
√
nBn

1 ∩Rσ) = c(log−3/2 a)
√
nBσ

1 , so |σ| ≥ (log−3/2 a)n.
This is much larger than M2n � a−2(log−3 a)n. In particular, Corollary 7.9 fails for
any set of size |σ| ∼M2n.

Proof of Theorem 7.4. By a slight perturbation we may assume that the vectors
xi are linearly independent, and by applying appropriate linear transformation we
may further assume that X = (Rn, ‖·‖K) where K is a symmetric convex body in Rn

and that xi = ei, the canonical vector basis in Rn. We then rewrite the assumptions
as 1√

n
Bn

2 ⊆ K, E‖g‖K ≥ δn. Then for the polar body A = K◦ = {x ∈ Rn : 〈x, y〉 ≤
1 ∀y ∈ K} we have

A ⊆
√
nBn

2 , E := E sup
x∈A

n∑
i=1

gix(i) ≥ δn. (7.5)

Although Theorem 6.5 can be used to estimate E, we will need to have some
control on the upper limit in the integral (6.9). This can be done as follows. Not-
ing that E(A) = n−1/2E, we bound the expectation in (7.5) by Dudley’s entropy
inequality (6.10):

E ≤ C
√
n

∫ 1

cE/n

√
logN(A, tD) dt (7.6)

where D = Ball(Ln2 ) =
√
nBn

2 . The upper limit in the integral is 1 because A ⊆ D,
so the integrand vanishes for t > 1. By Theorem 4.1,

N(A, tD) = N(t−1A,D) ≤ Σ(Ct−1A)2.
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Since Ct−1A ⊆ Ct−1 · Ball(Ln2 ), Lemma 4.7 gives

Σ(Ct−1A) ≤
( Cn

t v(t)

)Cv(t)
,

where v(t) = v(Ct−1A). Hence

logN(A, tD) ≤ Cv(t) log
( Cn

t v(t)

)
.

Using this in Dudley’s entropy inequality (7.6), we obtain

E ≤ C
√
n

∫ 1

cE/n

√
v(t) log

( Cn

t v(t)

)
. dt

Let s(t)2 = v(t)/n. Since s(t) ≤ 1 and E ≥ δn, we have

cδ ≤
∫ 1

cδ
s(t)

√
log
( 1
t s(t)

)
dt.

Comparing the integrand to that of

log(1/cδ) =
∫ 1

cδ

1
t
dt

we conclude that there exists a number cδ ≤ t ≤ 1 such that

s(t)

√
log
( 1
t s(t)

)
≥ cδ

t log(1/cδ)
.

Multiplying both sides by t, we obtain

t s(t) ≥ cδ

log(1/cδ)

/√
log
( log(1/cδ)

cδ

)
≥ cδ

log3/2(2/δ)
.

It remains to interpret v(t). By the symmetry of A, v(t) is the maximal rank
of a coordinate projection P in Rn such that P (Ct−1A) ⊇ P (1

2B
n
∞). Let Rσ be the

range of P ; then |σ| = v(t) = s(t)2n. By duality, the inclusion above is equivalent
to C−1tK ∩ Rσ ⊆ 2Bn

1 . Equivalently, ‖x‖K ≥ C−1t‖x‖ln1 for all x ∈ E. This is
precisely the conclusion (7.3). The proof is complete.

Remark. Although the first assumption in (7.2) is rather nonrestrictive, it can
further be weakened. Tracing where it was used in the proof (in Lemma 4.7) we
see that only ”average” volumetric properties of K matter. We leave details to the
interested reader.
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