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Foreword

This volume is a compilation of my notes on the fundamentals of fluid
dynamics and serves as an introduction to tsunamis. With that in mind, I
have written the following as/for a seismology student. I am not a fluid dy-
namicist, but am interested in playing around with fluid dynamics equations
and concepts in order to apply them to tsunamis.

While this text is systematically structured as an intermediate level
course in fluid dynamics for a geoscience student with an interest in tsunamis,
it, by no means, serves as a complete reference. For instance, I have kept out
most of the introductory stuff on vector & tensor calculus – as they are in-
cluded in many fluid mechanic textbooks – and skipped over many of the
otherwise time consuming and perhaps distracting examples. I believe such
material ought to be addressed in lectures and/or in exercises, but not in the
text.

I have allocated the final sections to introductions to computational fluid
dynamics (CFD) and tsunamis. I have also included a quick and dirty intro-
duction to a benchmarked tsunami simulation softwares (MOST) as I think
this is a more hands-on way to get familiar with many of the concepts.

This volume is inspired, in part, by my notes from Neelesh Patankar’s
lectures at Northwestern University as well as my interesting conversations
and correspondences with Emile Okal, Costas Synolakis & Nikos Kalligeris.

Amir Salaree
September 25, 2017
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1 Temporal and Spatial Scales

“Scales” are perhaps the most confusing and at the same time useful
concepts in fluid mechanics. There are usually two classes of “micro” and
“macro” scales and while it seems like an obvious statement, – in fact, in
many cases it is – it is crucial to choose a proper scale before starting to
address a fluid mechanics problem.

1.1 Micro Scale

Fluids can be thought of as “bodies” of tiny particles or molecules. Let’s
begin with an example: when dealing with air as a fluid which can flow, one
would be tempted to think about it as individual N2, O2,... particles with
typical diameters on the order of 1Å at a typical distance of ∼ 40Å from
each other.1 Also, while liquid water has an atomic size of ∼ 3 − 4Å, the
intermolecular distance of H2O is ∼ 4 − 5Å.2 The typical amount of time
needed to distinguish between various atomic motions is ∼ 10−15s or 1 fs.
This means, “meaningful” motions at the micro-scale have to occur on the
order of angstroms and femtometers (see Fig. 1.1).

1.2 Macro Scale

Obviously, we need to deal with larger sizes and times too. For instance,
we think about and/or interact with wind, streams, showers, and waves (and

1While hydrogen atoms have a diameter of ∼ 1.1Å, protons have a diameter of ∼
1.7 × 10−15m or ∼ 1.7 fm.

2Just in order to get some sense of all these numbers, human hair have typical thick-
nesses of ∼ 50 − 100µm (1 µm = 10−6m).
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even larger things such as storms, floods, hurricanes, tsunamis, etc) everyday.
Here, the sizes are on the order of meters and kilometers and times (from
daily experience) are on the order of seconds, minutes and hours (see Fig.
1.1).

Figure 1.1: Scales in fluid mechanics.

1.3 Continuum Approximation: Lc

For the scope of this text, we describe fluids not at atmic or molecular
scale, but in a continuum which is an experimental threshold as we will
discuss below.

Consider Fig. 1.2 where a gas is passing around a sphere in a bulged pipe.
In this setup, various parameters of the flow will change throughout its path.
But before any attempt to address this issue, we have to decide which aspect
of the problem we want to solve. Do we want to think about the variations
in flow velocity or do we want to study the variations in its density? Do we
want to solve for particle (molecule) distances (and therefore flow density)
over time and in space or do we assume to have this information beforehand?
These questions and many similar ones should be resolved before setting out
to solve a problem.

Fortunately, such an insight is usually easy to gain. In order to do this,
people have come up with the idea of “local density” which is the average
density at a given point – what we ideally try to shrink in size to become
infinitesimal. If we consider a fixed point in space and count the number of
particles closer than a very small distance of r0 to it and then keep doing this
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Figure 1.2: A fluid passing around a sphere in a bulged pipe. In general, U1 6=U2 which for a compressible
flow, makes the local densities at the two points different.

by incrementally adding to r0, the result will look like what is shown in Fig.
1.3.

As you can see in Fig. 1.3, at small radii, both curves fluctuate and only
reach a constant level at higher values of radius.3 We can define a dimen-
sion/volume, Lc, big enough to accommodate a given number of molecules in
a way that the local density would be constant for that size of volume every-
where in the fluid. Such a volume totally depends on the type of fluid. For
example, while the fluctuations of local density in Fig. 3(b) for a fluid with
15,000 molecules in the differential volume (e.g., nitrogen) will be ∼ 0.8%,
it will be ∼ 25% for a fluid with 15 molecules per differential volume (e.g.,
water).

3The different behaviors of the two curves in Fig. 3(a) and 3(b) has to do with the
different molecular structures of solids and liquids, as in solids, molecules are parts of a
lattice, whereas in liquids their positions are fairly random.

Another noteworthy aspect that we will not cover here is that the shapes of these curves
will vary to some extent over the transition from 2-D to 3-D.
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(a)

(b)

Figure 1.3: Density curves for a (a) 2-D solid and (b) a 2-D liquid, stated as molecules per unit volume.
Red lines denote Lc.

Consequently, for a container of nitrogen gas, Lc≈ 75 − 100 nm, and for
the same volume of water, Lc≈ 10 nm. In other words, dealing with liquids
such as water on the macro scale is much easier than gases since they start to
leave the choppy behavior and begin to behave themselves at smaller sizes.

In a nutshell, in fluid mechanics and in the domain of this text, we will
mostly be dealing with continua which are liquids at length scales larger than
a few nanometers (Lc≫ 10−8 m).
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2 Material Derivative

2.1 Introduction

In any given medium, Newton’s Second Law must be applied to the same
body of material. That is to say that the material for which the equations of
motion and acting forces are written must remain the same throughout the
motion. This seems to be a trivial statement, but in fact is very important
in dealing with non-rigid material such as fluids. In solids, applying New-
ton’s second law is usually straightforward, since the target volume usually
does not undergo internal evolution, or at least making such an assumption
does not undermine the solution too much. This is mainly due to the fact
that the subject molecules are trapped in a strong-enough potential field and
tend to stay there unless an opposing strong-enough force dictates otherwise.
Usually, the oscillatory or vibrating force around the potential well which the
molecules are trapped in is the characteristic of solids. In fluids, however, the
molecules have more freedom of movement and they not only vibrate around
an equilibrium, but also, most dominantly, they can move around the fluid
body in random Brownian motions, and this is why the density-volume curves
for liquids and solids differ so drastically at small volumes (Figs. 3(a) and
3(b)).

In fluids, even if the mass element is seemingly at rest, it evolves in time
due to thermal diffusion. In other words, the molecules in A are not those in
B in Fig. 2.1, although it is assumed to be the same volume traveling along
with the flow. As a result, the basic requirement of Newton’s second law is
not satisfied for fixed fluid mass and/or volume.

Figure 2.1: Volume of fluid has traveled from A along with the flow to reach B. It is the same volume,
but it has changed and evolved over the path. The molecules in A are not the same as those in B.
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2.2 Material Domain

The change in the content of any given fixed volume (originally intended
to keep the mass preserved) raises the question if Newton’s second law could
be applied, in its current form, to fluids. The solution to this problem lies in
the definition of the “fixed volume.” If we could somehow define an imaginary
volume the content of which would be constant throughout its motion, then
we will be able to apply the second law without any apparent trouble.

A material domain is a domain which gets deformed to ensure that every
particle on the surface of the volume will move by ~u(~x, t) which is a nonuni-
form velocity field throughout the volume over the small time fragment dt.
The result would be that the mass in the volume will remain constant and the
molecules inside the boundaries of the volume will remain the same through-
out the path traveled by the volume. The price to pay, is that differential
equations will no longer hold the way they do under usual circumstances (e.g.,
in solids) and we can no longer equate the differential acceleration times mass
to force simply as m(d~u/dt). However, if the size of this volume was to ap-
proach zero and take the form of a differential point called, the material point,
then we can define a spacial derivative.

Material derivative follows the material point to see how it has changed
over time. For instance, for a material volume, considering Fig. 2.1, we can
write

uB − uA

tB − tA
=

u(A, t + ∆t) − u(A, t)

(t + dt) − dt
= a ≡ acceleration (2.1)

where u(x, t) is the velocity of the flow particle as function of space and time.
This kind of derivative can be applied to any given characteristic, F , of the
material volume. In other words,
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DF

Dt
= lim

∆t→0

F (A, t + ∆t) − F (A, t)

∆t
(2.2)

where D
Dt

(or Dt) is called the material derivative.

2.2.1 Flow Field Specification

What we do in dealing with various types of flows in the real world is
measure the characteristics of moving fluids, or flows, at fixed points since
in reality we are unable to follow infinitesimally small volumes of fluid par-
ticles over time. This is called the transition from the Lagrangian point to
the Eulerian point. In the Lagrangian expression of flow field we deal with
individual material points, while in the Eulerian expression we calculate and
measure various characteristics at fixed points in space and time. These are
two different ways to specify flow fields but they can be converted to one
another.

If we consider the changes in the characteristic F of a flow, using the
definition of gradient, we can write,

DF =
∂F

∂t
Dt +

∂F

∂xi

dxi =
∂F

∂t
Dt +

∂F

∂xi

uiDt (2.3)

where xi is the i-th coordinate of space. Dividing both sides by Dt we get,
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DF

Dt
=

∂F

∂t
+

∂F

∂xi

ui

or

DtF =∂tF + ∂iFui (2.4)

or in the Gibbs notation,

DF

Dt
=

∂F

∂t
+ ~u.∇F (2.5)

Eqs. (2.5) and (2.4) serve as definitions of material derivative. The first
and second terms on the right are called “local” and “convection” accelera-
tions. While local acceleration deals with temporal variations of a given quan-
tity (here velocity) at a constant position, convection acceleration expresses
the variations in that quantity throughout the fluid.

2.2.2 Flow Acceleration

Using the idea of Eqs. (2.1) and (2.5), we can calculate acceleration as,

D~u

Dt
=

∂~u

∂t
+ ~u.∇~u (2.6)

or in the tensor notation,
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Dtui = ∂tui + ujui,j = ∂tui + uj∂jui (2.7)

where ~u is a function of both space and time. Eq. (2.7) is the material
derivative of velocity and relates acceleration of a fluid material point to its
Eulerian definition.

As a result, we can interpret experimental data to individual material
points or, more importantly, predict positions of fluid particles at given fixed
points by the equations of motion we derived here using the definition of ma-
terial points. Material derivative can be considered as an operator as in Eq.
(2.8), acting on any given vector such as ~a.4.

Dt = ∂t + uj∂j (2.8)

Dtai = ∂tai + uj∂jai (2.9)

One final point to remember when using the concept of material deriva-
tive is that, it is no different from the normal way of computing derivative in
the sense that is using the idea of infinitesimal changes, however, one should
keep in mind that the two of the above are not interchangeable, but can be
converted to one another using Eq. (2.5).

4Pay attention to the i and j indices.
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