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Abstract

Random matrices are widely used in sparse recovery probkmghe relevant properties of matrices
with i.i.d. entries are well understood. The current pagscusses the recently introduced Restricted
Eigenvalue (RE) condition, which is among the most geneslimptions on the matrix, guaranteeing
recovery. We prove a reduction principle showing that thed@kdition can be guaranteed by checking
the restricted isometry on a certain family of low-dimemgibsubspaces. This principle allows us to
establish the RE condition for several broad classes ofmandatrices with dependent entries, including
random matrices with subgaussian rows and non-trivial Gamae structure, as well as matrices with
independent rows, and uniformly bounded entries.

1 Introduction

In a typical high dimensional setting, the number of vagahl is much larger than the number of obser-
vationsn. This challenging setting appears in statistics and sigratessing, for example, in regression,
covariance selection on Gaussian graphical models, signahstruction, and sparse approximation. Con-
sider a simple setting, where we try to recover a vegtar R? in the following linear model:

Y=X0+e (1.1)

Here X is ann x p design matrix,Y” is a vector of noisy observations, aads the noise term. Even in the
noiseless case, recoveriggor its support) from X, Y') seems impossible when< p, given that we have
more variables than observations.

A line of recent research shows that whéris sparse, that is, when it has a relatively small number of
nonzero coefficients, it is possible to recoytfrom an underdetermined system of equations. In order to
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ensure reconstruction, the design matkixneeds to behave sufficiently nicely in a sense that it saisfie
certain incoherence conditions. One notion of the incaewhich has been formulated in the sparse
reconstruction literature(andes and Tg@005 2006 2007) bears the name of Uniform Uncertainty Prin-
ciple (UUP). It states that for all-sparse set%’, the matrix X restricted to the columns froff acts as an
almost isometry. LeX, whereT C {1,...,p} be then x |T'| submatrix obtained by extracting columns
of X indexed byT'. For each integes = 1,2, ... such thats < p, the s-restricted isometry consta# of

X is the smallest quantity such that

(1= 8) lells < | Xrell /n < (1+65) [lell3 (1.2)

forall T C {1,...,p} with |T| < s and coefficients sequencgs ) <. Throughout this paper, we refer to
a vector € RP with at mosts non-zero entries, where< p, as as-sparsevector.

To understand the formulation of the UUP, consider the sistphoiseless case as mentioned earlier, where
we assume = 0 in (1.1). Given a set of value§{ X*, 3))™,, where X', X2 ... X" are independent
random vectors ifR?, the basis pursuit progrant(ien et al.1999 findsﬁwhich minimizes the&;-norm of

(' among allg’ satisfying X 3’ = X3, whereX is an x p matrix with rows X', X2, ..., X" This can be
cast as a linear program and thus is computationally efficidnder variants of such conditions, the exact
recovery or approximate reconstruction of a spa¥agsing the basis pursuit program has been shown in a
series of powerful result${onohqg 20065 2004 Candes et g/2006 Candes and Ta@005 2006 Donohqg
2006k Rudelson and Vershynji2006 2008 Candes and Tga@007). We refer to these papers for further
references on earlier results for sparse recovery.

In other words, under the UUP, the design matkixis taken as a x p measurement ensemble through
which one aims to recover both the unknown non-zero positemd the strength of &sparse signab in

RP? efficiently (thus the name for compressed sensing). Nayrae wishn to be as small as possible for
given values ofp ands. It is well known that for random matrices, UUP holds for= O(n/log(p/n))
with i.i.d. Gaussian random entries, Bernoulli, and in gahsubgaussian entrieS{indes and Ta@2005
Rudelson and Vershyni@005 Candes and Ta@006 Donohq 2006k Baraniuk et al.2008 Mendelson et a).
2009. Recently, it has been showAdamczak et a).2009 that UUP holds fos = O(n/ log?(p/n)) when

X is a random matrix composed of columns that are independetrbpic vectors with log-concave den-
sities. For a random Fourier ensemble, or randomly sampled 10f orthonormal matrices, it is shown
that (Rudelson and Vershynj2006 2008 the UUP holds fos = O(n/log® p) for ¢ = 4, which improves
upon the earlier result afandes and Ta(2006 wherec = 6. To be able to prove UUP for random mea-
surements or design matrix, the isotropicity condition (@éfinition 1.5) has been assumed in all literature
cited above. This assumption is not always reasonable fistata and machine learning, where we often
come across high dimensional data with correlated entries.

The work of Bickel et al. (2009 formulated the restricted eigenvalue (RE) condition amolged that it is
among the weakest and hence the most general conditionsratlire imposed on the Gram matrix in order
to guarantee nice statistical properties for the Lassanestir (Iibshiran, 1996 as well as the Dantzig
selector Candes and Ta®007). In particular, it is shown to be a relaxation of the UUP undeitable
choices of parameters involved in each condition; Be¢el et al.(2009. We now state one version of the
Restricted Eigenvalue conditias formulated in Bickel et al, 2009. For some integed < sy < p and a
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positive numbefk, RE(sg, ko, X) for matrix X requires that the following holds:

Xv
Yu #0, min X0l > 0, (1.3)
It b logelly<kollosll,  lvslls
[J|<s0

where v represents the subvector of € R? confined to a subsef of {1,...,p}. In the context of
compressed sensing, RE condition can also be taken as a vganatantee recovery for anisotropic mea-
surements. We refer tean de Geer and Buhlmar(@009 for other conditions which are closely related to
the RE condition.

Consider now the linear regression modelinlj. For a chosen penalization parametgr> 0, regularized
estimation with the/;-norm penalty, also known as the LassobGhirany 1996 refers to the following
convex optimization problem

~ 1
3 = argmin o[ — XBJ3 + Aul|8]1. (1.4)

where the scaling factar/(2n) is chosen for convenience. Under i.i.d Gaussian noise an@RE condi-
tion, bounds or?, prediction loss and o#,, 1 < ¢ < 2, loss for estimating the parametgrin (1.1) for
both the Lasso and the Dantzig selector have all been derivedtkel et al.(2009. In particular, /s loss
of ©(\oy/s) were obtained for the Lasso undRE(s, 3, X') and the Dantzig selector undBE(s, 1, X)
respectively inBickel et al.(2009, where it is shown thaRE(s, 1, X) condition is weaker than the UUP
used inCandes and Ta(2007).

RE condition with parameters, and ky for random measurements / design matrix has been proved for a
random Gaussian vectéraskutti et al(2009 2010 with a sample bound of order = O(sglog p), when
condition (L.3) holds for the square root of the population covariance imatr As we show below, the
boundn = O(s log p) can be improved to the optimal ome= O(sq log(p/s0)) WhenRE(sq, ko, £1/?) is
replaced WittRE (sq, (1+¢)ko, ©1/2) for anye > 0. The papersRaskutti et al(2009, 2010 have motivated
the investigation for a non-iid subgaussian random desygiou (20099, as well as the present work. The
proof of Raskutti et al(2010) relies on a deep result from the theory of Gaussian randaoesses — Gor-
don’s Minimax Lemmeordon(1985. However, this result relies on the properties of the ndnmadom
variables, and is not available beyond the Gaussian seffmgstablish the RE condition for more general
classes of random matrices we had to introduce a new appiwesdd on geometric functional analysis.
We defer the comparison of the present paper wiilhu (20099 to Sectionl.2. Both Zhou et al.(2009))
andvan de Geer and Buhlmar(2009 obtained weaker results which are based on bounding themax
entry-wise difference between sample and the populatiear@nce matrices. We refer toaskutti et al.
(2010 for a more elaborate comparison.

1.1 Notation and definitions
Letey,...,e, be the canonical basis &. For aset/ C {1,...,p}, denoteE; = span(e; : j € J}. For
a matrix A, we usel|A||, to denote its operator norm. For a $étC R?, we let convV denote the convex

hull of V. For a finite set’, the cardinality is denoted by’|. Let BY andSP~! be the unit Euclidean ball
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and the unit sphere respectively. For a veatar R?, letur, be the subvector af confined to the locations
of its sqg largest coefficients in absolute values. In this papég, etc, denote various absolute constants
which may change line by line. Occasionally, we usec RI”|, whereT C {1,...,p}, to also represent
its 0-extended version’ € R? such thati/.. = 0 andw/, = ur.

We defineCone(sy, ko), where0 < so < p andky is a positive number, as the set of vector®Rifiwhich
satisfy the following cone constraint:

Cone(sg, ko) = {z € R [ AL € {1,....p},[I| = so s.t. [[zrelly < kollzr]}- (1.5)

Let 8 be as-sparse vector ana be the solution from either the Lasso or the Dantzig selec@ore of the
common properties of the Lasso and the Dantzig selectooiisrf appropriately chosex), and under i.i.d.
Gaussian noise, the condition

U= B— B € Cone(s, ko) (1.6)

holds with high probability. Heré, = 1 for the Dantzig selector, arnid) = 3 for the Lasso; seBickel et al.
(2009 and Candes and Ta(2007) for example. The combination of the cone property6)( and the RE
condition leads to various nice convergence results asdserlier.

We now define some parameters related to the RE and sparseaige conditions that are relevant.
Definition 1.1. Let1 < sy < p, and letky be a positive number. We say thay & p matrix A satisfies
RE (s, ko, A) condition with parametef (s, ko, A) if for any v # 0,

1 [ Avll,
— =  min min > 0. 2.7)
K (s0, ko, A) JQ\}T;»P},I\v(zclllékollv(illl vl
xS0

It is clear that whersy andky become smaller, this condition is easier to satisfy.
Definition 1.2. For m < p, we define the largest and smallestsparse eigenvalue of @x p matrix A to
be

max A = At 2 t 2 1.8
Pmax(m, A) 0 e 1AL]12/ 11t , (1.8)
pun(m, A) = min A3/ 3. (L.9)

t#0;m—sparse

1.2 Main results

The main purpose of this paper is to show that the RE condhimds with high probability for systems
of random measurements/random design matrices of a gemaale. To establish such result with high
probability, one has to assume that it holds in average. &opmblem boils down to showing that, un-
der some assumptions on random variables, the RE conditidhecovariance matrix implies a similar
condition on a random design matrix with high probabilityewn is sufficiently large (cf. Theorems.6
and Theorenl.8). This generalizes the results on UUP mentioned above, enher covariance matrix is
assumed to be identity.



Denote byA a fixedq x p matrix. We consider the design mattk which can be represented as
X =VA, (1.10)

where the rows of the matri¥ are isotropic random vectors. An example of such a randomixnat con-
sists of independent rows, each being a random vect@P ithat follows a multivariate normal distribution
N(0, %), when we taked = ©'/2 in (1.10. Our first main result is related to this setup. We consideraa
trix represented a¥ = U A, where the matrix4 satisfies the RE condition. The result is purely geometric,
so we consider deterministicmatrix 0.

We prove a general reduction principle showing that if therimall acts as almost isometry on the images
of the sparse vectors unddr, then the product 4 satisfies the RE condition with a smaller paraméigr
More precisely, we prove Theorein3.

Theorem 1.3.Let1/5 > § > 0. Let0 < sy < pandky > 0. Let A be ag x p matrix such that
RE(sg, 3ko, A) holds for0 < K(sg, 3kg, A) < co. Set

2 16K (s0, 3ko, A)(3ko)*(3ko + 1)

d = so+som§aux|]Aej|]2 5 , (1.11)
and letE = U ;—q4E; for d < p and £ denotesR? otherwise. Letl be a matrix such that
Vo e AE (1-0) ||, < waH2 < (140) ||z, (1.12)

ThenRE(s, ko, ¥ A) condition holds for matrixt A with 0 < K (sq, ko, WA) < K (s, ko, A)/(1 — 55).
Remark 1.4. We note that this result does not invopg.x (so, A), nor the global parameters of the matrices
A and ¥, such as the norm or the smallest singular value. We reférataiutti et al (2010) for an example
of matrix A satisfying the RE condition, such that. (so, A) grows linearly withsy while the maximum of

|| Ae; ||, is bounded above.

The assumptiofRE(sq, 3kg, A) can be replaced bRE(sg, (1 + ¢)ko, A) for anye > 0 by appropriately
increasingd. See Remark.6for details.

We apply the reduction principle to analyze different césssf random design matrices. This analysis is
reduced to checking that the almost isometry property h@dsll vectors from some low-dimensional
subspaces, which is easier than checking the RE propeggthyir

The first example is the matrik whose rows are independent isotropic vectors withgaussiamarginals
as in Definition1.5. This result extends a theorem lghskutti et al(2010) to a non-Gaussian setting, in
which the entries of the design matrix may even not have aityens

Definition 1.5. LetY be a random vector ifR?

1. Y is called isotropic if for every € R, E|( Y,y )|* = |yl3.

2. Y is 1o with a constanty if for everyy € RP,

(Y, y)ly, = inf{t: Eexp((Y,y)?/t*) <2} < a|yll,. (1.13)



The vy condition on a scalar random variabléis equivalent to the subgaussian tail decayofwhich
means

P(|V|>t) < 2exp(—t?/c?), forall t> 0.

Throughout this paper, we ug®, vector with subgaussian marginals and subgaussian Vietéochange-
ably. Examples of isotropic random vectors with subgawssiarginals are:

e The random vecto¥” with i.i.d N(0,1) random coordinates.

e Discrete Gaussian vector, which is a random vector takimhgegaon the integer latticg” with distri-
butionP(X = m) = C exp(— ||m|[3 /2) for m € Z.

e A vector with independent centered bounded random codrBnaThe subgaussian property here
follows from the Hoeffding inequality for sums of indepentieandom variables. This example in-
cludes, in particular, vectors with random Bernoulli cdoedes, in other words, random vertices of
the discrete cube.

Itis hard to argue that such multivariate Gaussian or Bdlimamdom designs are not relevant for statistical
applications.

Theorem 1.6. Set0 < § < 1, ky > 0, and0 < sp < p. Let A be aq x p matrix satisfyingRE (s, 3k, A)
condition as in Definitiorl.1 Letd be as defined if1.11), and letrn = min(d,p). Let¥ be ann x ¢
matrix whose rows are independent isotrogicrandom vectors ifR? with constantv. Suppose the sample
size satisfies

n

4
> 2000ma log <60ep> ' (1.14)

62 md

Then with probability at least — 2 exp(d2n/2000a*), RE (s, ko, (1/4/n)¥ A) condition holds for matrix
(1/4/n)W A with

K(SQ, k‘o, A)

0 < K(s0, ko, (1/v/n)¥A) < T3

(1.15)

Remark 1.7. We note that all constants in Theordn® are explicit, although they are not optimized.

The reconstruction of sparse signals by subgaussian desigices was analyzed iviendelson et a(2008

and Baraniuk et al.(2008. Note however that both papers used the RIP assumptiongestimdate the
deviation of the restricted operator from identity. Thesgtimods are not applicable in our contexts since the
matrix A may be far from identity.

Theoreml.6is applicable in various contexts. We describe two examflbe first example concerns cases
which have been consideredhmskutti et al(2010); Zhou(20099. They show that the RE condition on the
covariance matrix. implies a similar condition on a random design matkix= ¥X!/2 with high proba-
bility when n is sufficiently large. In particular, idhou (20099, the author considered subgaussian random
matrices of the formX = wX:!/2 whereX: is ap x p positive semidefinite matrix satisfyirRE (so, ko, ©1/2)
condition, andV is as in Theoreni..6. Unlike the current paper, the author allowgd. (so, 21/2) as well
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asK?(sg, ko, ©/2) to appear in the lower bound en and showed thaX //n satisfies the RE condition as
in (1.15 with overwhelming probability whenever
9¢ o .

"= 7(2 + ko) K2 (s0, ko, /%) min(4pmax (50, 5/%) s0 log(5ep/s0), 50 log p) (1.16)
where the first term was given inhou (2009 Theorem 1.6) explicitly, and the second term is an easy
consequence by combining argumentsZimou (20090 and Raskutti et al.(2010. Analysis there used
Corollary 2.7 inViendelson et al(2007) crucially. In the present work, we get rid of the dependeofthe
sample size 0Py (S0, 2'/2), although under a slightly strongBE (s, 3ko, ©/?) (See Remark$.4and
2.6). More precisely, leE be ap x p covariance matrix satisfyinBE (s, 3ko, ©'/2) condition. Then,1.15
implies that with probability at leadt — 2 exp(§2n/2000a),

K (s0, ko, £1/?)

0< K(So, k07 (1/\/5)\II21/2) < 1-4

(1.17)
wheren satisfies {.14) for d defined in (.11), with A replaced by»'/2. In particular, bounds developed
in the present paper can be applied to obtain tight convesgegsults for covariance estimation for a multi-
variate Gaussian modéhou et al.(2011).

Another application of Theorem6is given inZhou et al(20099. Theg x p matrix A can be taken as a data
matrix with p attributes (e.g., weight, height, age, etc), gnddividual records. The data are compressed
by a random linear transformatioki = W A. Such transformations have have been called “matrix mgskin

in the privacy literaturelfuncan and Pearsph991). We think of X as “public,” while ¥, which is an x ¢
random matrix, is private and only needed at the time of cesgion. However, even witlr known,
recoveringA from ¥ requires solving a highly under-determined linear systach@mes with information
theoretic privacy guarantees when< ¢, as demonstrated inhou et al(20099. On the other hand, sparse
recovery usingX is highly feasible given that the RE conditions are guamht® hold by Theorem.6

with a smalln. We refer toZhou et al.(20099 for a detailed setup on regression using compressed data as
in (1.10.

The second application of the reduction principle is to tlesigh matrices with uniformly bounded en-
tries. As we mentioned above, if the entries of such matrixiadependent, then its rows are subgaussian.
However, the independence of entries is not assumed, setay of the marginals can be arbitrary slow.
A natural example for compressed sensing would be measateroérandom Fourier coefficients, when
some of the coefficients cannot be measured.

Theorem 1.8.Let0 < 6 < 1 and0 < so < p. LetY € R? be a random vector such thit’|| , < M a.s
and denotez = EYYT. Let X be ann x p matrix, whose rows\1, ..., X,, are independent copies f.
Let ¥ satisfy theRE(so, 3ko, 21/2) condition as in DefinitioriL.1 Letd be as defined if1.11), where we
replace A with 21/2, Assume thad < p andp = pmin(d, ©'/2) > 0. Suppose the sample size satisfies for

some absolute consta6t
CM?d -logp 5 (CM?d-logp
n>———= log° | —————— | .
pd? pd?

Then with probability at least — exp (—dpn/(6M?d)), RE(so, ko, X ) condition holds for matrixX/\/n
with 0 < K (s0, ko, X/v/n)) < K (s0, ko, 2V/2)/(1 = §).
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Remark 1.9. Note that unlike the case of a random matrix with subgaussiarginals, the estimate of
Theoreml.8 contains the minimal sparse singular valpeWe will provide an example illustrating that this
is necessary in Remark4.

We will prove Theoremd..3, 1.6, and1.8in Sections2, 3, and4 respectively.

We note that the reduction principle can be applied to oty of random variables. One can consider the
case of heavy-tailed marginals. In this case the estimatbéamages of sparse vectors can be proved using
the technique developed byershynin(2011gb). One can also consider random vectors with log-concave
densities, and obtain similar estimates following the mdthof Adamczak et al(2009 2011). We leave

the details for an interested reader.

To make our exposition complete, we will show some immediatesequences in terms of statistical in-
ference on high dimensional data that satisfy such RE andepmagenvalue conditions. As mentioned,
the restricted eigenvalue (RE) condition as formulatedhykel et al. (2009 are among the weakest and
hence the most general conditions in literature imposederGram matrix in order to guarantee nice sta-
tistical properties for the Lasso and the Dantzig selediar random design as considered in the present
paper, one can show that various oracle inequalities inderfv, convergence hold for the Lasso and the
Dantzig selector as long as satisfies the lower bounds above. lset= |suppg| for 5 in (1.1). Under
RE(s,9,%'/2), a sample size of = O(slog(p/s)) is sufficient for us to derive bounds corresponding to
those inBickel et al.(2009 Theorem 7.2). As a consequence, we see that this setupag@iog(p/s))
observations per nonzero valuegiwhere® hides a constant depending &f¥ (s, 9, ©'/2) for the family of
random matrices with subgaussian marginals which satiRfigs, 9, >.1/2) condition. Similarly, we note
that for random matrixX with a.s. bounded entries of sidd, n = O(sM? log plog®(slog p)) samples are
sufficient in order to achieve accurate statistical esiiomatWe say this is &near or sublinear sparsityFor

p > n, this is a desirable property as it implies that accuratissizal estimation is feasible given a very
limited amount of data.

2 Reduction principle

We first reformulate the reduction principle in the form o$tréctive isometry: we show that if the matrix
¥ acts as almost isometry on the images of the sparse vectdes dn then it acts the same way on the
images of a set of vectors which satisfy the cone constraifj.(We then prove Theorem.3as a corollary
of Theorem2.1

Theorem 2.1. Let1/5 > 6 > 0. Let0 < sp < pandky > 0. Let A be ag x p matrix such that
RE(so, 3ko, A) condition holds fol) < K (sg, 3ko, A) < co. Set

16K (s0, 3ko, A) (3ko)* (3ko + 1)>
52 ’

d = so + so max || Ae; [ (
J
and letk = U j—q4F; for d < p and £ = RP otherwise. Letl be a matrix such that

Vo e AE (1-9) |ally < | ¥z < (1+0) |l (2.1)
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Then for anyr € A(Cone(so, k0)> nsa—1,

(1-56) < quHz < (1+30) 2.2)

Proofof Theoreml.3. By theRE(sy, 3ko, A) condition,RE(sy, ko, A) condition holds as well. Hence
for u € Cone(so, ko) such thatu # 0,

HUTOHZ

> - 4
HAUH2 = K(SO,kO,A)

> 0,
and by .2

H\i’AuHZ > (1-50) || Aull, > (1 = 56) luzll,

(807 kOv A)
Ol

The proof of Theoren?.1 uses several auxiliary results, which will be establishethe next two subsec-
tions.

2.1 Preliminary results

Our first lemma is based on Maurey’s empirical approximatiogumentisier (1981). We show that any
vector belonging to the convex hull of many vectors can be@pmated by a convex combination of a few
of them.

Lemma 2.2. Letuy,...,uy € R% Lety € conv(uy,...,up). There exists asét C {1,2,..., M} such
that
dmaxjeqr,..ary 153
L <m= o2
and a vector)’ € conv(u;, j € L) such that
/
[y = wll, <=

Proof. Assume that

y= Y oaju; where a; >0, and Y o; =1.
je{1,....M} j

LetY be a random vector iR? such that
]P’(YZU@) =aqy, L€ {1,...,M}

Then

EY = Z Qi = y.



Let Yi,...,Y,, be independent copies &f and letey,..., s, be£1 i.i.d. mean zero Bernoulli random
variables, chosen independentlyldf, . . ., Y,,. By the standard symmetrization argument, we have

2

LSy mneean bl oo
- m2 = | J| 2 — m € :

1 — i 1 —
Elly — — 1l < — Y-
Y mE Y| <A4E mE ;Y
J=1 9 J=1 9

where

2 2 2
E Y1 < sup |13 < max ul}

and the last inequality ir2(3) follows from the definition ofn.

Fix a realizationY; = ug;, j = 1,...,m for which
1 m
- — Yil <
) m; j €

2

The vector- >~ | Y; belongs to the convex hull dfu, : ¢ € L}, whereL is the set of different elements
from the sequencky, ..., k,,. Obviously|L| < m and the lemma is proved. O

For each vectorr € RP, let T; denote the locations of the) largest coefficients ot in absolute values.
Any vectorz € Cone(sg, ko) N SP~! satisfies:

71

ozl < llemly /50 < =28 (24)
lezg ]|, < kov/so lemylly < kov/sos and [lagg, < 1. (2.5)

The next elementary estimate will be used in conjunctiomtie RE condition.
Lemma 2.3. For each vectow € Cone(sg, ko), letT;, denotes the locations of thg largest coefficients of
v in absolute values. Then

foml, = -z (2.6)

\/1+k0.

Proof. By definition of Cone(sg, ko), by (2.4)

> < |lvrg

2
||uze lvrgllo < Ko llozlly - llozylly /50 < ko llom s -

2 2 2 2
Thereforelv]|; = |luzg ||, + vz 13 < (ko + 1) [lon I3 - O

The next lemma concerns the extremum of a linear functional big circle of ag-dimensional sphere. We
consider a line passing through the extreme point, and shatihe value of the functional on a point of the
line, which is relatively close to the extreme point, prasd good bound for the extremum.

Lemma 2.4. letu, #,z € RY be vectors such that

L. (6], = 1.
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2. (z,0) #0.
3. Vectoru is not parallel toz.

Define¢ : R — R by:

(x4 Au,0)
N = ol
Assumep(\) has a local maximum dt, then
(etud)  uly
<‘T79> ”xHZ
Proof. Letv = H;Ib‘ Also let
0 = Bu+n~t, wheret Lo, |t],=1 ands? ++2=1,3#0
andu = nv+ ut+ swheres L v ands L ¢
Definef : R — R by:
A n
FO) = DA (2.8)
S R VA P

Then

(x4 u,0) _ ((zlly + An)v + Aut + As, Bo +9t)
[l + Aully [(lllz + Amv + At + As|l,

Bllzlly + An) + Auy
VUl + A2 + ()2 + 22 5]
B+ fN)
VI 2+ 112720

Sincef(\) = m + O(A\?) we havep(\) = 3 + ;wm + O(\?) in the neighborhood of, Hence, in
order to for¢(\) to have a local maximum &t 1 or v must be 0. Consider these cases separately.

e First supposey = 0, then? = 1 and|(z,0)| = ||z|,. Hence,

<‘T+u79>_ <u79> _‘<u70>’ _Hu”2
@0y T @ey S T we) T

where|(u, 0 )| < |Ju,.

e Otherwise, suppose that= 0. Then we haven| = [(u,v)| < ||ul|, and

0 t
(z+wb) . (wtsforat) 0 98 .,  m

(z,0) (vllzlly, Bv+~t) [E3(PYE; [E4]PS
where we used the fact that#£ 0 given(z,0) # 0.

Ll

]l

Y
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2.2 Convex hull of sparse vectors

Foraset/ C {1,...,p}, denoteE; = span{e; : j € J}. In order to prove the restricted isometry property
of ¥ over the set of vectors M(Cone(so, ko)) NSt we first show that this set is contained in the convex
hull of the images of the sparse vectors with norms not exoggd — §)~'. More precisely, we prove the
following lemma.

Lemma 2.5. Letl > 6 > 0. Let0 < so < pandky > 0. Let A be ag x p matrix such thaRE (s, kg, A)
condition holds fol) < K (s, ko, A) < oo. Define

16 K2 (s0, ko, A)k2 (ko + 1
d=d(ko,A) = so+ som]aXHAeng ( (%0 062 ki (ko )> . (2.9)
Then
A(Cone(so, k0)> NS c (-6 eonv | | J AE; NS (2.10)

|J]<d

where ford > p, E'; is understood to b&P.

Proof. Without loss of generality, assume thét,, A) < p, otherwise the lemma is vacuously true. For
each vectorr € RP, let Ty denote the locations of the) largest coefficients of in absolute values.
Decompose a vectar € Cone(sg, ko) N SP~! as

T = x1, + 278 € TT, + Ko |77 ||, @DSCONVey | j € T), where ||z, ||, > by (2.6)

1
\ ]{70 +1
and hence

Az € Azg, + ko ||z1, ||, abscongAe; | j € T§).

Since the setlCone(sg, ko) N S?~! is not easy to analyze, we introduce set of a simpler stradhstead.
Define
V = {an, + ko o1 ||, absconve; | j € T§)|x € Cone(sg, ko) N SP~* }.

For a givenr € Cone(sg, ko) N SP~L, if Ty is not uniquely defined, we include all possible set&pin the
definition of V. Clearly V' C Cone(so, ko) is a compact set. Moreovelr, contains a base @one(so, ko),
that is, for anyy € Cone(sg, ko) \ {0} there exists\ > 0 such that\y € V.

For anyv € R? such that| Av||, # 0, define

Av

FO) =T,

By conditionRE (s, ko, A), the functionF" is well-defined and continuous drone(sg, ko) \ {0}, and, in
particular, onV. Hence,

ACone(sg, ko) NS4~ = F(Cone(sg, ko) \ {0}) = F(V).

12



By duality, inclusion 2.10) can be derived from the fact that the supremum of any lineactfonal over
the left side of 2.10 does not exceed the supremum over the right side of it. Byethality above, it is
enough to show that for arfyc S7-1, there exists’ € R?\ {0} such that supp(z’)| < d andF(z') is well
defined, which satisfies

Iglea‘;(<F(U),9> < (1=0"YF(E),0). (2.11)

For a givernd, we construct a-sparse vectot’ which satisfiesZ.11). Let

z = argglezg((F(v), 0).

By definition of V there existd C {1,...,p} such thatl| = sy, and for some; € {1, -1},

1
ko—i—l'

z =z + ||z1|l; ko Z ajejej, where o € [0, 1], Z a; <1, andl > ||z]|, >
Jel° jele

(2.12)

Note if o; = 1 for somei € I¢, thenz is a sparse vector itself, and we can set z in order for ¢.11) to
hold. We proceed assuming € [0,1) for all ¢ € I¢in (2.12 from now on, in which case, we construct
a required sparse vectoef via Lemma2.2. To satisfy the assumptions of this lemma, dengte, = 0,
ep+1 = 1 and set
apr1=1-Y aj, henceay € [0,1].
jere
Let

yi=Azre = ||zl ko Y ajejAes = ||zl ko Y agejAe;
jele jereup+1}

and denoteM := {j € I°U{p + 1} : a; > 0}. Lete > 0 be specified later. Applying Lemn2 with
vectorsu; = ko ||21]|; €;Ae; for j € M, construct a sef’ C M satisfying

4maxere k:g ||z1||% ||Aej||§ - 4]{7880 max;eye ||Aej\|§

|J'| <m = = < > (2.13)

and a vector
y =kolzll, Y BjejAe; where for J' C M, 3; € [0,1] and Y 3; =1
jeJ’ jeJ
such that]y’ — yl|, <e.
Setu = ko ||z1]|; >_ e 0 Bicje; and let
7 = zr4u.
By construction, Az’ € AE;, whereJ := (IUJ')Nn{1,...,p} and
|J| < [I| 4+ |J']| < so+m. (2.14)

13



Furthermore, we have
4z — A2, = [ Are —wlly = [ly ], <

For{3;,j € J'} as above, we extend it {3;, j € I°U{p+1}} setting3; = 0forall j € I°U{p+1}\J’
and write

d=z+kollarlly D Bjgje; where g€ 0,1 and > B =1.

jereu{p+1} jercu{p+1}

If 2/ = z, we are done. Otherwise, for soméo be specified, consider the vector

24+ N2 —2) = z1 + ko |l21]; Z (1= Naj + A3j] gje;.
jeleu{p+1}

We haved_ ; jeypi1y [(1— M +A3;] = 1 and
Jo>0s.t.Vjel°U{p+1}, (1—XNa;+AG;€[0,1]if |\ < do.
To see this, we note that
e This condition holds by continuity for ajl such thaty; € (0, 1).
o If a; = 0 for somey, then3; = 0 by construction.

ThUSZ]eIC [( )\)Oéj + )\ﬁ]] <1 andz—i—/\(z’ — Z) =zr+ko HZ[Hl Zjelc [(1 — /\)Oéj + )\ﬁ]] €je; € Vv
whenevei\| < dy.

Consider now a functios : (—dp,dp) — R,

(Az+ NAZ — Az),0)
|Az + A(A2 — Az)||,

$(N) = (F(z+ A= = 2)),0) =

Sincez maximizes( F'(v), 8 ) forall v € V, ¢()\) attains the local maximum &t Then by Lemma&.4, we
have

(A2',0) _ (Az+ (A — A2),0) [(Az" = Az)ll, _ [[Azll, — [I(A2" — Az)ll,

= >1— =
(Az,0) (Az,0) Azl | Az]|;
hence
(F(2),0) _ (AZ/|AZ)5,0) _ 1lAzll, (AZ,6)
(F(2),0) (Az/[|Azlly,0)  [|AZ|ly,  (Az,0)
- | Az|| o Azl — [(A2" — Az)|l,
— [Azly + I(A2 — Az) |, Azl

Azl = [|(A2" = A2)]|,
[Az|ly + [|(Az" — Az)]|,
|Az|y — € 1 2¢
|Az]|ly +& [Azlly +e

14



By definition, z € Cone(sy, ko). Hence we applRE ko, s¢, A) condition and 2.12) to obtain

”21”2 = 1

K(S(b kOv A) n \% 1+ kOK(‘SOv k07 A) ‘
which yields

[Az]y >

[
2V 1+ko K (so,ko,A)

Now we can set =

(F'(z'),0) _,
T 2] 5 (2.15)

and thus 2.11) holds. Finally, by 2.13), we have

16 K2 (sq, ko, AVk2 (ko + 1
isoI%z}XHAeng( (0, ko, A)kip (ko + )>
,7 [}

52
and hence the inclusio2 (10 holds in view of .14 and @.15). O

2.3 Proof of the reduction principle

To prove the restricted isomorphism conditichZ), we apply Lemma.5 with &y being replaced bgk.
The upper bound in2(2) follows immediately from the lemma. To prove the lower bduwe consider a
vectorx € Cone(sg, ko) as an endpoint of an interval, whose midpoint is a spars@r&om the same cone.
Then the other endpoint of the interval will be containedhia targer cone&Cone(sg, 3kg). Comparison
between the upper estimate for the norm of the image of thipp@nt with the lower estimate for the
midpoint will yield the required lower estimate for the pbin

Proofof Theorem2.1 Letv € Cone(s, 3ko) \ {0}, and so|Av||, > 0 by RE(so, 3ko, A) condition.
Letd(3kg, A) be defined as in(9). As in the proof of Lemma2.5 we may assume thdt3k,, A) < p. By
Lemma2.5, applied withk, replaced with3k,, we have

A
AU € A(Cone(so,3ko)) NSt c (1-46)"tconv J AE;nse?
[ Av][ |J|=d(3ko,A)
and A < ! max ’\IJUH = L max \IJUH .
| Av|, ) 1 — d ueconv(AENSI—1) 21— 0 uedAEnSs—! 2

The last equality holds, since the maximunj|&fu||, occurs at an extreme point of the set cOAENSI~1),
because of convexity of the functig{z) = || ¥'z||». Hence, by 2.1)

Va € A(Cone(so,?;ko)) nset, H\I’{L'H (14+0)(1—8)"1<1+36 (2.16)
where the last inequality is satisfied onte: 1/3, which proves the upper estimate hZ).

We have to prove the opposite inequality. ket x; + . € Cone(sg, ko) N SP~1, where the sef contains
the locations of the largest coefficients aof in absolute values. We have

r =+ ||zl Z

Jelc

by (2.6) (2.17)

sgr(a:] e;j, where 1> |lzg||, >

1
H Vko+1
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Lete > 0 be specified later. We now construat @k, A)-sparse vectoy = x;+u € Cone(sy, ko), where
u is supported o ¢ which satisfies

ull; = llyrelly = llzrell; and [[Az — Ayll, = [[A(zre —yre)ll; <€ (2.18)
To do so, set
T
w = Axre = ||xel]y Z ”LI”‘ sgn(x;)Ae;.
“ll1

jere
Let M := {j € I¢ : z; # 0}. Applying Lemma2.2 with vectorsu; = ||z||, sgn(z;)Ae; for j € M,
construct a sef’ ¢ M satisfying

_ Amaxjen [lrre ][ | Aejlly _ 4kGso maxjen [[Ae; |l

|J'| < m: 2 < = (2.19)
and a vector
w' = |lwrelly Y B;sgrx;)Ae;, where for J' C M, 3; € [0,1]and Y 8 =1
jeJ’ jeJ’
such that| Az — Ay|l, = [|w" — wlly < e. Setu := [[zrell; 37 e 5 BSN;)e; and let
y=ar+u=xr+|zrl, Y Bjsgnz;)e; where 8; €[0,1] and Y 8 =1.
jeJ’ jeJ’
By constructiony € Cone(sg, ko) N £y, whereJ := I U J' and
|J| = I| 4+ |J'| < so+m. (2.20)

This, in particular, implies thatAy||, > 0. Assume that is chosen so tha{) + m < d(3kq, A), and so by
(2.1)

i—Ay >1-4.
T4y, |,
Set
v=2x7+2yre —xre =y + (Yre — xye). (2.21)
Then .18 implies
[Av|ly < [[Aylly + [|A(yre — x1e)|| < [|Ayll, + &, (2.22)

andv € Cone(sg, 3ko) as
lorelly < 2lyzelly + llzrelly = 3llzrelly < 3ko lzrlly = 3ko [Jvrlly
where we use the fact that: ;< ||, = ||ys<||,. Hence, by the upper estimat 16), we have

<(1+0)1—-6)"" (2.23)
2

[[Av]l,

16



Sincey = %(ac + v), wherey; = 1, we have by the lower bound i2.(1) and the triangle inequality,

U Ay 1 U Az U Av
1-6 <z

Ayl ||, — 2 \|[149lla ||, || [14ulls |,
o1 U Az U Av | Ay, + ¢
o2\ Azl |, [ lAvlls ], [ Ayll

1 (| TAz 1+4
< =z + ") (1+4/6

(|| +152) - 0o

where in the second line, we applg.22 and @.18), and in the third line, Z.23. By the RE(sq, ko, A)
condition and 2.17) we have

HAyH > ||y1||2 _ ||$IH2 1 ‘
2= K(So,k‘o,A) K('SOakO»A) n K(SQ,]{TQ,A) “Vko+1
> g | Ay||
y 2+€
€= sothat —=—=—— < (14 6/6).
6V T FoK (s0. o A) 1Ay, = (1+9/9)
Then ford < 1/5
U Az 1-9
— — — (1481 -6t >1-56
[acl, |, = *T+oc ~ 1 TOU=072

This verifies the lower estimate. It remains to check the ddoanthe cardinality of/. By (2.19 and @.20),

we have forkg > 0,

16K (s, ko, a)(3ko)? (ko + 1)
52

lJ] < so+m§so+soné%<HAejH§< ><d(3k0,A)
j

as desired. This completes the proof of Theotzm

Remark 2.6. Lete > 0. Instead ofv defined in(2.21), one can consider the vector
ve = x1 +y — e(w —y) € Cone(s, (14 €)ko).

Then replacing by v. throughout the proof, we can establish Theogfunder the assumptidRE (s, (1+
e)ko, A) instead ofRE (s, 3ko, A), if we increase the dimensiai{3k,) by a factor depending on

3 Subgaussian random design

Theoreml.6 can be reformulated as an almost isometry condition for th&irX = ¥ A acting on the set
Cone(sy, ko). Recall that

16 K2 (s0, 3ko, A)(3ko)?(3ko + 1
d(3ko, A) :so—i—somaxHAe”@( 6K (s0, 3ko, A)(3ko)*(3ko + )>
j

52
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Theorem 3.1.Set0 < § < 1,0 < 59 < p, andky > 0. Let A be ag x p matrix satisfyingRE(so, 3ko, A)
condition as in Definitiorl.1 Letm = min(d(3ko, A),p) < p. Let¥ be ann x ¢ matrix whose rows are
independent isotropig, random vectors ifiR? with constanitv. Assume that the sample size satisfies

2000ma’* 60ep
n > 52 log < s ) . (3.1)
Then with probability at least — 2 exp(§2n/2000a*), for all v € Cone(s, k) such that # 0,
1 H‘IfAsz
1-6 < — < 146 (3.2)
Vv ||Av|l,

Theorem1.6 follows immediately from Theorer3.1. Indeed, by 8.2), for all u € Cone(sy, ko) such that
u # 0,

”uToHZ

1
NLD
To derive Theoren8.1from Theorem2.1we need a lower estimate for the norm of the image of a sparse
vector. Such estimate relies on the standareet argument similarly té/lendelson et al(200§ Section 3).

Theorem 3.2. Set0 < § < 1. Let A be aq x p matrix, and let¥ be ann x ¢, matrix whose rows are
independent isotropig, random vectors ifR? with constanin. For m < p, assume that

2

4 12
n > 8077;0[ log< ep) . (3.3)
T mT
Then with probability at least — 2 exp(—72n/80a*), for all m-sparse vectors in R?,
1
(1=7)llAuly = —=lVAuly < (1+7) ]| Aul,. (3.4)

We note that Theoren3.2 does not require the RE condition to hold. No particular uppeund on
Pmax(m, A) is imposed here either.

We now state a large deviation bounds forsparse eigenvalugs,i, (m, X) and pax(m, X) for random
designX = n~/2¥ A which follows from Theorens.2 directly.
Corollary 3.3. Under conditions in Theore®.2, we have with probability at leasgt— 2 exp(—72n/80a*),

(1= 7 Dm0, A) < A/ prain(m, X) < A (2, X) < (14 ) D7, A). (3.5)

3.1 Proof of Theorem3.1

For n as bounded in3.1), wherem = min(d(3ko, A),p), we have 8.3) holds withT = ¢/5. Then by
Theorem3.2, we have with probability at leagt— 2 exp (—nd?/(2000a)),

- _ < < _ .
Vm-sparse vectors, (1 5> | Aul|, NG H\IfAqu (1 - 5) | Aul|,

The proof finishes by application of Theoreirl
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3.2 Proof of Theorem3.2

We start with a definition.
Definition 3.4. Given a subsel/ C R? and a numbee > 0, ane-netll of U with respect to the Euclidean
metric is a subset of points 6f such that-balls centered atl coversU:

UcC U (z +eBY),
z€ell

whereA + B := {a+b:a € A,b € B} is the Minkowski sum of the setsand B. The covering number
N (U, ¢) is the smallest cardinality of annet ofU.

The proof of TheorenB.2 uses two well-known results. The first one is th@lumetric estimatesee
e.g.Milman and Schechtmaf1986).

Lemma 3.5. Givenm > 1 ande > 0. There exists an-netIl C Bj" of By* with respect to the Euclidean
metric such thatBy* C (1 — ¢)~!convIl and [II| < (1 + 2/¢)™. Similarly, there exists an-net of the
sphereS™~1 1" ¢ S™~! such thatIl’| < (1 + 2/¢)™.

The second lemma with a worse constant can be derived fromsExn’s inequality for subexponential
random variables. Since we are interested in the numerataéwof the constant, we provide a proof below.
Lemma 3.6. LetY,...,Y,, be independent random variables such tEé‘E-Z = land|[)Yj|,, < aforall
j=1,...,n. Thenforany € (0,1)

1 & 0%n
2
P E]E:le -1 >0 <2exp <_1Oa4>'

Foraset/ C {1,...,p}, denoteE; = span{e; : j € J}, and setF); = AE,. For each subsdt; N 5971,
construct are-netIl ;, which satisfies

II; C FJﬂSq_l and ’HJ’ < (1+2/€)m.

The existence of sucH ; is guaranteed by Lemnab. If

= U I,

| J|=m

then the previous estimate implies

- (2) £ (2)" - o (s (22))

Fory € S9N F; C F, letw(y) be one of the closest point in thecoverIl;. Then

y—7(y)

e Fyn ST where |y — 7(y)]], < e.
ly — 7 ()l ’
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Denote by, ..., ¥, the rows of the matrixy, and sel’ = n~ /2. Letz € S9!, Applying Lemma3.6
to the random variable§V, 2 )2, ..., (¥,,z)?, we have that for ever§ < 1

P(‘|]Px|]§—1‘>9) - ]P’( >9>§2exp<—1no—9:4>. (3.6)

n

LS (w1

n -
=1

For

the union bound implies

2 no? n?
P <E|3: ells. t. ‘||F33‘H2 - 1‘ > 9) < 2|II| exp <—W> < 2exp <_W

Then for allyy € 11
1—60<|Tyl3<1+6 andso

0
1—9§||Fy0||2§1+§

with probability at least — 2 exp (-%) The bound over the enti6~! N F is obtained by approxi-
mation. We have

[Ty = Ty = 7@)lla < [ITylly < [[T(y)lly + [Ty — 7(y))]l (3.7)
Define
HF||27FJ = sup |[[Tylly.
yeSI—1INF;

The RHS of 8.7) is upper bounded by + g +¢||l'lly, -, - By taking the supremum over ajle St Fy,
we have

1+6/2

0
[Pllpp, <1+ 5+l p, andhence [T, p, < ——=

The LHS of 3.7) is lower bounded by — 6 — ¢ HFHQ,FJ, and hence for alj € S~ N F;

e(1+6/2)
Iylly > 1-0—c|Tllpp, >1-0- ==
Putting these together, we have forale S9=' N F;
e(1+6/2 1+6/2
1—g— 0D gy o 10
l—e¢ 1—e¢

which holds for all sets/. Thus forf < 1/2 ande = 14%

1-20 < |Tylly <1+ 26,
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For anym-sparse vecton € SP~!

Au
—— € F; forJ = supp(u),
[ Aull

and so
(1 —20) | Aully < [T Aully < (14 20) [|Aull, .

TakingT = 0 /2 finishes the proof for Theore®.2.

3.3 Proof of Lemma3.6

Note thata > [|Y1[[,, > [[Y1[l, = 1. Using the elementary inequality < k!s*e'/*, which holds for all
t, s > 0, we obtain

|IE(YJ2 —- 1)k < maX(EYjZk, 1) < max(kla?¥ -Eey12/a2, 1) < 2kla?

for anyk > 2. Since for any; EY]? =1, foranyr € Rwith |[7|a? < 1

1
Eexp [r(Y7 —1] <1+ > H\Ty’f (B = DR <14 |rfF 207

k=2 k=2
<14 21204 - 27204
P Er——— ex — = | -
- 1—|r|a? — PATC |7|c?
By Markov’s inequality, forr € (0, a«~2)
1 n n
P> Y7?-1>0] <Eexp (7> (V7 —1)—70n
j=1 j=1
2 2.4
— e 0. (Eexp [T(Y2 - 1)})" < exp (—T@ﬂ + %) )

Setr = =;, sora? < 1/5. Then the previous inequality implies

5a’?

1 & 0%n
2
P E]E:le —1>0 §exp<—10a4>.

Similarly, consideringr < 0, we obtain

1 — 6%n
E 2
P 1—5‘7:1Y‘; >9 éexp <_10a4‘>
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4 RE condition for random matrices with bounded entries

We next consider the case of desigh mafXixconsisting of independent identically distributed rowshwi
bounded entries. As in the previous section, we reformuiaeoreml.8in the form of an almost isometry
condition.

Theorem 4.1. Let0 < § < 1land0 < so < p. LetY € RP be a random vector such that’|| < M a.s.,
and denotez = EYYT. Let X be ann x p matrix, whose rows\1, ..., X,, are independent copies f.
Let Y satisfy theRE (s, 3ko, ©'/2) condition as in Definitior..1 Set

d = d(3ko, 21/2) = 50 + S0 mjax H21/2ejH

2 (16K2(so,3k0, $1/2)(3ko )2 (3ko + 1))
2 52 '

Assume thatl < p andp = pmin(d, £'/2) > 0. If for some absolute constaat

CM?d -logp 5 (CM?d-logp
SR gt (S 0ER)

>
" pd? pd?

then with probability at least — exp (—dpn/(6M2d)) all vectorsu € Cone(so, ko) satisfy

(1 =0)[ully <

1 Xul, _
n

Similarly to TheorenB.1, Theorem4.1 can be derived from Theoreghl, and the corresponding bound for
d-sparse vector, which is proved below.

Theorem 4.2. LetY € RP be a random vector such thgt’|| . < M a.s., and denot& = EYYT.
Let X be ann x p matrix, whose rowsX1, ..., X,, are independent copies &f. Let0 < m < p. If

P = Pmin(Mm, 21/2) > (0 and

2 . 2 .
nZCMm Ing-log?’ CM*m -logp ’ (4.1)
pd? pd?
then with probability at least — 2exp (— ;%) all m-sparse vectors, satisfy
1 Xu
1< —/— .|| ——— || <144
=V ' o

To prove Theorend.2we consider random variable, = || Xul|, /(v/n ||£'/?u||,) — 1, and estimate the
expectation of the supremum &f, over the set of sparse vectors using Dudley’s entropy iated@ihe proof

of this part closely followskudelson and Vershyni(2009, so we will only sketch it. To derive the large
deviation estimate from the bound on the expectation we akgiland’s measure concentration theorem for
empirical processes, which provides a sharper estimaam, ttie method used iRudelson and Vershynin
(2009.
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Proof. ForJ C {1,...,p}, let E; be the coordinate subspace spanned by the vectorse J. Set

F=|J ='?E;nsr .
|J|=m

Denote¥ = ¥~1/2X soREWU”T = id, and let¥,, ..., ¥, be independent copies ®f. It is enough to show

that with probability at least — exp (— 14z ) for anyy € F

1
1—— E )2 <8
n 4 <\Ij]7y> — 5
J=1
To this end we estimate

A:=Esup|l —
yeF

SRS

Z<\Iljv y>2 .
j=1

The standard symmetrization argument implies that

n

1 2 -
Esup |l — — U )2 < ZEsup e (Wi )2,
sup 1= =3 (¥5,9)%) < TEsup B L e(%;.,)

j=1 j=1

wheresq,. .., g, are independent Bernoulli random variables taking vatuesvith probability 1/2. The es-
timate of the last quantity is based on the following Lemmiaigh is similar to Lemma 3.8udelson and Vershynin
(2009).

Lemma 4.3. Let F' be as above, and let;, ..., , € RP. Set

@ = max
jzlv"'vn

21/2¢jHOO.

Then

1/2

n . . 2 n
E sup Z€j<¢j’y>2 S\/C’mQ2 logn logp'log <CmQ ) . sup Z<¢j’y>2

ver |\ P P vel \ i

Assuming Lemmal.3, we finish the proof of the Theorem. First, note that by thersiédin of ¥ ;,

max

]:1,...,71

21/2\I/jHOO < Mas.

Hence, conditioning o¥/4, ..., ¥,, and applying Lemmad.3, we obtain

1/2

> M2 -logn -1 M? n
A<, Cm ogn ng-log <Cm ) -Esup Z(\I/j,y>2 )
n p P yek

Jj=1
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and by Cauchy—Schwartz inequality,

. 1/2 1/2
Esup(z<‘1’j,y>2) <<ESUPZ Jny ) :

yer j=1

SO

2, . 2
A< 2 [CmM?-logn -logp og (CmM
vn P

If n satisfies 4.1), then
A<6 - (A+1)? andthusA < 26.

Fory € F define a random variablg(y) = (¥, y)? — 1. Then|f(y)| < (X, 2" Y2)2 +1 < M?p~'m +
1:= a a.s., becausE~/2y is anm-sparse vector, whose norm does not exgeeld2. Set

= supz fily

yEF

where f1(y), ..., fn(y) are independent copies ¢fy). The argument above shows tfiaf < 26n. Then
Talagrand’s concentration inequality for empirical preses_edoux(2001) reads

t t
P(Z > t) <exp <_6_a> < exp <_6]\47l;m>

forallt > 2EZ. Settingt = 46n, we have

4om
supz ) > 46n) < exp < GMZI;)?@) .

Similarly, considering random varlabI@$y) =1— (¥,y)2, we show that

onp
1 - ) > 4én) <
gggz n) < exp ( 5 M2m> :
which completes the proof of the theorem. O

It remains to prove Lemmé.3. By Dudley’s inequality

ZEJ (5, )

Hered is the natural metric of the related Gaussian process defised

E sup

§C/ log"/? N (F,d, u) du.
yeFr 0

. 1/2
d(z,y) = | ((W5.2)° - <wj,y>2)2]
=1

n

1/2
> (g, ) + (1/1jay>)2]  Iax (Y5, z — y)|

_j:l eens

IN
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where
1/2
n

R =sup Z(¢jay>2 , and ”Z”Y :]ilia}(’n‘(w]vzﬂ

yeF =1

The inclusiony/m By > U, =, Es N SP~! implies
VmE2BY 5 52 conv( | | E;nSPT) D pl /P
|J|=m

Hence, forany € F
2]ly < p‘l/zx/ﬁjglla}?fn HEW%Z);'HOO =p 2VmQ. (4.2)

Replacing the metrid with the norm||-||,-, we obtain

—1/2

n p m
Esup | ¢;(;,0)%| < CR / log"/2 N (F, ||lly , w) du.
yeF j=1 0

The upper limit of integration is greater or equal than thenéter of ' in the norm||-||,-, so foru >
p~/2/mQ the integrand is 0. Arguing as in Lemma 37 delson and Vershyni2009, we can show that

N(F, |[lly su) < N(p~2/mSY2BE |||y ,u) < (2p)), (4.3)
where )
Cp~'m (maxizlv___,p max;—i__n ]<21/2ei, 1/1j>]) Cm@Q? -logn
l= clogn = —————
u? pu?

Also, sinceF' consists of the uniorﬁg;) Euclidean spheres, the inclusioch?) and the volumetric estimate
yield

m

N(E |y ) < @(um) < (@)m.<1+w> @
m u u

Estimating the covering number éfas in @.3) for v > 1, and as in4.4) for 0 < u < 1, we obtain

Esup |y e;(v;,y)?

yel )
1/2
1 —1/2
C’R/ N <1og<@> + log <1+M>> du
0 m u

p~/2/mQ 2.1
+CR/ W-vlogﬁadu
1

2. . 2
C’R\/mQ loin Ing-log (Cn;@ > 0

IN

IN
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Remark 4.4. Note that unlike the case of a random matrix with subgaussiarginals, the estimate of
Theorem4.2 contains the minimal sparse singular valge This is, however, necessary, as the following
example shows.

Letm = 2!, and assume that = k - m, for somek € N. Forj = 1,...,k let D; be them x m Walsh
matrix. LetA be ap x p block-diagonal matrix with block®+, ..., D, on the diagonal, and let” € R? be
a random vector, whose values are the rows of the matrigken with probabilities /p. Then||Y|| =1
andEYYT = (m/p) - id, sop = m/p. Hence, the right-hand side ¢#.1) reduces to

Cp-logp log® Cp-logp
52 - 108 52

From the other side, if the matriX satisfies the conditions of Theoreén2with, say,0 = 1/2, then all rows
of the matrixA should be present among the rows of the makixAn elementary calculation shows that
in this case it is necessary to assume that C'plogp, so the estimatét.1) is exact up to a power of the
logarithm.

Unlike the matrix:, the matrixA is not symmetric. However, the example above can be easdifiatbby

considering &p x 2p matrix
~ 0 A
A= .

This shows that the estimat#.1) is tight under the symmetry assumption as well.
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