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OVERVIEW

STRUCTURAL MODELS:  FROM THE TIMELESS TO THE TIMELY

The Timeless…
Euler and Königsberg

Long ago (as early as 1636), citizens of Königsberg (modern-day Kaliningrad) challenged

themselves to take a walk around the city so that they crossed each of the seven bridges over the

River Pregel exactly once and returned to their point of departure (Figure O.1).   Soon, they

discovered that their attempts were in vain; however, the problem is sufficiently complicated that it

is not clear from empirical trials why the suggested stroll is impossible.  One attempt at solution is

highlighted in red (Figure O.2).  In this case, one is trapped on an island and cannot cross bridge 7

without crossing an already-crossed bridge.

Figure O.1.  Map of a portion of Königsberg from 1890 [we seek a better historical map for the
final product.]
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Figure O.2.  The Seven Bridges of Königsberg highlighted on the map; one attempt at crossing
each exactly once is shown.

When the apparently complicated connection patterns were partitioned into the two categories

"regions" and "bridges" (Figure O.3), and then the regions represented as nodes and the bridges as

edges (Figure O.4), a graphical model that captured only the structural elements of the problem

emerged.  Thus, it became possible for Leonhard Euler to show why such a walk was impossible.
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Figure O.3.  Regions of the city are represented as A, B, C, and D.  Bridges are assigned numerals
from 1 to 7.

Figure O.4.  Seven Bridges of Königsberg:  structural model (graph) based on geographic map.
Only the nodes (representing regions on the map) are labelled, A, B, C, and D.  Edges represent
associated bridges.
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A trip of the sort desired by the townspeople is a sequence of nodes where each adjoining pair of

nodes is joined by a different edge, and all seven edges are included.  For example, A, D, B, C, A is

a sequence starting and ending at A (returning to the point of departure), but only 4 edges, AD,

DB, one BC, one BA, of the seven are included.  In any such a sequence of nodes and edges, at

each node an edge comes in and an edge goes out.  Thus the total number of edges at each node

must be even (this number is called the degree of that node).  In the graph of the Königsberg

bridges, not just one but all of the nodes have odd degree (Figure O.4).  So a traversal is

impossible.  In fact, Euler proved that a graph that comes in one piece (connected graph) has a

traversal of the type mentioned (Eulerian trail) precisely when the degree of every node is even.

When a graph is used to represent the structural elements of a real-world situation, as it

was above, we refer to it as a structural model.  Often, it is useful to look at some of the deeper

issues represented in the process of creating models, for it is there that one can find parallels to

guide applications in various directions.  In the case of Königsberg, the representation of the

geographic situation as a graph enabled Euler to solve the immediate superficial problem of a walk

through a particular town. As suggested above, in the comments about Eulerian trails, this

representation also enabled him to extend the initial idea to solve an entire class of mathematical

problems.

Often, with a bit of imagination, one can use mathematics to capture geographical

structure and use geographical analysis to further mathematical inquiry.  Such was the case for

Königsberg; another classical case involved Hamilton's interest in traversability.

Hamilton and the Around-the-World Puzzle

Hamilton was interested in a different type of graphical traversal (Harary, 1969).  Instead

of having every edge occur exactly once, he wanted each node represented exactly once along the

traversal.  For instance, in the graphical representation of the cube below (Figure O.5), the

sequence A, B, C, D, E, F, G, H, A, would produce a Hamiltonian circuit.
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Figure O.5.  Cube represented as a graph. The sequence A, B, C, D, E, F, G, H, A, produces a
Hamiltonian circuit.

Hamilton himself presented this problem in the form of a puzzle called the Around-the-

World Puzzle, a graphical representation of the dodecahedron with city names attached to each

node.  See if you can solve Hamilton’s puzzle, using the graph of the dodecahedron in Figure O.6.

Figure O.6.  Dodecahedron represented as a graph.  Each node represents a city.  Is this graph
Hamiltonian?  It is; see if you can find a sequence of edges meeting the initial criteria.
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It can be quite difficult to determine exactly when a graph is or is not Hamiltonian.  Here are a few

easy examples of graphs that are not Hamiltonian (Figure O.7).  To traverse all nodes, and return

to the origin, requires passing through a node twice.

Figure O.7.  Graphs that are not Hamiltonian; it is not possible to traverse each node exactly once
and return to the origin.

Hamilton shows us that there is more going on behind a simple global issue, such as

traversing a set of cities, than meets the eye.  Hamilton and Euler saw "geo-graphs" as an initial

stimulus for far-reaching research.  Careful initial alignment of the geographical and mathematical

elements can penetrate in many different directions.  It is such alignments and their consequences

that are the thrust of this book.

The Timely…

Adjacency is a concept that is both graphical and geographical. In this section, we

introduce a sample that draws on concepts that we leave as undefined for the example, although

they will be defined later (Arlinghaus and Arlinghaus, 1997).  Often, a few nice maps serve as

motivation to pique one's interest to delve into more notationally complex matters later in a book:

that is our hope with this example.



Arlinghaus, S.; Arlinghaus, W.; and, Harary, F.

9

Figure O.8.  Positive spatial autocorrelation:  directly adjacent block-group neighbors.  Source of
data and selected polygons:  United States Bureau of the Census, 1990.  Source of base maps:
Atlas GIS, v.3.03, Environmental Systems Research Institute (ESRI).  Maps reflect accuracy
standards imposed by ESRI and the Census.

Figure O.9.  Positive spatial autocorrelation:  second-level adjacency of neighboring block-groups.
Source of data and selected polygons:  United States Bureau of the Census, 1990.  Source of base
maps:  Atlas GIS, v.3.03, Environmental Systems Research Institute (ESRI).  Maps reflect
accuracy standards imposed by ESRI and the Census.
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Spatial autocorrelation measures, to some extent, the influence of neighboring regions on

each other: it is a measure of clustering of geographic regions based on some characteristic shared,

or not shared, by pairs of adjacent regions. Given a map, with regions colored by some variable,

two regions are said to be adjacent (neighbors) if they have a common boundary that includes a line

segment (touching at a point, only, does not constitute adjacency).  With positive spatial

autocorrelation, similar values of the variable are clustered in space.  With negative spatial

autocorrelation, dissimilar values of the variable are clustered in space.  No spatial autocorrelation

indicates a random pattern of clustering  in space.

The enclosed maps of Wayne County, Michigan, Figures O.8 and O.9 (also in the

Frontispiece), show conditions of highly positive spatial autocorrelation.  Census block groups that

are predominantly populated by white population tend to be directly adjacent to block groups of

similar character; census block groups that are predominantly populated by non-white population

tend to be directly adjacent to block groups of similar character (Figure O.8).  Thus, Detroit is seen

as having predominantly non-white population while the Grosse Pointes and western and

southwestern suburbia are largely white.  The racial polarization between white and non-white is as

evident on the map as it is to county residents.

Indeed, a similar situation exists for second-order adjacency patterns (neighbors) as well

(Figure O.9).  The buffer zones surrounding Detroit appear almost as topographic ridges in the

adjacency pattern of racial relations.  These ideas that are evident on the map can be captured more

formally, as we shall see later, using graph-theoretic techniques.

Graphical and Geo-graphical intersections, such as those suggested by these classical and

modern examples, will form the backbone of this book.  Some examples will aim at careful

alignment of basic material; others will extend the alignment into more complex directions.  All

will make ample use of graphic materials, from historical to contemporary maps. We hope that the
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reader will gain as much enjoyment from discovering the sort of understanding that structural

models can offer to spatial analysis (be it mathematical or geographical) as we have.
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